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We have used SWATH mass spectrometry to quantify
3648 proteins across 76 proteomes collected from genet-
ically diverse BXD mouse strains in two fractions (mito-
chondria and total cell) from five tissues: liver, quadriceps,
heart, brain, and brown adipose (BAT). Across tissues,
expression covariation between genes’ proteins and
transcripts—measured in the same individuals—broadly
aligned. Covariation was however far stronger in certain
subsets than others: only 8% of transcripts in the lowest
expression and variance quintile covaried with their pro-
tein, in contrast to 65% of transcripts in the highest quin-
tiles. Key functional differences among the 3648 genes
were also observed across tissues, with electron trans-
port chain (ETC) genes particularly investigated. ETC
complex proteins covary and form strong gene networks
according to tissue, but their equivalent transcripts do
not. Certain physiological consequences, such as the de-
pletion of ATP synthase in BAT, are thus obscured in
transcript data. Lastly, we compared the quantitative pro-
teomic measurements between the total cell and mito-
chondrial fractions for the five tissues. The resulting en-
richment score highlighted several hundred proteins
which were strongly enriched in mitochondria, which in-
cluded several dozen proteins were not reported in liter-
ature to be mitochondrially localized. Four of these can-
didates were selected for biochemical validation, where
we found MTAP, SOAT2, and IMPDH2 to be localized
inside the mitochondria, whereas ABCC6 was in the mi-
tochondria-associated membrane. These findings dem-
onstrate the synergies of a multi-omics approach to study
complex metabolic processes, and this provides a re-
source for further discovery and analysis of proteoforms,
modified proteins, and protein localization. Molecular &
Cellular Proteomics 17: 1766–1777, 2018. DOI: 10.1074/
mcp.RA118.000554.

Mitochondria are dynamic organelles essential to a range of
metabolic processes, including the generation of ATP via
oxidative phosphorylation (OXPHOS)1. Mitochondrial homeo-
stasis is carefully maintained through many processes (1),
including rapid modulation of mitochondrial protein expres-
sion (2). Protein quality control pathways in the mitochondria,
such as the unfolded protein response, are essential for ro-
bust mitochondrial activity (2–4). Despite our increased
knowledge of mitochondrial functions, we do not yet com-
pletely understand the mitochondria’s variable proteomic
composition and regulation—even for core functions such as
OXPHOS. Several longstanding questions in mitochondria,
such as the existence and makeup of OXPHOS supercom-
plexes (5), are now being addressed thanks to technical im-
provements in proteomics and protein imaging (6–8). Recent
progress in further defining the composition of the mitochon-
drial proteome has been facilitated by improved organelle
isolation procedures, such as by differential centrifugation (9),
by mass spectrometry (MS)-based proteomics (10, 11), imag-
ing of epitope-tagged proteins (12), and computational mod-
eling (13). By combining many approaches, studies such as
the human protein atlas (HPA) and MitoCarta have identified
large parts of the mitochondrial proteome (14–17), e.g. Mito-
Carta 2.0 reports 1158 mitochondrial proteins (“mitopro-
teins”). These resources provide an excellent reference for
subcellular protein localizations, yet it is also known that
proteins are differentially localized in the cell depending on
environmental conditions (18) and across tissue and cell types
(15). Across all organelles it is estimated that less than half of
the proteome can be assigned consistently to distinct, clear
subcellular compartments (19). Consequently, it is of major
interest to be able to identify and rapidly quantify proteins at
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large scale. In this study, we have applied SWATH-MS—
which can consistently quantify up to �4000 unlabeled pro-
teins in single injections of digested total cell extracts (8, 20,
21) with the aim of following proteins across widely varying
cellular conditions and locations.

SWATH-MS, typically optimized for studying samples of
similar overall protein composition, was adapted here to study
the proteome across 5 distinct tissues and 2 fractions (total
cell or isolated mitochondria) and 8 strains of the genetically
diverse BXD mouse population (22). Across all samples, we
quantified 3648 unique proteins. Among these 3648 included
774 of the 1158 proteins annotated as mitochondrial in Mito-
Carta (67%). Genes’ tissue localizations likewise broadly
aligned with the HPA database (72% clear alignment, 20%
unclear, 8% clear disagreement). These data were aligned to
transcriptional data from the same cohorts (23, 24) for multi-
omic analysis, with just under half of variance at the mRNA
level translating to variance at the protein level (�42%), in line
with previous estimates (25, 26). However, the likelihood of a
relationship between a gene’s transcript and protein is also a
function of the gene’s variance and expression, with �65% of
highly variable and highly expressed transcripts covarying
significantly with their protein, compared with only �8% of
lowly variable and lowly expressed transcripts. This indicates
that massive effects to transcript expression generally mani-
fest at the protein level, as in gain- and loss-of-function stud-
ies, but subtler transcriptional effects, as seen across com-
plex trait studies, are difficult to predict.

