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Alternative pre-mRNA splicing (AS) greatly diversifies metazoan
transcriptomes and proteomes and is crucial for gene regulation.
Current computational analysis methods of AS from Illumina RNA-
sequencing data rely on preannotated libraries of known spliced
transcripts, which hinders AS analysis with poorly annotated ge-
nomes and can further mask unknown AS patterns. To address this
critical bioinformatics problem, we developed a method called the
junction usage model (JUM) that uses a bottom-up approach to
identify, analyze, and quantitate global AS profiles without any prior
transcriptome annotations. JUM accurately reports global AS changes
in terms of the five conventional AS patterns and an additional “com-
posite” category composed of inseparable combinations of conven-
tional patterns. JUM stringently classifies the difficult and disease-
relevant pattern of intron retention (IR), reducing the false positive
rate of IR detection commonly seen in other annotation-based meth-
ods to near-negligible rates. When analyzing AS in RNA samples de-
rived from Drosophila heads, human tumors, and human cell lines
bearing cancer-associated splicing factor mutations, JUM consistently
identified approximately twice the number of novel AS events missed
by other methods. Computational simulations showed JUM exhibits a
1.2 to 4.8 times higher true positive rate at a fixed cutoff of 5% false
discovery rate. In summary, JUM provides a framework and improved
method that removes the necessity for transcriptome annotations
and enables the detection, analysis, and quantification of AS patterns
in complex metazoan transcriptomes with superior accuracy.
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Alternative pre-mRNA splicing (AS) is a major gene regula-
tory mechanism that greatly expands proteomic diversity and

serves as a crucial determinant of cell fate and identity. More than
95% of human gene transcripts undergo AS that enables one single
gene locus to produce multiple, and usually functionally distinct,
pre-mRNA and protein isoforms (1, 2). AS is regulated by a large
constellation of RNA-binding proteins that interact with cis-acting
RNA elements embedded in nuclear pre-mRNA sequences (3, 4).
Distinct cellular states or tissue types are associated with different
AS profiles that affect almost every aspect of cellular function,
including proliferation, differentiation, apoptosis, and migration (1,
5, 6). Furthermore, mutations that result in aberrant AS patterns
are a major source for human diseases such as cancer as well as
immune and neurological disorders (7–9). Thus, a thorough and
comprehensive evaluation of global AS profiles in different tissues,
cells, and disease states will be critical to understanding the role of
AS in gene regulation and facilitating the development of screening
and therapeutic strategies to diagnose, treat, and prevent many
diseases linked to defects in AS. However, due to the exceptionally
diverse and dynamic features of AS patterns, systematic quantifi-
cation and analysis of cellular AS profiles among a complex array
of tissues or cell types remain major unsolved challenges in the
bioinformatics of gene expression.
Recent technical advances in short-read high-throughput Illumina

transcriptome sequencing (RNA sequencing; RNA-seq) provide
powerful tools to investigate AS at the genome-wide scale, but at

the same time present a formidable computational challenge to
accurately classify and quantitate global AS changes from raw
RNA-seq data. Previously, a number of computational software
tools and algorithms have been developed for this purpose (10–
22), but most use a top-down approach that relies on pre-
annotation of known AS events or an incomplete, preannotated
transcriptome to draft the general picture of global AS patterns
for quantification and analysis. As complete dependency on an-
notation (10) restricts AS analysis to only previously observed AS
events, recent methods generally use two approaches to extend the
analysis to unannotated splicing events: (i) Supplement the pre-
annotated AS event library with novel splice junction-implicated
AS events identified from the sample under analysis (15, 18, 22); or
(ii) provide a de novo transcriptome annotation through ab initio
transcriptome assembly from RNA-seq data using probabilistic
models (12, 23–26). For the first approach, the library of pre-
annotated AS events is still the primary source for calling AS
events and can either mask or misclassify novel AS events in the
specific RNA-seq sample. For the second approach, a precise and
deterministic ab initio assembly of transcriptomes from shotgun
RNA sequencing is still a big computational challenge for the field,
especially for genes that produce multiple transcripts with complex
AS patterns. Thus, the difficulties in transcriptome assembly will
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directly affect the quality of downstream AS analysis. Considering
the caveats described above, there is an urgent need for development
of computational tools that can perform accurate, comprehensive,
and tissue-specific global AS analysis with a different approach.
Here, we present a computational method called the junction

