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Chapter 3
Cell Cycle Machinery in Bacillus subtilis

Jeff Errington and Ling Juan Wu

Abstract  Bacillus subtilis is the best described member of the Gram positive bac-
teria. It is a typical rod shaped bacterium and grows by elongation in its long axis, 
before dividing at mid cell to generate two similar daughter cells. B. subtilis is a 
particularly interesting model for cell cycle studies because it also carries out a 
modified, asymmetrical division during endospore formation, which can be simply 
induced by starvation. Cell growth occurs strictly by elongation of the rod, which 
maintains a constant diameter at all growth rates. This process involves expansion 
of the cell wall, requiring intercalation of new peptidoglycan and teichoic acid 
material, as well as controlled hydrolysis of existing wall material. Actin-like MreB 
proteins are the key spatial regulators that orchestrate the plethora of enzymes 
needed for cell elongation, many of which are thought to assemble into functional 
complexes called elongasomes. Cell division requires a switch in the orientation of 
cell wall synthesis and is organised by a tubulin-like protein FtsZ. FtsZ forms a  
ring-like structure at the site of impending division, which is specified by a range of 
mainly negative regulators. There it recruits a set of dedicated division proteins to 
form a structure called the divisome, which brings about the process of division. 
During sporulation, both the positioning and fine structure of the division septum 
are altered, and again, several dedicated proteins that contribute specifically to this 
process have been identified. This chapter summarises our current understanding of 
elongation and division in B. subtilis, with particular emphasis on the cytoskeletal 
proteins MreB and FtsZ, and highlights where the major gaps in our understanding 
remain.
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�Introduction to B. subtilis

Bacillus subtilis is an aerobic, Gram positive, endospore forming bacterium of the 
phylum Firmicutes. It is by far the best characterised Gram positive organism and 
basic knowledge about B. subtilis is frequently used to guide and inform thinking 
about other Gram positive organisms. Historically, interest in B. subtilis was based 
largely on three features of its biology: early success in achieving natural transfor-
mation with linear DNA, which greatly facilitated genetic analysis of the organism 
(Anagnostopoulos and Spizizen 1961); its ability to form endospores, which was 
used as a simple model for cellular development and differentiation (Errington 
1993, 2003; Tan and ramamurthi 2014); and industrial interest in its prodigious abil-
ity to secrete certain valuable hydrolytic enzymes (e.g. proteases and amylases) 
directly into the growth medium (Pohl and Harwood 2010).

The biggest driver for study of B. subtilis, at least in the 1960s to 1990s, was 
probably interest in endospore (spore) formation (Fig. 3.1). Sporulation of B. subti-
lis is triggered essentially by nutrient stress. The process begins with a modified, 
highly asymmetric cell division. This generates a small prespore (sometimes called 
forespore) cell, destined to become the mature endospore, and a much larger mother 
cell. The mother cell engulfs the prespore, forming a cell within a cell. The two cells 
then cooperate in a complex developmental process in which the prespore becomes 
highly differentiated and covered in protective layers. Eventually, the mother cell 
lyses to release the now dormant endospore. Endospores are incredibly resistant and 
can remain dormant for extremely long periods of time, before germinating in 
response to specific chemical signal molecules (germinants). The process of sporu-
lation in B. subtilis is now understood in great detail (Errington 1993, 2003; Tan and 
Ramamurthi 2014).

Research on spore formation contributed considerably to the development of 
methods for studying the sub-cellular distribution of proteins and other important 
macromolecules in bacteria, laying the foundations for modern bacterial cell biol-
ogy (Shapiro and Losick 2000; Errington 2003). These imaging methods, together 
with the exceptionally powerful molecular genetics of B. subtilis, stimulated a new 
era of studies on the cell cycle and cell morphogenesis. FtsZ, a tubulin homologue 
that is the key player in bacterial cell division, and MreB, an actin homologue that 
governs cell shape in many rod shaped bacteria, will be the main topics for discus-
sion in this chapter. As the main focus of the chapter lies on B. subtilis, reference to 
work on other bacteria will be limited to situations where the contrast or additional 
information is helpful. For more detail on the E. coli system and on FtsZ and MreB 
proteins generally, the reader is directed to Chaps. 2, 5, 7 and 8.
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�MreB and the Cell Elongation Machinery

�Organization of the B. subtilis Cell Wall

Peptidoglycan (PG) is the major component of virtually all bacteria (Typas et al. 
2012). It comprises a single huge macromolecule that covers the entire surface of 
the cell. Lying just outside the cytoplasmic membrane it acts as a protective layer 
but it also constrains the membrane against the outward turgor pressure imposed by 
the high osmolarity of the cytoplasm. PG is of considerable practical significance as 
its synthesis is the target for many useful antibiotics, and fragments of the wall are 
recognised by innate immune receptors during infection. The PG contributes to the 
shape of the cell but has no intrinsic 3D shape, so it must be sculpted by synthetic 
enzymes into the correct form.

PG is composed of long glycan strands with alternating N-acetylglucosamine 
and N-acetylmuramic acid sugars, cross linked by peptide bridges made up of a 
mixture of L- and D-amino acids (De Pedro and Cava 2015). The precursor for PG 
synthesis, called lipid II, is a disaccharide pentapeptide coupled to a C55 isoprenoid 
lipid (bactoprenol) and is synthesised in the cytosol by a well characterised series of 
enzymes. Lipid II is flipped to the exterior and assembled into the existing cell wall 
sacculus by a multiplicity of synthetic enzymes called penicillin-binding proteins 
(PBPs), which possess the glycosyltransferase and transpeptidase activities needed 
to extend the glycan strands and create peptide cross bridges (Lovering et al. 2012; 
Scheffers and Tol 2015). Recently the RodA protein was identified as a possible 
monofunctional glycosyltransferase (Meeske et al. 2016 and Emami et al. 2017). 
Extracellular autolytic enzymes are required to allow expansion of the wall by 
breaking bonds in pre-existing material. Their activities need to be tightly regulated 
to enable controlled expansion of the wall during growth, while avoiding potentially 
catastrophic turgor-driven lysis (Vollmer et al. 2008).

Gram positive bacteria lack the outer membrane characteristic of Gram nega-
tives. However, Gram positive walls typically contain a second major class of poly-
mers called teichoic acids (TAs) (Sewell and Brown 2014; Percy and Grundling 
2014). In many Gram positives there are two major forms: wall teichoic acids 
(WTA), which are covalently linked to the PG; and lipoteichoic acids (LTA), which 
are coupled to a lipid carrier. In B. subtilis WTA and LTA have the same general 
composition, of poly-[glycerol-phosphate]. TAs have been implicated in many 
functions. Metal homeostasis is probably a central role – scavenging divalent cat-
ions and maintaining surface charge.

B. subtilis cells have a characteristic morphology; in essence, an elongated regu-
lar cylindrical tube with hemispherical poles. Growth occurs by elongation along 
the long axis of the cell, and division occurs approximately each time a doubling in 
length occurs. The cells have a typical diameter of about 850 nm, irrespective of the 
growth rate. Changes in growth rate are accommodated by alterations in cell length, 
with faster growing cells (average up to about 5 μm) being longer than slower grow-
ing cells (average minimally about 2 μm) (Sharpe et al. 1998).

J. Errington and L.J. Wu
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Cell shape determination is a central problem in biology. In B. subtilis and many 
other rod-shaped bacteria, shape is thought to be determined and maintained by the 
action of “cytoskeletal” proteins of the MreB family (see below). These proteins are 
structurally and biochemically related to eukaryotic actins. Like actin proteins, they 
undergo reversible polymerization, which is regulated by binding and hydrolysis of 
ATP. However, recent work has highlighted certain intrinsic differences, most nota-
bly the tight direct association of MreB polymers with the cytoplasmic membrane 
(Salje et al. 2011). Mutations in the mreB genes of many bacteria abolish proper cell 
shape control. The possibility that they have a direct role in cell shape determination 
and or maintenance comes in part from the analogy with shape control by actin fila-
ments in eukaryotes but also from the view that the organization of a large scale 
(μm) structure requires long range topographical instructions, such as might be pro-
vided by elongated MreB filaments. Early experiments examining the localization 
of MreB proteins in B. subtilis provided strong support for this view through the 
observation of elongated helical filaments that appeared to wrap around the long 
axis of the cell (Jones et al. 2001). However, the significance of these elongated fila-
ments and even their existence have been the subject of much recent debate (see 
below).