Next, we sought to examine the physiological relevance of
proteomic expression variance, and how this may differ from
conclusions drawn from transcriptome data. Among the 71
measured proteins from the OXPHOS pathway, clear differ-
ences were observed in protein abundances across tissue
which hinted at functional differences in the mitochondria, e.g.
that ATP synthase (Complex V, or CV) component proteins
are depleted in BAT despite high mitochondrial content. This
aligns to function, as BAT predominantly uses the ETC for
mitochondrial uncoupling to generate heat (27), bypassing
CV. Notably, this effect is not apparent for the same 71
OXPHOS genes’ transcript levels measured at the same time
in the same individuals. We last compared the abundances of

proteins measured in the total cell and mitochondrial fractions
to determine mitochondrial localization. This differential, or
mitochondrial enrichment factor (EFmito), permitted empirical
inference for proteins’ probability to be mitochondrially lo-
calized. Most proteins with high EFmito are reported as
mitoproteins in the literature, though not all. Four candi-
dates were selected for validation—SOAT2, MTAP, IMPDH2,
and ABCC6—by ultra-purified mitochondrial fractions and
antibody-based approaches. The first three were observed
inside the mitochondria, whereas ABCC6 was observed as
part of the mitochondria-associated membrane (MAM). To-
gether, both the novel and literature-supported findings
indicate that fractionations measured by SWATH can be
used to estimate proteins’ localizations en masse, similar to
other recent mass spectrometry technologies such as APEX
(28) and hyperLOPIT (19).

EXPERIMENTAL PROCEDURES

Sample Selection—The 5 tissues studied—liver, BAT, quadriceps,
brain, and heart—were collected from eight 29-week old male mice,
one from each of 8 different BXD strains after overnight fasting and
perfusion. All phenotyping and in vivo handling was approved by the
Swiss cantonal veterinary of Vaud authority under licenses 2257 and
2257.1. Following the sacrifice, tissues were frozen and stored in
liquid nitrogen. Later, tissues were broken by mortar and pestle and
30 to 100 mg were taken each for mRNA extraction, protein extrac-
tion, and for mitochondrial isolation followed by subsequent protein
extraction. Our mitochondrial isolation technique has been recently
described (29), and further details are available in supplemental meth-
ods. Whole cell samples and isolated mitochondrial samples were
processed the same way for protein isolation as described (30), and
further details are also available in supplemental. All MS runs were on
a SCIEX (Framingham, MA) TripleTOF 5600 mass spectrometer. For
transcriptomics, followed by microarray analysis on Affymetrix (Santa
Clara, CA) Mouse Gene 1.0 ST (liver, quadriceps) or 2.0 ST arrays
(heart, BAT).

Molecular Validation—For molecular validation using high-purity
fresh mitochondrial samples, tissues samples were collected from
young male mice from C57BL/6J or DBA/2J backgrounds (see label-
ing in figures) as the ultra-purification protocol followed for the vali-
dations (31) cannot be performed on frozen tissue. The protocol is
also described further in supplemental methods. For Western blotting
of these samples, antibodies (TARGET: catalogue number) were pur-
chased by Santa Cruz Biotechnology (Dallas, TX) (IMPDH: sc-166551;
reacts with human IMPDH1 but only with mouse IMPDH2), (MTAP:
sc-100782), (SOAT2: sc-69837), (Tubulin: sc-5286), (TOM20, sc-
11415), (ABCC6: S-20: sc-5787), (CREBH: sc-377332), and (KDEL:
sc-58774); by Sigma Aldrich (LONP1: HPA002192); by BD Transduc-
tion Laboratories (Nucleoporin p62: 610497); by Abcam (Cambridge,
UK) (Calnexin: ab13504) and (UQCRC2 & ATP5A OXPHOS mix-
ture: ab110413); and by Cell Signaling Technology (Danvers, MA)
(Caspase-3, CST #9662). LONP1, NUP62, and tubulin are, respec-
tively, used as the positive controls of mitochondrial, nuclear, and
cytosolic fractions. Western blotting primary antibodies were all run at
dilution of 1:1000. ICC used the same antibodies at a dilution of
1:200. TOM20 was also used as a control for immunocytochemistry
(ICC) and for ABCC6, whereas DAPI (4�,6-diamidino-2-phenylindole)
was used as the nuclear staining control in ICC. ICC was performed
as described previously (32). Here, C2C12 myotube and AML12
hepatocytes were used cultured on Nunc™ Thermanox™ Coverslip.
The fixation was done with Formal-Fixx (Thermo Fisher Scientific),