usage model (JUM) that uses a bottom-up approach to profile,
analyze, and quantitate tissue-specific global AS patterns without
any prior knowledge of the transcriptome. JUM exclusively uses
sequence reads spanning splice junctions to faithfully assemble
complete AS patterns in the RNA-seq samples based on their
unique topological features and to quantify splicing changes. We
applied JUM to analyze AS patterns in RNA samples from Dro-
sophila heads, mouse embryonic neurons, human cancer tumor
samples, as well as human cell lines bearing cancer-associated
splicing factor mutations. We demonstrate that JUM consis-
tently identified numerous novel, previously not observed, true
tissue-specific AS events that were missed or misclassified when
analyzed using annotation-based methods. Furthermore, compu-
tational simulations showed that JUM exhibits superior perfor-
mance in terms of both specificity and sensitivity compared with
several popular annotation-based methods. Thus, JUM provides a
new framework and improved analytical approach to studying the
extraordinarily diverse global cellular AS transcriptome profiles
and the dynamic regulation of AS without the necessity of tran-
scriptome annotation. JUM can be readily applied to a wide range
of RNA samples from different organisms for accurate and
quantitative analysis of differential AS patterns.

Results
JUM Utilizes Sequence Reads Spanning Splice Junctions to Construct
AS Structures as the Basic Quantitation Unit for AS Analysis. JUM
exclusively uses sequence reads that map over splice junctions to
detect and quantitate splicing events (Fig. 1A), as these reads
provide the most direct evidence for the splicing of the corre-
sponding intron and quantitatively reflect the level of splicing.
These splice junction reads can be inferred through the mapping
of the shotgun sequencing reads to the genome as reads that
cannot be completely mapped to one location in the genome but
instead map as “split” reads. From there, JUM defines the AS
structure as the basic quantitation unit for AS analysis. An AS
structure is a set of splice junctions that share the same start site or
the same ending site, with each splice junction in an AS structure
defined as a sub-AS-junction (Fig. 1 A and B). JUM uses AS
structures for AS analysis because not only are AS structures the
basic graphical nodes that compose the conventionally recognized
AS patterns (alternative 5′ splice site, A5SS; alternative 3′ splice
site, A3SS; skipped cassette exon, SE; mutually exclusive exon,
MXE; intron retention, IR) but also the relative levels of sub-AS-
junctions within an AS structure directly reflect the level of al-
ternative splicing, greatly facilitating AS quantification. As a re-
sult, an A5SS or A3SS event is composed of one AS structure with
two sub-AS-junctions (Fig. 1 B and C); an SE event is composed of
two AS structures, each with two sub-AS-junctions (Fig. 1D); and
an MXE event with two mutually exclusive exons is composed of
two AS structures, each with two sub-AS-junctions (Fig. 1E).
After the profiling of all AS structures, JUM counts sequence

reads that are mapped to each sub-AS-junction in every AS
structure under a biological condition and defines the read count as
the “usage” of a sub-AS-junction relative to other sub-AS-junctions
in the same AS structure under that condition. To quantify AS
changes, JUM compares the usage of every profiled sub-AS-
junction in the AS structure between conditions and profiles for
AS structures that contain sub-AS-junctions with differential usage
(Fig. 1F). To do this, JUM models the total number of reads that
map to a sub-AS-junction as a negative binomial distribution (Fig.
1F, Eq. 1). Negative binomial distributions have been widely ap-
plied in high-throughput sequencing data analysis to model read
counts, as these models nicely depict the overdispersion phenom-

enon observed in next-generation RNA-sequencing experiments
(11, 27–30). In negative binomial distributions, the variance among
biological replicates is dependent on the mean through a param-
eter that describes dispersion (Fig. 1F, Eq. 2). To infer the dis-
persion parameter, JUM applies a similar empirical Bayesian
approach as described (28–31). JUM first estimates a dispersion
parameter for each sub-AS-junction with Cox–Reid–adjusted
maximum likelihood. JUM then fits a mean-variance function for
all sub-AS-junctions from all AS structures on their average nor-
malized count values. Finally, JUM shrinks the dispersion param-
eter for each individual sub-AS-junction toward the fitted value
depending on how close the real dispersion tends to be to the fitted
value and the replicate sample size (28–31). To evaluate if a bio-
logical condition significantly changes the usage of a sub-AS-junction
in the AS structure, JUM adapts a generalized linear model (GLM)
approach as described (11, 30, 32), so that two GLMs are fitted and
tested for each sub-AS-junction in the AS structure (11) (Fig. 1G).
The basal model evaluates the effect from the following three el-
ements on the usage of the sub-AS-junction: the basal expression
level of the AS structure of the corresponding gene (α s