�B. subtilis Has Three Actin Like MreB Homologues

The mreB gene was first defined by mutations altering cell shape in E. coli (Wachi 
et  al. 1987). Early genome sequence analyses revealed that B. subtilis has three 
mreB paralogous genes (Levin et al. 1992; Varley and Stewart 1992; Abhayawardhane 
and Stewart 1995). The gene designated mreB has an equivalent chromosomal loca-
tion to that of mreB genes of most other bacteria, in lying immediately upstream of 
homologues of mreC and mreD genes that are also involved in cell elongation. The 
other homologues – mbl (MreB like) and mreBH (MreB homologue) are located in 
distant parts of the chromosome. Early mutational studies of mreB and mbl were 
hampered by the presence of the important mreC and mreD genes downstream from 
mreB and the lethal nature of the mutations. The latter problem was simplified by 
the finding that for both paralogues, the viability of null mutants can be rescued by 
addition of high concentrations (e.g. 20 mM) of Mg2+ to the culture medium, for 
reasons that are not clear (Formstone and Errington 2005). To summarise the results 
of several papers, the three paralogues appear to have partially redundant functions, 
and overexpression of any one of the genes can enable growth and reasonably nor-
mal morphology of an otherwise triple null mutant. Single mutations tend to have 
subtly different effects on morphology: mreB mutants have an increased diameter 
but remain able to grow in a straight line; mbl mutants are highly twisted with some 
bulging and lysis; mreBH mutants have a narrow cell phenotype, especially under 
low Mg2+ conditions (Jones et al. 2001; Carballido-López et al. 2006; Kawai et al. 
2009a; Defeu Soufo and Graumann 2006).

3  Cell Cycle Machinery in Bacillus subtilis
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Interestingly, Schirner and Errington (2009) found that upregulation of an ECF 
sigma factor (σI) involved in cell envelope stress was sufficient to suppress the 
lethality that normally occurs in attempting to construct an mreB, mbl, mreBH triple 
mutant. The suppressed mutant grew well (though requiring high Mg2+) but with a 
spherical morphology. Thus, it seems that, as in many other organisms, MreB pro-
teins play a crucial role in rod-shape morphogenesis and cylindrical cell wall 
extension.

�Filaments, Foci and Movement

Early imaging experiments with all three B. subtilis MreB family proteins appeared 
to reveal extended helical filaments localized close to the cell periphery and thus 
presumably close to the inner surface of the cytoplasmic membrane (Jones et al. 
2001). All three MreB family proteins exhibited roughly similar patterns of local-
ization and seemed to co-localize, at least under some conditions (Carballido-López 
et  al. 2006; Defeu Soufo and Graumann 2006). The localization of various cell 
elongation proteins (Leaver and Errington 2005; Formstone et al. 2008) and the use 
of labelling methods designed to identify nascent cell wall synthesis (Daniel and 
Errington 2003; Tiyanont et al. 2006) also seemed compatible with a helical mode 
of wall synthesis. Some experiments suggested a degree of remodelling or active 
movement of the filaments during cell elongation (Carballido-López and Errington 
2003; Defeu Soufo and Graumann 2004). The filamentous helical view of MreB 
localization was exciting because, in principle, the filaments could act as a geomet-
ric guide for the synthetic machinery directly defining the morphology of rod-
shaped cells.

In 2011, however, three groups described experiments that revealed the circum-
ferential movement of relatively short filaments or foci (rather than long filaments) 
of MreB proteins in B. subtilis (Garner et al. 2011; Domínguez-Escobar et al. 2011) 
and E. coli (Van Teeffelen and Gitai 2011). Importantly, the circumferential move-
ment was dependent on active cell wall synthesis, suggesting that MreB follows 
rather than leads the synthetic process. The problem with the short filament or 
patchy view of MreB organization lies in the question of what its role is in cell elon-
gation. Domínguez-Escobar et al. (2011) proposed that MreB acts as a scaffold to 
help assemble the complex of proteins needed to coordinate the synthesis of PG, 
WTA and other wall associated elements. The complex was proposed to use existing 
glycan strands as a template for insertion of new material. However, this presum-
ably only works while the template strands have the correct geometry and could not 
account for the long term fidelity of shape maintenance and especially the restora-
tion of shape in cells with any shape abnormality.

Meanwhile, electron cryotomography failed to detect elongated filaments of 
native MreB in flash frozen intact E. coli cells (Swulius et al. 2011), and demon-
strated that the very prominent helical cytoplasmic filaments made by one particular 
E. coli MreB/GFP fusion protein were an artefact specific to that fusion protein 

J. Errington and L.J. Wu
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(Swulius and Jensen 2012). However, Salje et  al. (2011) potentially solved the 
conundrum of the missing filaments of native protein in the cryo-EM experiments 
through the discovery that MreB protein polymers have a high affinity for mem-
branes and in vivo this tight membrane association would likely hide the filaments 
from detection in the low contrast cryo-EM images. This also explained the problem 
with the E. coli GFP-MreB fusion protein mentioned above because the membrane 
targeting sequence of E. coli MreB is close to the N-terminus and thus probably 
occluded by the GFP fusion. Meanwhile, Dempwolff et al. (2011) obtained support-
ing evidence for membrane association of MreB and Mbl, though interestingly not 
MreBH, by expressing GFP fusions of the 3 proteins in eukaryotic cells.

The most recent in vivo imaging experiments on B. subtilis, using various super-
resolution methods may have resolved some of the confusion around MreB local-
ization, by demonstrating that the proteins (at least MreB and Mbl) are able to form 
relatively extended helical filaments, at least under some conditions, but that the 
whole filament systems undergo overall near circumferential movement, which is 
dependent on (and presumably driven by) PG synthesis (Reimold et  al. 2013; 
Olshausen et al. 2013). Olshausen et al. (2013) suggested that the elongated fila-
ments could serve to coordinate the synthetic activities of multiple wall synthetic 
complexes, providing a plausible mechanistic explanation for the function of long 
MreB filaments.

Two recent lines of work on the E. coli MreB system suggest that MreB may 
have more than one mode of action in cell shape regulation, which may clarify some 
of the conflicting data described previously. First, Ursell et al. (2014) and Billings 
et  al. (2014) found that MreB filaments or patches have affinity for regions of a 
particular (aberrant) curvature. Recruitment of the cell wall machinery to those sites 
could help to correct the curvature leading to the restoration of shape. Morgenstein 
et al. (2015) then discovered that in certain mutational backgrounds, MreB motion 
is not required for maintenance of a rod shape. The authors proposed that MreB can 
help specify cell shape by two distinct mechanisms: first, by a motion-independent 
mechanism that relies on recruitment of the synthetic machinery to sites of inap-
propriate curvature, effectively a “repair” mechanism; and second, by a motion-
dependent mechanism that helps distribute synthesis over a greater proportion of the 
surface and is used when cells are growing rapidly and presumably are relatively 
unperturbed.

The significance of movement and the possible roles of filaments in shape deter-
mination have been reviewed in detail recently (Errington 2015).

3  Cell Cycle Machinery in Bacillus subtilis
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�A Complex Web of Interactions Between MreB Proteins and Cell 
Wall Effectors

The models discussed above mainly assume that MreB proteins work by controlling 
the spatial activity of the enzymes responsible for cell wall expansion. This view is 
supported by numerous reports describing interactions between MreB and various 
components of the cell wall machinery. The list of possible MreB interacting pro-
teins identified by various methods as candidate members of the B. subtilis elonga-
tion machine or “elongasome” are summarised in Table 3.1. Similar collections of 
interacting proteins have been identified for several other rod-shaped organisms, 
particularly E. coli and Caulobacter crescentus (reviewed by (Errington 2015). The 
methods used to identify these proteins include various indirect approaches, such as 
co-localization, localization dependence, and genetic epistasis, as well as more 
direct methods of bacterial or yeast 2-hybrid approaches and biochemical pull 
downs. Although some of the data are not entirely convincing, for example, the 
“helix-like” localization patterns, taken together, these methods point to the exis-
tence of large elongasome complexes containing multiple proteins involved in syn-
thesis of PG and WTA, as well as potentially extracellular factors, such as autolytic 
enzymes or their regulators. At the moment, little is known about the stoichiometry 
of these complexes or about whether they are stable or transient.