1 The abbreviations used are: OXPHOS, oxidative phosphorylation
(i.e. complex 1–4 � ATP synthase); SWATH, sequential window ac-
quisition of all theoretical mass spectra; LOPIT, localization of organ-
elle proteins by isotope tagging; BXD, a recombinant inbred mouse
cross between C57BL/6J and DBA/2J; ETC, electron transport chain
(i.e. complex 1–4); CI/II/III/IV, Complex I, II, III, IV of the electron
transport chain; CV, ATP synthase (complex V of the electron trans-
port chain); BAT, brown adipose tissue; MTS, mitochondrial targeting
sequence; OGE, off-gel electrophoresis; MAM, mitochondria-associ-
ated membrane; NC, nuclear and cytosolic (fraction); QTL, quantita-
tive trait locus; GSEA, Gene set enrichment analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; HPA, Human Protein Atlas;
GEO, Gene Expression Omnibus; ICC, immunocytochemistry; MS,
mass spectrometry.
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followed by permeabilization with 0.4% Triton. Cells were stained with
the same rabbit polyclonal TOM20 (1:100) primary antibody; and
anti-rabbit Alexa Fluor 568 secondary antibody (1:500, A10042 Life
Technologies). The same MTAP (1:100) and SOAT2 (1:100) antibodies
as above were stained together with TOM20 and DAPI. All images
were obtained were acquired using Zeiss AxioPlan 2 Microscope
System (Carl Zeiss AG, Oberkochen, Germany) under non-saturating
exposure conditions. Cell line provenance and other details are de-
scribed further in supplemental methods.

Experimental Design and Statistical Rationale—Eight was selected
as the n per tissue because it is the minimum number of strains
required for performing quantitative trait locus (QTL) analysis in two-
parental crosses like the BXDs (33). QTLs were used to perform
quality control to ensure that data were broadly aligned with expec-
tations, i.e. certain strong cis-pQTLs could be expected if the data are
of high quality (detailed under the Sample Size section in supplemen-
tal methods). Use of eight strains also permits sufficient sample size
for standard statistical tests (e.g. two-way ANOVA and gene set
enrichment analyses (GSEA)). We have previously shown the variation
between biological and technical replicates in SWATH is less than the
difference between strains (technical error is �1/3 of biological error,
and biological error is �1/2 strain differences (8)). The variance in
protein expression linked to tissue and organelle was expected to
significantly exceed differences across genotypes within a tissue,
which was indeed observed in the final data set, where �50% of all
protein variance is attributed to differences between tissue, com-
pared with �20% being driven by differences across strain within
tissue. All datapoints were maintained in the analyses and in the
supplemental datasets 2 and 3 except for comparisons between HPA
and SWATH data, where protein quantifications were suppressed if
the proteins had non-significant m-scores for all 8 measurements for
a given tissue or fraction. For instance, SNCB (Fig. 2A) is clearly
detected in all 8 brain samples, but not in any sample from the other
tissues. However, SWATH can search for specific peptides at a
specific retention time and mass/charge ratio with the requantification
feature even if they are not highly abundant (34). For quantitative
comparisons (i.e. all comparisons except tissue localization align-
ments in Fig. 1B and Fig. 2A–2B), e.g. the comparison of mRNA to
protein level (Figs. 2E–2G), we retain all values, as the mRNA data can
be used as a secondary validation of the protein quantification.

RESULTS

Comprehensive Profiling of Mitochondrial Proteins Using
SWATH-MS—In this study, we generated a multi-tissue and
multi-omic dataset from 8 strains of the BXD mouse popula-
tion, with the primary aim of discerning how the mitochondrial
proteome varies across conditions. We have previously phe-
notyped these eight strains, and they are known to exhibit
variation in mitochondrial phenotypes (8). mRNA data from
the total tissue fraction from these individuals have also been
generated (23, 24). Here, we took five tissues from these
mice—BAT, brain, heart, liver, and quadriceps—and isolated
protein from both the whole cellular fraction and from the
purified mitochondrial fraction (Fig. 1A). To quantify the pro-
teome, we first generated a spectral library from measuring
the total tissue lysate and enriched mitochondrial samples for
all tissues in data-dependent acquisition mode. The resulting
consensus MS2 spectral library was merged with a prior
library built from mouse liver lysate fractionated by off-gel
electrophoresis (OGE) (8). This combined library contains