�The Future

Much remains to be learned about the detailed functions of the MreB family pro-
teins of B. subtilis. It is by no means clear why B. subtilis possesses three paralo-
gous genes. At one level, it reflects the general complexity of the cell wall synthetic 
machinery of the organism. Thus, it also carries multiple copies of many other syn-
thetic genes, including, for example: 4 class A (TPase and GTase) PBPs (Popham 
and Setlow 1996), 3 LTA synthases (Grundling and Schneewind 2007a, b; Schirner 
et al. 2009), 3 WTA transferases (Kawai et al. 2011), and at least 2 families of lipid 
II flippases (Meeske et al. 2015). The overlapping semi-redundant functions of the 
3 MreB proteins may reflect that they interact differentially with subsets of cell 
envelope proteins in order to adapt cell envelope properties to changing environ-
mental conditions. Perhaps “chemical warfare” between organisms in complex and 
highly competitive environments such as soil, drives adaptability in cell envelope 
synthesis and organization. Although some aspects of the differential activities of 
the 3 MreB proteins are beginning to be worked out (Carballido-López et al. 2006; 
Domínguez-Cuevas et al. 2013), much more probably remains to be elucidated.

An important related question concerns how the many interactions between 
MreB proteins and the various other components of the cell envelop synthetic 
machinery (PG synthases, PBPs, autolysins, WTA synthases, etc) are mediated, 

J. Errington and L.J. Wu
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Table 3.1  Possible MreB interacting poteins identified as candidate components of the elongasome

Proteina

MW 
(kDa) Localizationb Comment References

MreC 32 I/E Cell shape function. Encoded by 
gene immediately downstream 
from mreB

Leaver and Errington 
(2005), Kawai et al. 
(2009b), Garner et al. 
(2011) and 
Domínguez-Escobar 
et al. (2011)

MreD 19 I Cell shape function. Encoded by 
gene immediately downstream 
from mreBC

Leaver and Errington 
(2005), Garner et al. 
(2011), Domínguez-
Escobar et al. (2011) 
and Muchova et al. 
(2013)

RodZ 23 I/C Required for normal cell shape Domínguez-Escobar 
et al. (2011) and 
Muchova et al. 
(2013)

CwlO 50 E Autolytic enzyme, regulated by 
FtsEX

Domínguez-Cuevas 
et al. (2013)

LytE 37 E Autolytic enzyme. Export regulated 
by MreBH?

Carballido-López 
et al. (2006)

FtsE 25 C ABC-transporter (ATP-binding 
protein). With FtsX regulates 
CwlO. Controlled specifically by 
Mbl?

Domínguez-Cuevas 
et al. (2013)

FtsX 32 I ABC-transporter (membrane 
protein). With FtsE regulates 
CwlO. Controlled specifically by 
Mbl?

Domínguez-Cuevas 
et al. (2013)

PBP 1 99 E Major bifunctional PBP. Important 
for both cell elongation and 
division

Van Den Ent et al. 
(2006) and Kawai 
et al. (2009a, b)

PBP 2A 79 E Major TPase with specific role in 
elongation. Partially redundant to 
PBP H

Van Den Ent et al. 
(2006), Kawai et al. 
(2009a, b), Garner 
et al. (2011) and 
Domínguez-Escobar 
et al. (2011)

PBP 2B 79 E Major TPase with specific role in 
division

Van Den Ent et al. 
(2006) and Kawai 
et al. (2009b)

PBP 2C 79 E Bifunctional PBP with unknown 
function

Van Den Ent et al. 
(2006) and Kawai 
et al. (2009b)

PBP 2D 71 E Transpeptidase with unknown 
function

Van Den Ent et al. 
(2006) and Kawai 
et al. (2009b)

(continued)

3  Cell Cycle Machinery in Bacillus subtilis



76

Table 3.1  (continued)

Proteina

MW 
(kDa) Localizationb Comment References

PBP 3 74 E Accessory TPase that can rescue 
cell division in the absence of PBP 
2B activity

Kawai et al. (2009b)

PBP 4 70 E Bifunctional PBP with unknown 
function

Kawai et al. (2009a, b)

PBP H 76 E Major TPase with specific role in 
elongation. Partially redundant to 
PBP 2A

Van Den Ent et al. 
(2006), Kawai et al. 
(2009b), Domínguez-
Escobar et al. (2011)

PBP I 65 E TPase of unknown function. Van Den Ent et al. 
(2006) and Kawai 
et al. (2009b)

RodA 43 I PG synthesis. Possible 
monofunctional GTase

Domínguez-Escobar 
et al. (2011), Meeske 
et al. (2016), Emami  
et al. (2017)

DapI 41 C N-acetyl-diaminopimelate 
deacetylase. PG synthesis

Rueff et al. (2014)

TagA 29 C Teichoic acid synthesis. UDP-N-
acetyl-D-mannosamine transferase

Formstone et al. 
(2008)

TagB 44 C Teichoic acid synthesis. Putative 
CDP-glycerol:glycerol phosphate 
glycerophosphotransferase

Formstone et al. 
(2008)

TagF 87 C Teichoic acid synthesis. CDP-
glycerol:polyglycerol phosphate 
glycero-phosphotransferase

Formstone et al. 
(2008)

TagG 32 I ABC transporter for teichoic acid 
translocation (permease)

Formstone et al. 
(2008)

TagH 59 C ABC transporter for teichoic acid 
translocation (ATP-binding protein)

Formstone et al. 
(2008)

TagO 39 C Teichoic acid synthesis. 
Undecaprenyl-phosphate-GlcNAc-
1-phosphate transferase

Formstone et al. 
(2008)

TagT 35 E Transfer of anionic cell wall 
polymers from lipid-linked 
precursors to peptidoglycan

Kawai et al. (2011)

TagU 34 E Transfer of anionic cell wall 
polymers from lipid-linked 
precursors to peptidoglycan

Kawai et al. (2011)

YvcK 34 C Required for normal localization of 
PBP 1

Foulquier et al. 
(2011)

GpsB 11 C Regulation of PBP 1 localization, 
especially its switch between 
elongation and division sites.

Claessen et al. (2008)

EF-Tu 43 C Translation elongation factor Defeu Soufo et al. 
(2015)

aIn addition to the above, Kawai et al. (2011) identified many additional MreB-associated proteins 
by pull-down mass spectrometry
bI integral membrane, E extracellular, C cytoplasmic
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particularly whether they are static or dynamic and the extent to which they are 
hierarchical and mutually permissive or exclusive.

A final major question concerns the localization and dynamic properties of the 
proteins. What conditions determine the length of the MreB filaments and how do 
length and movement relate to the various problems associated with cell shape 
determination, maintenance and repair?

There is a sense that the array of analytical methods we now possess, enabling us 
to localise proteins with increasing temporal and spatial resolution and to define the 
components of protein complexes and their stoichiometry, should allow details of 
the machinery and mechanisms to be resolved. Complexity may be the biggest bar-
rier to progress.

�FtsZ and the Cell Division Machinery

Most bacteria with a PG wall divide by directing the ingrowth of a sheet of wall 
material that eventually forms the new hemispherical poles of the daughter cells. In 
almost all bacteria, the key cytoskeletal protein involved in defining the site of divi-
sion and then orchestrating the process is called FtsZ, which is structurally and 
biochemically homologous to tubulin (Löwe and Amos 1998). In bacteria where the 
process has been studied in detail, FtsZ appears to form a circumferential ring that 
defines the site of cell division (Bi and Lutkenhaus 1991). It also serves to recruit, 
directly or indirectly, multiple protein components of a division machine, some-
times called the “divisome” (Adams and Errington 2009; Egan and Vollmer 2013). 
Several divisome associated proteins might also be considered as cytoskeletal pro-
teins (e.g. FtsA, DivIVA, MinD; see below), depending on the definition. B. subtilis 
is an interesting model for the study of bacterial cell division because it has two 
contrasting modes of division: a “conventional mode”, carried out by vegetatively 
growing cells; and a modified, highly asymmetric division undertaken by sporulat-
ing cells.