45,079 peptides (corresponding to 5152 distinct proteins).
After the library was generated, all protein samples were then
measured again on the mass spectrometer using data-inde-
pendent acquisition mode with the aim of precisely and re-
producibly quantifying as many mitochondrial proteins as
possible in single MS measurements by SWATH-MS (20). The
resulting data set quantified 3648 distinct proteins in at least
one tissue. Of these proteins, 953 (26%) proteins were
strongly identified in all five tissues, whereas 1281 (35%)
proteins were tissue-specific (Fig. 1B). We next sought to
determine our coverage of the mitoproteome by examining
which of the 3648 quantified proteins are characterized in
canonical mitoprotein databases, e.g. from MitoCarta 2.0 (17),
AmiGO (35), and UniProt (36) (supplemental Table S1). Inter-
estingly, mitoproteins are far more regularly detected across
tissues than randomly selected proteins—only 87 of the 922
proteins which are reported as mitochondrial in at least one of
the reference data sets are predominantly expressed in only a
single tissue (9%), compared with 44% of nonmitochondrial
proteins.

We next examined how mitoprotein detection varied be-
tween our total cell protein extraction and isolated mitochon-
dria, using MitoCarta 2.0 as the primary reference. Among the
1158 mitoproteins listed in MitoCarta 2.0, we have quantified
774 (Fig. 1C). 756 mitoproteins were quantified in the purified
mitochondrial fractions, whereas 726 were quantified in the
total lysate. The majority (712 proteins, or 92%) were quanti-
fied in both extractions, whereas 12 MitoCarta proteins were
detected only in whole cell fractions (e.g. Akr1b7, Arl2, As3mt,
Cmc1, Sdsl), suggesting that these proteins may only be
mitochondrially localized only under some conditions or tis-
sues. In both fractions, differences in the total mitochondrial
protein quantity across tissue were evident (Fig. 1D), even
though the proteomic composition was consistent (i.e. 91% of
mitoproteins were clearly quantified in all 5 tissues). In the
total heart fraction, 55% of all protein signal stemmed from
mitoproteins, in contrast to brain, where mitoproteins account
for 25% of the total signal. These observations are consistent
with the established literature for the mitochondrial density of
different tissues (37) and may explain why the mitochondrial
enrichment provided only a small increase in mitoprotein de-
tections. We also observed that the variation in observed
protein expression is driven primarily by the differences be-
tween tissues, with a secondary role played by differences
between the 8 strains. (Fig. 1E). Given the magnitude of var-
iation driven by tissue differences, hierarchical clustering of
proteins across samples separated tissues completely by the
whole cell fraction, and nearly completely separated mito-
chondrial fractions (Fig. 1F).

Genetic Variance and the Mitoproteome—As the pan-tissue
protein data broadly aligned to expectations—e.g. heart and
quadriceps have closer protein composition and expression
than heart and brain—we next examined how tissue-specific
proteins correspond to literature. To do so, we compared
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against the HPA which contains extensive, validated protein
localization data for many tissues (although not BAT) and
subcellular fractions for human samples. We selected the 764
proteins which were detected highly significantly in only one
of these 4 tissues, or which were detected commonly to all
(i.e. center and edges of Fig. 1B but using more stringent
cutoffs for higher certainty; detailed in supplemental meth-
ods). Of these, 251 proteins have validated data from the HPA
which also have clear and unique orthologs between the
mouse and human gene. The putative localizations were com-
pared between the two datasets (Fig. 2A), with most being in
exact agreement (72%, e.g. SNCB, MYH10), whereas others
were somewhat different (20%, e.g. GOT2), and a few in
opposition (8%, e.g. CES2A, IDH1). Broadly, proteins’ tissue
localizations overlapped between SWATH and HPA (Fig. 2B),
indicating that the clear distinction between tissue proteomes
in the SWATH data are caused by underlying biological
differences.

We next examined links between genes’ transcript and
protein expression for all 3574 genes with matching multi-
omics measurements. Variances of transcript and protein ex-
pression were moderately covariable—genes with highly vari-
able transcripts tend slightly to have more highly variable

proteins and vice-versa (rho � 0.22 across all 3574 paired
genes). However, exceptions to this trend are readily found,
such as Ptprd (Fig. 2C). As for protein expression, tissue
differences had a far larger impact on transcript expression
than did strain differences. For instance, the median transcript
variance is 4.4-fold across tissues for 8 strains, compared
with a median variance of 1.8-fold across a single tissue (liver)
for 40 strains (8). Many transcript-protein pairs covary only
when data from all tissues are (e.g. GSS), although some
genes have highly consistent covariance both within and
across tissue (e.g. GSR) (Fig. 2D). Proteins and transcripts
which have higher variation in their expression and with higher
abundance are more likely to covary, and to covary more
strongly. Across all samples, 57% of transcript-protein pairs
covary with at least nominal significance (Fig. 2E; rho � 0.35
corresponds to p � 0.05), with an average correlation of rho �

0.42. However, the expected covariance is higher for certain
subsets of data. For instance, the 287 transcripts which vary
by more than 64-fold (26) covary more strongly with their
protein, with an average rho � 0.53 (Fig. 2F, right of dashed
red line). In contrast, for the 302 transcripts which vary by less
than 2-fold (21) the average correlation coefficient drops to r �

0.29 (Fig. 2F, leftmost group). A similar trend is observed for
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more abundant transcripts; the most abundant decile has an
average rho of 0.52 versus 0.29 for the least-abundant decile
of transcripts. Interestingly, expression level and expression
variance do not covary (rho � 0.07 for transcript expression
versus variance; rho � �0.005 for protein expression versus
variance).

However, it is critical to note that the relationship between
mRNA and protein cannot always be expected even for highly
variable transcripts. 28% of transcripts which vary by �64-
fold do not even nominally covary with their proteins (p �

0.05). Even in cases of significant correlation, one must also
consider the utility of such findings. Eif6 varies across tissues
by 1.8-fold and explains 44% of EIF6 protein levels (i.e. r2),
whereas Tpm1 varies by 103-fold and explains 80% of TPM1
protein levels (Fig. 2G). Although the Eif6 connection is nom-
inally weaker, it could provide more useful information for
mechanistic examination: an increase in the Eif6 transcript of
1.5-fold can be expected to correspond to an increase in EIF6
protein levels, whereas Tpm1 would need to increase by
�5-fold for one to confidently predict an increase in TPM1
levels. Fundamentally a gene’s transcript and protein always
covary—knocking out a transcript will knock out the corre-
sponding protein. However, intermediate variances lead to
highly variable relationships (e.g. linear models are only some-
times appropriate), which are not yet well understood. Al-
though target genes in gain or loss-of-function models will
have congruent effects on the mRNA and protein level, sec-
ondary or tertiary targets may not be reliable across omics
layers. Similarly, population studies generally have low levels
of gene expression variation (as compared with loss-of-func-
tion models) and are thus better served by a multi-omics
approach. However, by incorporating information about tran-
scripts’ variance and expression levels, we may calculate the
approximate probability for which we expect targets to vali-
date at the protein level.

Dynamic Composition of Mitochondrial Protein Mod-
ules—We hypothesized that the divergence in genes’ mRNA
and protein expression may result in distinct observations
relating to mitochondria if separately examining the transcrip-
tome or proteome data. Because of its core role in mitochon-
drial physiology, we elected to look at the 71 quantified pro-
teins from the KEGG OXPHOS pathway (M19540). Distinct
protein expression profiles were observed for each tissue,
with average expression relatively the highest in the heart and
relatively the lowest in liver and brain (Fig. 3A). Other patterns
were visible as well, most noticeably that proteins from CV
were expressed at low levels in BAT despite relatively high
expression of proteins of other ETC complexes (Fig. 3A–3B).
This relative down-regulation fits the tissue’s functions, as

BAT has high mitochondrial expression but relatively little ATP
production because of its focus on mitochondrial uncoupling
(38)—as the ETC is largely to produce heat (39). This is in clear
contrast to the heart, where ATP regeneration is paramount
(40). Interestingly, the tight coregulation of OXPHOS complex
gene expression is weaker at the transcriptional level. Even
the largest difference observed at the protein level—relative
CV expression between BAT and heart—shows only a slight
trend for the corresponding transcripts (Fig. 3C). Likewise,
OXPHOS complex proteins are tightly coregulated both within
and across complexes (Fig. 3D; CV is separate because of its
disjunction in BAT). This observation agrees with previous
findings that OXPHOS proteins tend to covary across com-
plex, and they cluster particularly well within complex (8). The
connectivity within complexes is highly variable which can be
visualized through a density map of variance explained (Fig.
3E). Proteins in CI, CII, and CV all primarily correlated with
proteins within the same complex, whereas proteins in CIII
and CIV had equally strong and prevalent correlations across
complex as within, mirroring the observations that CIII and
CIV proteins are especially prone to dynamic interactions with
other complexes (41, 42). Transcriptomic approaches are dis-
tinctly limited for the study of genes which form protein com-
plexes (43), whereas antibody-based techniques for complex
analysis can struggle with scaling up quantifying results
across large numbers of samples or across multiple experi-
ments. These data indicate that bottom-up MS proteomics
measurements (i.e. fragmented peptide-based) can provide
reliable overviews of expression of protein complexes, e.g.
the OXPHOS complex.