�Biochemical Properties of FtsZ

The presence of a tubulin GTP-binding signature motif in FtsZ (GGGTGTG) was 
first reported in the early 1990s (Raychaudhuri and Park 1992; De Boer et al. 1992; 
Mukherjee and Lutkenhaus 1994). Crystallographic studies confirmed the near con-
gruence of the structures of FtsZ and tubulin proteins (Löwe and Amos 1998). Not 
surprisingly, the proteins also have similar biochemical properties. Like tubulin, 
FtsZ assembles in vitro in a head to tail fashion to form single stranded protofila-
ments, which can further assemble into bundles, sheets or rings. The protofilaments 
are also highly dynamic and go through cycles of turnover/polymerization, 
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regulated by the binding and hydrolysis of GTP. See Chapter 5 for a detailed descrip-
tion of FtsZ polymerization dynamics.

�FtsZ Visualization During Growth and Sporulation of B. subtilis

The ability of FtsZ to form tubulin-like protofilaments and protofilament bundles 
raised important questions about the abundance, assembly and dynamics of the pro-
tein in  vivo. Estimations of protein abundance have suggested about 2000–6000 
molecules per cell in B. subtilis (Feucht et al. 2001; Ishikawa et al. 2006; Muntel 
et al. 2014), giving a protein concentration of about 2–6 μM, well above the in vitro 
critical concentration for assembly (e.g. 0.72 μM for E. coli FtsZ; Chen et al. 2012). 
Also, given a protofilament subunit repeat length of 4.3 nm (Oliva et al. 2004), there 
is enough FtsZ to circumnavigate the cell about 3–10 times.

Several labs have investigated the localization of FtsZ in B. subtilis. Wang and 
Lutkenhaus (1993) used immunogold electron microscopy to demonstrate associa-
tion of FtsZ with the leading edge of the invaginating cell division structure. The 
immunofluorescence studies of (Levin and Losick 1996) confirmed the presence of 
FtsZ bands (presumed to be rings) at the expected position near mid cell in vegeta-
tive cells but also unexpectedly, near both poles of early sporulating cells. This turns 
out to be a key feature of the mechanism used by B. subtilis to achieve asymmetric 
cell division during sporulation, which will be discussed in detail below. Several 
reports have highlighted the possible role of helical FtsZ structures as intermediates 
in assembly or constriction at cell division sites (Ben-Yehuda and Losick 2002; 
Feucht and Errington 2005; Peters et al. 2007; Strauss et al. 2012). Helical FtsZ 
structures are most prominent during the transition from vegetative growth to sporu-
lation in B. subtilis, during which the site of division shifts from mid cell to near the 
pole. The mid cell Z ring appears to transform into a helix which grows length-wise, 
before breaking down into two short helices, one near each pole. Each helix then 
coalesces into a ring (Ben-Yehuda and Losick 2002). Therefore, each sporulating 
cell assembles two Z rings, one at each pole, but only one develops into a septum 
(see below). Several mutations in ftsZ have been described that promote a tendency 
to form spiral Z rings and similarly shaped division events (Feucht and Errington 
2005; Michie et al. 2006), suggesting that the helical configuration has functional 
relevance. Peters et  al. (2007) also described helical configurations in vegetative 
cells, based on modified immunofluorescence imaging methods. On the other hand, 
several higher resolution imaging methods, including super-resolution fluorescence 
imaging and cryo-EM of B. subtilis and other organisms have suggested that FtsZ 
rings may be more complex, and beaded or discontinuous (Jennings et al. 2011; 
Strauss et al. 2012; Li et al. 2007; Min et al. 2014).

Dynamic movement of FtsZ rings has been observed by time-lapse imaging 
(Strauss et al. 2012) but more quantitative and perhaps surprising information came 
from fluorescence recovery after photobleaching (FRAP) experiments. Erickson 
and colleagues established that FtsZ subunits in Z rings, either pre-constriction or 
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during constriction, turn over with a half time of about 8 seconds (Anderson et al. 
2004). This emphasises the likely importance of dynamics in FtsZ function but also, 
the difficulty in imaging such structures with the need for both high spatial and 
temporal resolution. Löwe’s lab have recently described compelling evidence for 
the formation of regular circumferential bands of FtsZ in which the protofilaments 
are connected by regular lateral contacts for 2 Gram negative bacteria, E. coli and 
Caulobacter crescentus, as well as in an in vitro system. These observations support 
a model for constriction involving filament sliding (Szwedziak et  al. 2014). It 
remains to be seen whether this model can be extended to B. subtilis and other Gram 
positive bacteria, but it seems unlikely that the fundamental features of FtsZ func-
tion in bacterial division are not well conserved.

�The B. subtilis Divisome

The B. subtilis divisome has been studied in considerable detail: some properties of 
the proteins thought to contribute directly or indirectly to divisome function in this 
organism are described in Table 3.2. These proteins have been identified through 
homology to known division proteins in other organisms, by biochemical pull 
downs or through various genetic screens.

Imaging experiments suggest that the divisome assembles in at least two distinct 
steps (Gamba et al. 2009). In the first step, which seems to involve mainly cytosolic 
factors, a “ring” of FtsZ protein assembles, in parallel with the recruitment of 
“early” divisome proteins FtsA, SepF, ZapA and EzrA. After a delay representing 
about 20% of the cell cycle, the second step of assembly takes place, in which the 
“late” proteins are recruited. These are mainly proteins with major extracellular 
domains or integral membrane proteins. Various regulatory proteins, including 
GpsB, DivIVA, MinJ, MinD and MinC arrive at about the same time or slightly 
later, possibly being dependent on initiation of membrane or PG ingrowth. Ishikawa 
et al. (2006) detected interactions between the various early proteins in a series of 
biochemical pull-down experiments.

Three “early” cytosolic proteins appear to promote the formation of a functional 
Z ring in B. subtilis – FtsA, SepF and ZapA. FtsA was identified by its conserved 
location immediately upstream of and adjacent to FtsZ (Beall et al. 1988). Unlike E. 
coli, ftsA mutants of B. subtilis are viable, though they are substantially deficient in 
division (Beall and Lutkenhaus 1992). FtsZ still localizes at regular intervals but 
most of the Z rings are abnormal, often appearing as multiple diffuse bands rather 
than one clear, strong band (Jensen et al. 2005). Purified B. subtilis FtsA binds and 
hydrolyses ATP (Feucht et al. 2001) but little more work has been done on this pro-
tein so far. Using the Thermotoga maritima protein, Löwe and colleagues have 
demonstrated that even though FtsA has a different subdomain architecture to actin, 
the protein can form canonical actin-like protofilaments in vitro (Van Den Ent and 
Löwe 2000; Szwedziak et al. 2012). FtsA interacts specifically with the C-terminal 
domain of FtsZ. Despite a great deal of work over nearly 2 decades, little is known 
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Table 3.2  Proteins of the B. subtilis divisome and its regulators

Protein
MW 
(kDa) Locationa Comments Key references

FtsZ 40 C Tubulin-like protein. Assembles into 
protofilaments and higher order 
structures to generate the “Z ring” at 
the division site. Recruits other 
divisome proteins to the ring.

Beall et al. (1988), 
Beall and Lutkenhaus 
(1991), and Wang and 
Lutkenhaus (1993)

FtsA 48 C Actin / HSP70 superfamily ATPase. 
Dimerises and can form higher order 
structures. C-terminal amphipathic 
helix promotes membrane 
association. Direct interaction with 
FtsZ, which contributes to 
membrane association of the Z ring.

Beall and Lutkenhaus 
(1991), Feucht et al. 
(2001), Jensen et al. 
(2005) and Ishikawa 
et al. (2006)

SepF 17 C Forms regular 50 nm diameter rings 
in vitro and interacts directly with 
FtsZ in vitro, promoting FtsZ 
bundling. Membrane targeting 
domain contributes to membrane 
association of the Z ring.

Hamoen et al. (2006) 
and Gündoğdu et al. 
(2011)

ZapA   9.0 C Widely conserved protein that 
promotes Z ring formation by direct 
interaction with FtsZ.