Mitochondrial Enrichment Factor as a Proxy of Mitochon-
drial Location—We next sought to examine how direct com-
parisons of the proteomic analysis of whole tissue extract and
mitochondria-enriched fractions can provide complementary
perspectives on the cellular state. First, we compared the
protein quantifications of both fractions to calculate the mito-
chondrial enrichment factor (EFmito) for each detected protein
(supplemental Table S1). The EFmito—the abundance ratio
between the two fractions—quantitatively estimates to what
extent a protein is relatively inside and outside the mitochon-
dria. Proteins with high EFmito should be localized in the
mitochondria, whereas proteins localized elsewhere should
have low EFmito. As with the raw protein intensities, EFmito

values cluster strongly by tissue (Fig. 4A, red � enriched in
mitochondria; blue � diminished). We next collated the re-
ported cytosolic and nuclear localization data for all proteins
from UniProt (36) and the list of mitochondrial proteins from
MitoCarta 2.0 (17) and examined their relative EFmito. As ex-
pected, protein sets reported as mitochondrial have the high-

average correlation coefficient of rho � 0.29. G, Eif6 transcript and protein levels are strongly correlated despite relatively little variation across
tissues. Tpm1 transcript and protein levels are highly correlated, but only in the context of massive cross-tissue variance (�100-fold). Pearson
correlation is used as the visual difference in expression variance is lost with Spearman correlations (which are rho � 0.69 and rho � 0.93 for
Eif6 and Tpm1, respectively).
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est EFmito in all tissues, whereas proteins localized elsewhere,
e.g. cytoplasm and nucleus, are always significantly depleted
(Fig. 4B for brain; other tissues in supplemental Fig. S1A). On
average across all five tissues, mitochondrial proteins were
enriched by 4-fold compared with non-mitochondrial proteins
(Fig. 4C; note that mitochondria are not removed from the
whole cell fractions). As for protein intensities, the EFmito

variation across tissues is larger than the variation caused by
strain differences within any single tissue (coefficient of vari-
ation of 39% versus 22%, Fig. 4D). We next sought to identify
how EFmito signatures compare with DNA-based prediction
factors for mitochondrial localization: the mitochondrial-tar-
geting sequence (MTS, using targetP 1.1 (44)). The MTS is a
20–40 amino acid sequence located in many precursor mi-
tochondrial proteins and has been a good predictor for pro-
teins destined to be imported to the mitochondria (Dinur-Mills
et al., 2008). Among the 1158 genes reported as mitochon-
drially localized in MitoCarta, 729 are calculated to have likely
MTS in mice (45). Among the 774 MitoCarta proteins quanti-
fied in this study, 486 have putative MTS—nearly two-thirds of
the confirmed mitochondrial proteins. Conversely, among the
2808 non-MitoCarta proteins quantified, only 242 proteins
have predicted MTS. Although proteins with predicted MTS
tend to have higher EFmito, numerous exceptions are ob-
served. Most noteworthy were two categories: (1) proteins
reported in the literature as mitochondrial but which have low
EFmito (i.e. similar to nuclear proteins), and (2) proteins re-
ported as nuclear or cytoplasmic with high EFmito (i.e. similar
to typical mitochondrial proteins) (Fig. 4B, tails). Furthermore,
mitochondrial proteins in the outer membrane tend to not
have MTS.

All five tissues had similar overall localization and enrich-
ment patterns for mitoproteins (e.g. Fig. 4C and supplemental
Fig. S1A), though tissue-specific mitoproteins were also ob-
served, such as UCP1 in BAT (supplemental Table S1). We
first checked the 774 MitoCarta-reported mitochondrial pro-
teins which have low EFmito scores in certain tissues where
they are reliably detected (i.e. these proteins do not appear to
be exclusively mitochondrial). This list includes ATPase family
AAA-domain containing 1 (ATAD1), protein kinase A anchor
protein 1 (AKAP1), and mitochondrial antiviral-signaling pro-
tein (MAVS) (Fig. 4E and supplemental Fig. S1B). In addition to
the mitochondria, these three proteins have been reported in
other cellular compartments: ATAD1 in the cytoplasm (46),
MAVS in the peroxisome (47), and AKAP1 in the endoplasmic
reticulum (48). This may be explained in part by differences
between tissues and cell lines. For instance, ATAD1 is primar-
ily mitochondrial in the BAT (EFmito � �1.0), but primarily
non-mitochondrial in quadriceps (EFmito � �1.8) (Fig. 4E).

Numerous other apparently tissue-specific localization differ-
ences are noted (supplemental Table S1, e.g. ADPRHL2 and
ACBD3). The divergent organellar composition between tis-
sues highlights the difficulty of maintaining a canonical data-
base of protein localizations.

To validate our approach biochemically, we searched for
novel potential mitochondrially localized proteins (i.e. those
not reported in any of the databases examined in supplemen-
tal Table S1). Candidates were ranked based on their enrich-
ment in each tissue, presence of MTS, and known literature
such as antibody validations and reported subcellular local-
izations. The protein ATP-binding cassette, sub-family C
(ABCC6; supplemental Fig. 1C) was the top candidate by
these criteria and was selected first for validation. In the liver,
ABCC6 has been controversially reported as a clear, unam-
biguous MAM protein (49), and as a clear, unambiguous
plasma membrane protein (50), although it is not yet reported
as mitochondrial in any standard database. Furthermore,
ABCC6 has a major sequence variant between C57BL/6J and
DBA/2J mice that leads to clear expression differences
between the strains (51). We collected fresh livers for high
purity mitochondrial isolations (31), which also allows for
separation of the mitochondria-associated membrane by
ultracentrifugation (MAM; Fig. 4F). In this validation experi-
ment (Fig. 4G), ABCC6 was predominantly in the MAM
fraction, with only trace signal coming from the cytosolic
fraction (a longer exposure is shown in supplemental Fig.
S1D). This confirmed our first hypothesis resulting from the
EFmito calculations (MAM is enriched in the mitochondrial
fractions for proteomics).

After ABCC6, the next strongest candidates are the genes
3110001D03Rik, Aqp4, Chmp6, Eml5, Efhc2, and Slc12a5.
However, rather than go down the list linearly, we directly
searched for novel candidate mitoproteins with closer to av-
erage enrichment to assess the general reliability of the ap-
proach. Several candidates were triaged which had signa-
tures which would indicate potential mitoproteins and which
also would indicate the general SWATH measurement is reli-
able. Sterol O-acyltransferase 2 (SOAT2) had reliable enrich-
ment scores and substantially higher expression in liver than
the other four tissues; inosine 5-phosphate dehydrogenase 2
(IMPDH2) had high enrichment in heart but low enrichment
in other tissues, and methylthioadenosine phosphorylase
(MTAP) was selected as a relatively ubiquitously expressed
candidate. Several such candidates were considered for each
category, with these three selected because of their antibody
availability.

For these three candidates SOAT2, MTAP, and IMPDH2,
we performed Western blots on three fractions: the total cell

contrary regulation in BAT. At adj_p � 0.05, there are 1347 positive correlations and 7 negative correlations between the 71 OXPHOS nodes
(proteins). For a set of 71 proteins randomly selected from the same dataset, only 26 positive and 14 negative correlations are observed at the
same cutoff. E, Covariation within complexes: Most correlations from CI, CII, and CV consistently correlate within their own complex, whereas
CIII and CIV proteins are more variably distributed.
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lysate (tot), the nucleus and cytoplasm-enriched fraction (NC),
and the pure mitochondrial fraction (mito) across five fresh
mouse tissues. SOAT2 and MTAP were detected consistently
in the same fraction as the reference mitochondrial matrix
protein LONP1—indicating these proteins are primarily mito-
chondrial under these experimental conditions (Fig. 4H). Con-
versely, differing isoforms of IMPDH2 appears to be localized
either inside and/or outside the mitochondria. Finally, we
elected to use immunocytochemistry (ICC) to visualize the
two novel proteins which appear to be most distinctly located
inside the mitochondria: SOAT2 and MTAP. Here, we observe
substantial, though not complete, mitochondrial localization in
both C2C12 myotubes and AML2 hepatocytes (Fig. 4I). As
these proteins have been examined in other studies which
have either not found them in the mitochondria, or which have
been conflictingly reported in the mitochondria, it is likely that
they are dynamically localized depending on the cell type and
its environmental state. Together with the increasingly preva-
lent hypothesis that organellar protein composition is sub-
stantially dynamic (18), these findings emphasize the impor-
tance of implementing technologies and approaches which
can perform rapid, comprehensive, and accurate assess-
ments of proteins’ locations.