Gueiros-Filho and 
Losick (2002)

EzrA 65 C N-terminal transmembrane anchor. 
Cytosolic domain has a spectrin-like 
fold. Interacts with FtsZ, 
contributing to membrane 
association of the Z ring. Additional 
role in cell elongation via 
interactions with PBP 2B and GpsB.

Levin et al. (1999), 
Haeusser et al. (2004), 
Claessen et al. (2008), 
and Cleverley et al. 
(2014)

GpsB 11 C DivIVA-related protein involved in 
both cell elongation and cell 
division. Interacts with the major PG 
synthase, PBP 1, and thought to be 
involved in shuttling of this protein 
between elongation and division 
complexes. Synthetic lethal in 
combination with ftsA mutation. 
Synthetic “sick” in combination with 
ezrA. EzrA-SepF interaction 
probably important for shuttling.

Claessen et al. (2008) 
and Tavares et al. 
(2008)

(continued)
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Table 3.2  (continued)

Protein
MW 
(kDa) Locationa Comments Key references

FtsL 13 E Bitopic membrane protein with short 
extracytoplasmic coiled-coil-like 
domain. Target of several cell 
division regulatory mechanisms. 
Unstable protein subject to 
degradation by a regulated 
intramembrane proteolysis (RIP) 
process involving YluC protease. 
Stability also regulated by 
interactions with DivIC and DivIB.

Daniel et al. (1998), 
Daniel and Errington 
(2000), Sievers and 
Errington (2000a, b), 
Kawai and Ogasawara 
(2006), Bramkamp 
et al. (2006) and Daniel 
et al. (2006)

DivIB 30 E Bitopic membrane protein with large 
extracellular domain. Structural data 
from other organisms suggests two 
domains, one of which resembles the 
POTRA domain often involved in 
protein protein interactions. 
Complex pattern of interactions with 
FtsL and DivIC. Homologue called 
FtsQ in E. coli.

Beall and Lutkenhaus 
(1989), Harry and 
Wake (1989, 1997), 
Katis and Wake (1999), 
Katis et al. (2000), 
Daniel and Errington 
(2000) and Daniel et al. 
(2006)

DivIC 15 E Bitopic membrane protein with short 
extracytoplasmic coiled-coil-like 
domain. Interacts with FtsL and 
DivIB. Likely homologue 
confusingly called FtsB in E. coli.

Katis et al. (1997), 
Katis and Wake (1999), 
Katis et al. (2000), 
Sievers and Errington 
(2000b), Robson et al. 
(2002) and Daniel and 
Errington (2000)

FtsW 44 I Integral membrane protein closely 
related to RodA involved in cell 
elongation.

Lu et al. (2007)

Pbp2B 79 E Penicillin binding protein. 
Monofunctional (class B) 
transpeptidase specifically required 
for cell division.

Yanouri et al. (1993), 
Daniel et al. (1996) and 
Daniel and Errington 
(2000)

DivIVA 19 C Coiled coil protein with weak 
similarity to eukaryotic 
tropomyosins. Targeted to division 
sites and cell poles at least in part by 
sensing membrane curvature. 
Membrane interaction through 
conserved N-terminal domain 
containing essential tryptophan 
residue. Involved in a range of cell 
pole associated functions in Gram 
positive bacteria.

Cha and Stewart 
(1997), Edwards and 
Errington (1997), 
Hamoen and Errington 
(2003) and Lenarcic 
et al. (2009), 
Ramamurthi and 
Losick (2009) and Van 
Baarle et al. (2013)

(continued)
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about the precise function of ftsA other than that it can form high MW dynamic 
complexes of various kinds with FtsZ (e.g., Loose and Mitchison 2014). Perhaps its 
best defined function lies in membrane association, which occurs through a 
C-terminal amphipathic helix (Pichoff and Lutkenhaus 2005) and enables the pro-

Table 3.2  (continued)

Protein
MW 
(kDa) Locationa Comments Key references

MinC 25 C Widely conserved division inhibitor 
acting on FtsZ and possibly other 
steps in division.

Reeve et al. (1973), 
Levin et al. (1992), 
Marston and Errington 
(1999) and Gregory 
et al. (2008)

MinD 29 C Widely conserved indirect division 
inhibitor that works by spatial 
regulation of MinC protein. Poorly 
characterised additional role in 
chromosome segregation during 
sporulation.

Reeve et al. (1973), 
Levin et al. (1992), 
Marston et al. (1998) 
and Marston and 
Errington (1999), 
Kloosterman et al. 
(2016)

MinJ 44 I / C PDZ-domain protein targeted to cell 
poles by interaction with DivIVA (at 
least). Required for correct spatial 
localization of the MinCD complex 
and thus the regulation of cell 
division.

Patrick and Kearns 
(2008), Bramkamp 
et al. (2008) and Van 
Baarle and Bramkamp 
(2010)

Noc 33 C Site-specific DNA binding protein. 
Inhibitor of division. Major factor 
effecting nucleoid occlusion.

Wu and Errington 
(2004), Wu et al. (2009) 
and Adams et al. (2015)

WhiA 36 C Enigmatic nucleoid associated factor. 
whiA mutation causes severe 
filamentation when combined with 
zapA, ezrA or various regulatory 
proteins of cell division.

Surdova et al. (2013)

SpoIIE 92 C/I Bifunctional sporulation-specific 
protein. C-terminal kinase domain 
regulates prespore-specific gene 
expression. C-terminal domain 
required for efficient switch in cell 
division position from mid cell to 
sub-polar position, probably via a 
direct interaction with FtsZ.

Arigoni et al. (1995), 
Feucht et al. (1996), 
Wu et al. (1998), Lucet 
et al. (2000), Carniol 
et al. (2005) and 
Bradshaw and Losick 
(2015)

MciZ   4.0 C Mother cell-specific inhibitor of FtsZ 
assembly. Caps FtsZ protofilaments 
at the “minus” end.

Handler et al. (2008) 
and Bisson-Filho et al. 
(2015)

RefZ 24 C Site-specific DNA-binding protein 
that contributes to precise relative 
positioning of chromosome and 
asymmetric division site during 
sporulation.

Wagner-Herman et al. 
(2012) and Miller et al. 
(2015)

aC cytosolic, I integral membrane, E extracytoplasmic
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tein to anchor the Z ring to the membrane (Szwedziak et al. 2014). Interestingly, this 
interaction with the membrane is strongly dependent on the membrane potential 
(Strahl and Hamoen 2010).

Genetic and biochemical experiments suggest that SepF protein provides a sec-
ond membrane anchor for the Z ring in Gram positive bacteria. sepF was discovered 
simultaneously in two labs by different methods. Ishikawa et al. (2006) identified 
the SepF protein in pull-down experiments using FtsZ, FtsA, EzrA and ZapA as 
bait. Yeast 2-hybrid experiments detected the formation of a SepF-SepF self interac-
tion, as well as an interaction with FtsZ. Meanwhile, Hamoen et al. (2006) identified 
sepF as a candidate cell division gene from its conserved position (in Gram positive 
bacteria) between ftsZ and divIVA. Deletion of the gene gives a mild reduction in 
division frequency but the division septa formed are thick and morphologically 
abnormal. Mutation of sepF turned out to be lethal in the presence of mutations in 
ftsA or another division associated gene, ezrA (Ishikawa et al. 2006; Hamoen et al. 
2006). In vitro, SepF protein assembles into large and regular protein rings with a 
diameter of about 50 nm: these rings are able to bundle FtsZ protofilaments into 
long tubular structures (Gündoğdu et al. 2011). Detailed structural analysis of the 
protein (Duman et al. 2013) suggests that the N-terminal region, like FtsA, contains 
a membrane associating amphipathic helix, whereas the C-terminal domain is glob-
ular and responsible for both the formation of SepF rings and association with 
FtsZ. Duman et al. (2013) suggest that the amphipathic helices of FtsA and SepF 
both serve to promote association of the Z ring with the leading edge of the septum, 
since this region contains positively curved (convex) membrane into which the heli-
ces can readily insert. Duman et al. (2013) proposed a model in which SepF poly-
mers bind as arc onto the convex leading edge of the nascent division septum and 
maintain the Z ring in this position by bundling FtsZ protofilaments. However, this 
model is slightly unsatisfactory in leaving open the question of why SepF makes 
complete rings in vitro.