DISCUSSION

In this study, we have generated a proteomics dataset
across two cellular fractions and five tissues for eight inbred
strains of the BXD mouse population in order to develop an
overview into mitochondrial variation. The variation in ex-
pression across different tissues substantially outweighs the
variation caused by differences caused by genetic factors and
permits us to examine hypotheses that require multiple tis-
sues to test and assists in examining hypotheses which ben-
efit from highly variable data. First, SWATH is highly accurate
and specific at determining the presence of proteins both
across tissues and within cellular compartments and may
thus be used as a parallel technology for localization experi-
ments. The high variation in the expression of gene products
across tissues also provides a resource for examining multi-
omic relationships between mRNA and protein.

Multi-omic studies always observe positive average corre-
lation between genes’ transcript and protein levels, but with
highly variable estimates—anywhere from around 0.25 to 0.85
(52–54). In this study, we were able to identify several vari-
ables which influence the average transcript-protein covari-
ance. Particularly, transcripts which have more variable ex-
pression tend to correlate better with their corresponding
protein (and vice-versa, as more variable proteins tend to
correlate better with their transcript). Similarly, more abundant
transcripts and proteins also tended to correlate better with
one-another, and no association was observed between a
gene product’s abundance and its expression variance.
Consequently, by subsetting our data on these character-
istics, we were able to observe average correlation coeffi-

cients as high as 0.74—for genes with highly variable and
highly expressed proteins and transcripts—and as low as
0.19—for gene products with low variation and low expres-
sion. Although expression level and variation alone are not
likely the sole variables explaining the discrepancy in pub-
lished studies on mRNA-protein relationships, they are a
contributing factor.

These observed major variations in the expression of gene
products within and across tissues was also linked to func-
tional differences. For the mitochondria, we observed that
OXPHOS proteins are co-expressed with approximate stoi-
chiometry (55) and their absolute levels represent tissue mi-
tochondrial density and OXPHOS state. However, the equiv-
alent transcripts display far weaker functional connections,
highlighting the importance of protein quantifications for mi-
tochondrial analysis. Moreover, proteomics permits identifi-
cation of which proteins are transiently localized to the mito-
chondria. Across the 14 different tissues of MitoCarta, only
1/3rd of the proteins are confidently detected in every tissue
(17). Furthermore, recent meta-analyses have noted hundreds
of discrepancies in the literature for organellar composition,
with up to half of the proteome thought to be fluidly localized
(19, 56). Standardized databases of protein localizations have
been built up over decades of careful and painstaking re-
search yet contain discrepancies even for well-studied pro-
teins such as GSR—a high confidence mitochondrial protein
according to MitoCarta, but a nuclear and cytoplasmic protein
in HPA. Both sources may be correct, and rather the circum-
stances that differentially localize GSR are simply not under-
stood. Here, we have identified several dozen potential novel
mitoproteins, of which four were selected for validation:
ABCC6, IMPDH2, SOAT2, and MTAP. Because of these val-
idations, we can show at least three possible reasons for
discrepancies between resources (1). The tissues and cell
lines used for localization studies may not be generally ex-
trapolated; whereas IMPDH2 is expressed in all five tissues, it
is only localized in the mitochondria in four of them (2). Diver-
gent localization of protein isoforms may be difficult to detect;
in cases of mass spectrometry, when there are no available
proteotypic peptides for each isoform (e.g. IMPDH2), and in
cases of antibody-based approaches when two isoforms are
of similar molecular weight (3). Organellar isolations are not
always perfect, and enrichments may include off-target parts
of other organelles.

Improvements in MS proteomics techniques, such as
hyperLOPIT or SWATH-MS, are increasingly permitting re-
searchers to comprehensively and precisely quantify the pro-
teome at relatively modest investments of cost and time.
Together, these results indicate that SWATH-MS can provide
a rapid and comprehensive method to detect and quantify
different protein expression patterns across tissues, geno-
type, and subcellular fractions. These technological advances
can permit the generation and analysis of hypotheses on
mitochondrial composition and function that could not be
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generated with transcriptome data alone. Consequently, it is
now feasible to examine protein localization en masse as a
function of several experimental conditions—a necessary de-
velopment given the apparently dynamic state of much of the
proteome. Genes which do not fit uniformly into reported
locations of expression patterns can be picked up by multi-
omic analyses, and subsequent experiments can then identify
when, why, and how they move within the cell. Resources
such as this study begin to provide a background for which
later meta-analyses can mine to address observed differ-
ences in protein localization between databases or to address
discrepancies between gene isoforms predicted from mRNA
data, and those borne out in observation by proteomics.
Future meta-analyses may then be able to observe additional
patterns in localization.
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