ZapA is a low MW (9 kDa) positive regulator of FtsZ assembly. It was identified 
in a screen for genes which, when overexpressed, could overcome the cell division 
block caused by overproduction of MinD (Gueiros-Filho and Losick 2002). Absence 
of ZapA gives no discernible phenotype under normal conditions but causes a severe 
division block in cells producing lower than normal levels of FtsZ, or lacking the 
ezrA, divIVA or whiA genes (Gueiros-Filho and Losick 2002; Surdova et al. 2013). 
ZapA interacts directly with FtsZ and, in vitro, it promotes FtsZ polymerisation as 
well as lateral association, yielding both single and bundled filaments (Gueiros-
Filho and Losick 2002; Low et al. 2004). A temperature-sensitive mutant of FtsZ 
(FtsZ(Ts1)), defective in lateral association between FtsZ protofilaments at high 
temperatures, can be rescued by overexpressing ZapA. This supports the proposed 
function of ZapA as a promoter of FtsZ bunding (Monahan et al. 2009). ZapA of 
Pseudomonas aeruginosa forms dimers or tetramers in solution but oligomerizes at 
high concentrations; a property that could support its function as an effective FtsZ 
cross-linker (Low et al. 2004).

The ezrA gene, which is present only in Gram positive bacteria, was identified by 
mutations suppressing the division phenotype of a thermosensitive ftsZ allele (Levin 
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et al. 1999). ezrA mutants can tolerate reduced levels of active FtsZ and the gene 
name derives from the observation that the ezrA single mutant makes extra Z-rings. 
The protein has an unusual topology with a single N-terminal transmembrane span 
followed by a major domain that is cytosolic. Curiously, one protein that shares this 
unusual topology is E. coli ZipA, which is an essential FtsZ-interacting protein in E. 
coli (Hale and De Boer 1997), but it seems that EzrA and ZipA are otherwise unre-
lated in sequence. ezrA mutants also have a slightly reduced cell diameter, indicat-
ing a mild defect in cell elongation. Genetic experiments suggest that this may be 
due to incorrect regulation of the activity of the major PBP (PBP 1) involved in 
synthesis of PG during both elongation and division (Claessen et  al. 2008). The 
results of detailed mutational analysis of the gene suggest that different regions of 
the large protein contribute in different ways to the regulation of Z ring dynamics 
(Haeusser et al. 2007; Land et al. 2014). The crystal structure of the cytoplasmic 
domain of EzrA was recently solved (Cleverley et al. 2014) and shown to be similar 
to that of eukaryotic spectrins, comprising multiple, connected repeats of antiparal-
lel α-helices, forming a complete semi-circle of 12 nm diameter. Spectrins are cyto-
skeletal proteins that can form two-dimensional polygonal networks lining the 
membrane, and they help maintain plasma membrane integrity and cytoskeletal 
structure in eukaryotic cells. The formation of a semi-circle could enable both the 
C-terminal four-helix bundle and the N-terminal transmembrane domain to interact 
with the membrane at the same time. Structural modelling indicates that an antipar-
allel dimer of EzrA molecules, as found in some crystal structure forms, could trap 
a paired FtsA-FtsZ protofilament inside the arch. In principle, this could serve to 
both anchor the protofilaments to the membrane and or locally prevent the forma-
tion of protofilament bundles.

Because FtsZ protein is thought to be indirectly associated with the cell mem-
brane, through its interactions with FtsA, SepF and possible EzrA, it seems likely 
that most of the remaining divisome proteins, which are largely integral membrane 
or extracytoplasmic proteins (summarised in Table 3.2), do not interact directly with 
FtsZ. Their functions are probably concerned mainly with membrane dynamics, or 
peptidoglycan synthesis and turnover and will not be discussed in detail here.

�Regulation of Z Ring Formation and Cell Division

Cell division needs to be tightly coordinated with other cell cycle events, particu-
larly chromosome replication and segregation. Recently, the field of bacterial cell 
cycle regulation has been invigorated by the unexpected discovery that cell size 
homeostasis is achieved by an “adder” process in which new born cells grow by a 
relatively fixed length increment before dividing again, rather than by measuring a 
“division mass”, according to a decades old dogma (Campos et al. 2014; taheri-
araghi et  al. 2015). The key questions now concern how the length increment is 
measured by the cell and used to regulate divisome function. In B. subtilis the intra-
cellular concentration of FtsZ stays constant throughout the cell cycle and, although 
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the frequency of Z ring formation varies with growth rate, the levels of FtsZ are 
unaffected. Artificially increasing the level of FtsZ in B. subtilis cells only leads to 
a small increase in Z ring frequency (Weart and Levin 2003).

One factor that could be involved in buffering the levels of available FtsZ is the 
two-component ATP-dependent protease, ClpXP. ClpX is a member of the AAA+ 
(ATPases associated with various cellular activities) family of ATPases. It recog-
nizes and unfolds specific protein substrates and transfers the unfolded protein to 
the serine protease ClpP for degradation (Sauer et al. 2004). ClpXP is thought to 
participate in the regulation of FtsZ assembly by maintaining the pool of subunits 
available for ring formation (Weart et al. 2005; Camberg et al. 2009; Dziedzic et al. 
2010). In B. subtilis ClpX inhibits FtsZ polymerization in vivo and in vitro in an 
ATP-and ClpP-independent manner but does not degrade it, though ATP hydrolysis 
has been shown to be required for maximum inhibition (Weart et al. 2005; Haeusser 
et al. 2009). This is in contrast to E. coli in which ClpX modulates the level of FtsZ 
by degrading FtsZ (Camberg et al. 2009).

Several spatial and or temporal regulators of divisome function have been identi-
fied, mainly acting by negative regulatory mechanisms.

�Nucleoid Occlusion (NO)

The fact that cell division tends not ever to bisect the nucleoid, even in cells with 
perturbations in chromosome replication or organization, led Woldringh and col-
leagues to postulate a negative regulation exerted by the nucleoid, potentially by the 
DNA itself (Mulder and Woldringh 1989; Woldringh et al. 1991), which Rothfield 
later termed “nucleoid occlusion” (Cook et al. 1989). About 10 years ago, protein 
factors contributing to NO were identified almost simultaneously in B. subtilis (noc) 
and E. coli (slmA) (Wu and Errington 2004; Bernhardt and De Boer 2005): surpris-
ingly, they were unrelated proteins that turned out to have different modes of divi-
sion inhibition. B. subtilis noc was identified serendipitously as a factor that had a 
synthetic lethal division phenotype when combined with mutations affecting the 
Min system (which is described below). Three lines of evidence suggested that Noc 
protein was a NO factor: first, the protein had a classical helix-turn-helix motif and 
bound tightly to DNA; second, overexpression of Noc inhibited division; third, noc 
mutants had an increased frequency of nucleoid “guillotining” when DNA replica-
tion or segregation was perturbed (Wu and Errington 2004). Later work established 
that Noc is a site-specific DNA-binding protein with recognition sites (Noc binding 
sites; NBS) distributed all over the chromosome, except in the replication terminus 
region, where binding sites are scarce (Wu and Errington 2004; Wu et al. 2009). 
Noc appears to have been derived by gene duplication and divergence from the ParB 
(Spo0J) protein in Firmicutes, and like Spo0J it spreads from its primary binding 
sites to form arrays which are important for its function. While the N-terminal 
domain of Spo0J (ParB) is involved in interaction with its partner protein Soj, the 
N-terminal domain of Noc contains an amphipathic helix, which enables it to 
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associate with the cell membrane (Adams et  al. 2015). Both overexpression and 
deletion of Noc affect division at the level of FtsZ assembly (Wu and Errington 
2004). It seems that the formation of Noc arrays around NBSs enhances membrane 
association and that recruitment of these DNA-Noc arrays to the membrane pre-
vents the local formation of FtsZ ring assemblies (Adams et al. 2015). It is possible 
that Noc works by enhancing a natural NO system, akin to that originally described 
by Woldringh, in which the presence of chromosomal DNA excludes accumulation 
or formation of high MW divisome complexes.

�The Min System

NO prevents division from occurring in the vicinity of the nucleoid, but it cannot 
protect the nucleoid free regions at the nascent and old cell poles. The system that 
prevents polar division is called Min and was first discovered via E. coli mutants 
that frequently divide near to the cell pole, giving small anucleate cells called mini-
cells (Adler et al. 1967). The B. subtilis MinC and MinD proteins were identified by 
sequence homology to their E. coli counterparts (Levin et al. 1992). The B. subtilis 
Min system is now known to consist of at least four proteins: MinC, MinD, MinJ 
and DivIVA. MinC is an FtsZ inhibitor which interacts directly with FtsZ. In vitro 
studies have shown that like E. coli MinC, the B. subtilis protein inhibits FtsZ bun-
dle formation by disrupting lateral interactions between protofilaments (Dajkovic 
et  al. 2008; Scheffers 2008; Blasios et  al. 2013), though E. coli MinC has been 
shown to also destabilize FtsZ protofilaments (Hu et al. 1999; Shen and Lutkenhaus 
2010). MinD is a membrane-associated activator of MinC. Both MinC and MinD 
are relatively well conserved among bacteria. The two proteins form a heterotetra-
meric complex and in B. subtilis are recruited to the division site and the cell poles 
by MinJ, which in turn associates with the “topological specificity” determinant 
DivIVA (Edwards and Errington 1997; Marston et al. 1998; Bramkamp et al. 2008; 
Patrick and Kearns 2008). E. coli lacks counterparts of the MinJ and DivIVA pro-
teins and instead uses an amazing oscillating MinCD mechanism to prevent division 
at the cell poles (Lutkenhaus 2007).

The key feature of DivIVA that enables it to spatially control the Min inhibitory 
effect lies in its targeted localization to division sites and cell poles. DivIVA oligo-
mers have affinity for high negative membrane curvature, which normally occurs 
only at invaginating division septa or recently completed cell poles (Lenarcic et al. 
2009; Ramamurthi and Losick 2009; Eswaramoorthy et  al. 2011). It is probably 
recruited to the site of division as soon as membrane invagination begins, due to 
divisome constriction. Therefore, accumulation of DivIVA at the division site is 
dependent on the presence of a functional divisome but once curvature has been 
generated, the rings of DivIVA, one on each side of the growing septum, are no 
longer affected by contraction of the divisome (Eswaramoorthy et al. 2011). Upon 
completion of septation, the divisome disassembles and the septum splits to gener-
ate new cell poles for the two daughter cells. In cells that are not dividing, DivIVA-
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GFP is concentrated at the hemispherical cell poles (Eswaramoorthy et al. 2011) but 
in dividing cells, DivIVA is remodelled and a portion of the DivIVA molecules 
remain at the pole, while some protein migrates to the new division site 
(Eswaramoorthy et  al. 2011; Bach et  al. 2014). The main structural feature of 
DivIVA is a parallel coiled coil, similar to the yeast tropomyosin Cdc8, a eukaryotic 
cytoskeletal protein involved in cytokinesis (Edwards et al. 2000; Oliva et al. 2010). 
This major C-terminal portion of DivIVA resembles the crescent shape of eukary-
otic BAR domains normally found at the interface between the actin cytoskeleton 
and lipid membranes, which bind to curved membranes and also introduce curva-
ture (Oliva et al. 2010). This raises the possibility that DivIVA senses membrane 
curvature using a mechanism similar to the Bar domain proteins. Structural and 
genetic evidence suggest that membrane interaction occurs via a hairpin structure 
with conserved exposed basic and hydrophobic residues in the N-terminal domain 
of the protein (Oliva et al. 2010).

MinJ is presently the least well characterised component of the Min system. It 
has 6 transmembrane helices with both N- and C-termini in the cytoplasm. The 
C-terminal globular portion of the protein comprises a classical PDZ domain; a 
protein fold often involved in protein-protein interactions (Van Baarle and 
Bramkamp 2010). MinJ can interact with both DivIVA and MinD, based on 2-hybrid 
experiments (Patrick and Kearns 2008; Bramkamp et  al. 2008), suggesting that 
MinJ is the immediate polar target for recruitment of MinD, rather than DivIVA 
(Bramkamp et al. 2008).

As originally described by Marston et al. (1998) and reinforced by subsequent 
papers (Gregory et  al. 2008; Bramkamp et  al. 2008; Van Baarle and Bramkamp 
2010), DivIVA and presumably now MinJ are recruited to mid cell soon after the 
initiation of division. MinJ, in turn, recruits the MinCD complex, which has no 
effect on the ongoing division but is poised to disassemble the divisome as division 
is completed, and or prevent the assembly of a new division complex. Although in 
general it appears that little, if any, of these proteins are retained at completed “old” 
cell poles, some activity is probably retained to prevent inappropriate minicell divi-
sions from occurring there.

The mechanism of action of the MinCD inhibitor is not yet fully understood, 
despite over 20 years of study. MinD is a member of the Walker A cytoskeletal 
ATPase (WACA) family, a group of cytoskeletal proteins thought to be unique to 
bacteria (Löwe and Amos 2009; Shih and Rothfield 2006; Michie et  al. 2006; 
Pilhofer and Jensen 2013). Characteristic of this family is a ‘deviant’ Walker A 
motif – KGGXXGKT’ containing two conserved lysines, both important for bind-
ing and hydrolysis of ATP (Lutkenhaus 2012). As in E. coli, the ATPase activity of 
B. subtilis MinD is required for membrane binding and activation of MinC (Karoui 
and Errington 2001), but biochemical details of how the inhibitory activity of the 
MinCD complex is regulated remain elusive. One interesting recent development 
has been the report that E. coli MinC and MinD form alternating copolymeric cyto-
motive filaments with structural similarity to septins (Ghosal et al. 2014). Septins 
are a group of eukaryotic GTP-binding cytoskeletal proteins that polymerize into 
hetero-oligomeric protein complexes and play many important roles, including 
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serving as membrane scaffolds for protein recruitment and as diffusion barriers for 
subcellular compartmentalization (Mostowy and Cossart 2012). It is not clear 
whether the B. subtilis homologues behave similarly or what the functional signifi-
cance of the copolymer organization is.

�Nutritional Regulation of Cell Division

In B. subtilis and probably many other bacteria, cell size is regulated according to 
the growth rate, such that fast growing cells are, on average, larger than slow grow-
ing cells (Sharpe et al. 1998). Weart et al. (2007) identified the UgtP protein as a key 
metabolic regulator of cell division in B. subtilis. UgtP is responsible for synthesis 
of glucolipids using UDP-glucose as a substrate. Mutations in the ugtP gene, or 
genes upstream in the UDP glucose synthetic pathway (pgsC or gtaB) had a small 
cell phenotype, in which both FtsZ ring formation and cell division occur at a 
smaller average cell size than in the wild type. UgtP turned out to interact directly 
with FtsZ in vitro and in vivo, and its inhibitory effect on FtsZ assembly is stimu-
lated by UDP-Glucose (Weart et  al. 2007). Under nutrient rich conditions UgtP 
levels are increased, as is the availability of its UDP-Glucose substrate, leading to 
an inhibition/delay in assembly of the FtsZ ring.

Monahan et al. (2014) identified a similar but quite distinct regulatory effect on 
cell division involving central carbon metabolism. They showed that a temperature 
sensitive ftsZ mutant could be rescued by mutations in genes encoding pyruvate 
kinase (pyk) or phosphoglycerate kinase (pgk) and established that these mutations 
work by limiting the supply of pyruvate from glycolysis. They identified the E1α 
subunit of pyruvate dehydrogenase, which uses pyruvate as a substrate in generating 
acetyl-CoA. Localization of E1α was found to shift between nucleoid associated 
and nucleoid excluded depending on the availability of nutrients (high vs low, 
respectively). Various genetic tests were consistent with a model in which E1α is a 
positive regulator of FtsZ ring formation helping to couple this to sensing of nutrient 
availability. Molecular details of the putative interaction between the various play-
ers in this process remain to be worked out.

�Z Rings and Cell Division During Sporulation

Early in sporulation the cell division cycle is substantially modified to pave the way 
for generation of the distinct prespore and mother cell progeny and their subsequent 
differentiation. As mentioned above, this involves a repositioning of FtsZ rings 
away from the normal mid cell position to the cell poles (Errington 2003). The fol-
lowing section focuses mainly on events involving FtsZ. The key cell cycle changes, 
which are controlled by global changes in transcription in response to starvation, are 
as follows. First, medial division is blocked by a mechanism that is presently 
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unclear, but a major change in chromosome configuration – the formation of a struc-
ture called the axial filament (Ryter 1965; Bylund et al. 1993) – probably contrib-
utes, through a nucleoid occlusion effect. Instead FtsZ rings are directed to sub-polar 
positions at each end of the cell (Levin and Losick 1996). Formation of these polar 
Z-rings requires both a small upregulation of FtsZ synthesis and the synthesis of a 
sporulation-specific protein SpoIIE (Ben-Yehuda and Losick 2002; Feucht et  al. 
1996) (see below). The upregulation of ftsZ occurs via a promoter controlled by the 
σH form of RNA polymerase, which is active only in stationary phase and sporula-
tion (Gholamhoseinian et al. 1992; Gonzy-Tréboul et al. 1992).

Mutations in several key regulatory genes of sporulation give rise to an interest-
ing phenotype called “disporic”, in which prespore-like cells form at both poles of 
the cell (Piggot and Coote 1976). Lewis et al. (1994) showed that in these cells the 
asymmetric division events occurred sequentially, with the first preceding the sec-
ond by about 20 min. This suggested that the Z rings at the two poles develop at 
different rates, ultimately contributing to the generation of asymmetry – whichever 
potential divisomes matures first defines the pole which the prespore cell forms 
(Lewis et al. 1994). The polar sporulation septum differs from a normal vegetative 
septum in having a much thinner layer of PG (Ryter 1965; Illing and Errington 
1991; Tocheva et  al. 2013). This thinning may be related to the fact that a little 
while later, the PG needs to be hydrolysed to enable the remarkable process of pre-
spore engulfment to occur: the small prespore is engulfed by the mother cell to 
produce a cell within a cell, similar to eukaryotic phagocytosis (Illing and Errington 
1991; Tocheva et al. 2013). In addition to FtsZ (Beall and Lutkenhaus 1991), FtsA 
is probably also required for sporulation division (Beall and Lutkenhaus 1992), 
though curiously, the latter protein only appears to accumulate at one of the polar 
potential division sites  – presumably the one that goes on to support division 
(Feucht et al. 2001). DivIB, DivIC and FtsL, at least, are also required for formation 
of the sporulation septum (Levin and Losick 1994; Daniel et al. 1998; Feucht et al. 
1999) but whether the other vegetative divisome proteins are also required for the 
sporulation septum has not been systematically studied. How the polar septum is 
formed despite continued presence of the Noc, MinCDJ and DivIVA proteins is 
also not clear.

The large (92 kDa) SpoIIE protein plays two distinct critical roles in the prespore 
developmental programme. In addition to its role in asymmetric septation, it is also 
essential for activation of the first compartment-specific transcription factor, σF, in 
the prespore (Duncan et  al. 1995; Arigoni et  al. 1996; Feucht et  al. 1996). The 
N-terminal domain of SpoIIE contains 10 predicted transmembrane spans. This is 
followed by a central regulatory domain and a C-terminal PP2C phosphatase 
domain. SpoIIE is recruited to both polar Z rings sequentially (Arigoni et al. 1995; 
Levin et al. 1997; Wu et al. 1998), probably via a direct interaction with FtsZ (Lucet 
et al. 2000). The precise role of SpoIIE in FtsZ assembly is still not clear. Absence 
of SpoIIE causes a delayed and reduced frequency of polar divisions, as well as a 
vegetative-like thickening of the septa that are formed (Illing and Errington 1991; 
Barák and Youngman 1996, Feucht et al. 1996; Khvorova et al. 1998; Ben-Yehuda 
and Losick 2002; Carniol et al. 2005). Crucially, after septation, the SpoIIE protein 
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from the septum is sequestered into the smaller prespore compartment (Wu et al. 
1998; Campo et  al. 2008; Bradshaw and Losick 2015), where the phosphatase 
domain helps to drive the activation of σF specifically in that compartment. 
Regulation of SpoIIE is highly complex and involves association with and release 
from the divisome, recruitment at the adjacent cell pole by interaction with DivIVA, 
oligomerization and controlled proteolysis (Bradshaw and Losick 2015).

At the transcriptional level, formation of a polar septum, through the localized 
action of SpoIIE phosphatase, triggers the prespore localized activation of σF, which 
then turns on the early prespore programme of gene expression. One of the newly 
expressed genes, spoIIR, encodes a factor that triggers the activation of a different 
sigma factor, σE, in the mother cell compartment. Among the proteins made as a 
result of transcription by σE-RNA polymerase is a specific inhibitor of ftsZ assem-
bly, called MciZ (Handler et al. 2008) that appears to work as a protofilament cap-
ping protein (Bisson-Filho et al. 2015). MciZ helps to block the utilization of the 
second polar FtsZ ring located in the mother cell compartment. Three other σE-
dependent proteins (SpoIID, SpoIIM and SpoIIP) also facilitate the formation of a 
second polar division, but apparently by working downstream on PG synthesis 
(Eichenberger et al. 2001).

�FtsZ Inhibitors as Potential Antibiotics

FtsZ of B. subtilis and closely related Gram positive bacteria, including 
Staphylococcus aureus, is susceptible to inhibition by a family of related benzamide 
compounds, with potential for use as antibiotics. These compounds bind to an allo-
steric site in the protein and apparently trap the protein in the “open” state, which 
promotes protofilament assembly (Haydon et al. 2008; Tan et al. 2012). In vivo, this 
results in the formation of multiple discrete foci of FtsZ, which recruit all tested 
downstream divisome proteins (4 early and 4 late) (Haydon et al. 2008; Adams et al. 
2011). However, productive Z rings are not formed, leading to a complete division 
block. The potential clinical use of these compounds has not yet been evaluated.

�L-Form (Cell Wall Deficient) Bacteria

Despite the extraordinary complexity of the wall, its various important functions, 
and its role as the target for many powerful antibiotics, it is surprisingly easy for B. 
subtilis to lose its wall. Only one or two mutations are needed to enable B. subtilis 
(and many other organisms; Mercier et al. (2014)) to switch into a wall deficient 
mode called L-form (Leaver et al. 2009; Mercier et al. 2013; Kawai et al. 2015). 
L-forms require an osmoprotective medium to prevent them from incurring osmotic 
lysis and they have pleomorphic shapes, due to lack of the rigid cell wall. Remarkably, 
L-forms can tolerate the complete deletion of many genes that are normally essen-
tial for growth and division, including both FtsZ and the complete set of MreB 
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homologues (Leaver et al. 2009; Mercier et al. 2012). They divide by a blebbing 
mechanism that requires only an increase in membrane synthesis (Mercier et  al. 
2013). Apart from interest in L-forms as potential biotechnological devices or pos-
sibly as agents responsible for certain infectious diseases, they are likely to be use-
ful in basic studies of cell wall elongation and division through their ability to 
tolerate the disruption of many genes that are normally essential (Kawai et al. 2014).

�The Future

Some of the open questions about the FtsZ system are similar to those of MreB. The 
advent of cryo-EM tomography is beginning to resolve the nature of the FtsZ ring 
(Szwedziak et al. 2014) but resolution of the detailed structure in vivo remains prob-
ably the biggest impediment to understand divisome function. Although various 
temporal and spatial regulators are now known and have been subjected to detailed 
study, again, understanding of their precise mechanism of action will probably 
await resolution of the Z-ring structure problem. Furthermore, even in the absence 
of the key negative regulators (MinCD and Noc), residual cell divisions still tend to 
occur between replicated chromosomes (Wu and Errington 2004; Rodrigues and 
Harry 2012), indicating the existence of as yet unidentified regulatory factors.

Once the structure of the Z ring has been resolved many details of the division 
process will need to be worked out, including the enigmatic roles of several mem-
brane associated divisome proteins, such as DivIB, DivIC, FtsL and FtsW. Finally, 
it will be interesting to resolve how the division machinery is modified in order to 
bring about the various subtle changes associated with the asymmetric division of 
sporulating cells. How is mid cell division blocked? How is polar division pro-
moted: in particular, how are the normal activities of the NO and Min systems over-
ridden? Finally, how does the cell regulate the differential thickness of the vegetative 
vs sporulation septa?
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