i ; Fig. 1G,
Eq. 4), the fraction of sequence reads that mapped to each sub-AS-
junction from the total number of reads mapped to the AS struc-
ture (α E

ij ; Fig. 1G, Eq. 4), as well as the overall change of basal
expression of the AS structure upon a biological condition (α C

i«k;
Fig. 1G, Eq. 4). On the other hand, the effect model evaluates an
additional influence imposed on the usage of a sub-AS-junction by
a biological condition (α C

ij«k; Fig. 1G, Eq. 3). The fitting of the effect
and basal model are compared and a χ2 likelihood-ratio test is
performed (11) so as to test if a biological condition causes sig-
nificant differential usage of a sub-AS-junction in the AS structure.

JUM Profiles a Tissue-Specific Global AS Atlas by Faithfully Assembling
AS Structures into Conventionally Recognized AS Patterns Without Any
Prior Knowledge of the Transcriptome Annotation. After differential
AS analysis using AS structures, JUM assembles profiled AS
structures into conventionally recognized categories of AS patterns
using graph theory based on the unique topological feature of each
pattern. To do this, JUM first converts each AS pattern into a
graph by converting exons into nodes and splice junctions as arcs
that connect exon nodes. JUM then defines a frequency parameter
SI for each sub-AS-junction as the number of AS structures that
share the specific sub-AS-junction. Because of the definition of AS
structures, it can be proven that a given sub-AS-junction can only
be included in up to two AS structures (i.e., SI can only be 1 or 2).
For the A5SS or A3SS patterns, the representative graphs are
asymmetric and are composed of one AS structure with SI value
equal to 1 for all sub-AS-junctions (Fig. 2 A and B). For the SE
pattern, the representative graphs are symmetric, composed of two
AS structures, each containing two sub-AS-junctions with SI values
equal to 1 and 2, respectively (Fig. 2C). For SE, JUM utilizes extra
quarantine steps here, including tiled sequence reads that support
the coverage over the entire cassette exon region to avoid false
positive calls. For MXE with n mutually exclusive exons, the rep-
resentative graph is composed of one pair of AS structures that
each has n sub-AS-junctions with SI values all equal to 1 (Fig. 2D).
For the MXE pattern, JUM utilizes extra quality control steps,
including that coordinates of MXEs meet the condition ai < bi <
a(i + 1), where i = 1, . . ., n (Fig. 2D), and tiled sequence reads that
support coverage over the entire regions of all mutually exclusive
exons. Based on the unique topological features of each AS pattern
described above, JUM searches for sets of AS structures that match
the composition of each AS pattern and bundles them together as
one AS event under the corresponding AS pattern category.
Additionally and uniquely, JUM also recognizes and defines

an additional AS pattern called “composite,” which describes an
AS event that is an inseparable combination of several conven-
tionally recognized AS patterns (Fig. 2 E and F). Such composite

E8182 | www.pnas.org/cgi/doi/10.1073/pnas.1806018115 Wang and Rio

www.pnas.org/cgi/doi/10.1073/pnas.1806018115


AS patterns are found extensively in Drosophila, rodent, and human
tissues and cell line RNA samples (Fig. 2F), further illustrating the
complexity and diversity of AS in complex tissues. For example,
JUM identifies an AS event in the transcripts from the eIF-4E gene
in Drosophila male heads that is an intertwined combination of SE,
A5SS, and A3SS and cannot be deconvoluted into any of the three
individual patterns separately (Fig. 2F). Although such complex AS
events have been reported before (33), they are mostly divided into
the conventionally recognized AS patterns by the currently available
AS analysis tools. This approach overlooks the fact that such
composite AS events are usually an intertwined combination of the
basic AS patterns and a forced separation of these events into the
basic patterns can lead to inaccurate quantification of the AS

changes. JUM thus classifies these complex AS events in their own
category. For composite AS events in JUM, the representative
graph includes an interconnected combination of AS structures
corresponding to each AS pattern that composes the composite AS
pattern. For example, a composite AS pattern event that is a
combination of an A5SS and SE is composed of four AS structures,
three of which have sub-AS-junctions with SI values all equal to
2 and one that has one sub-AS-junction with an SI value equal to
1 and the rest with SI value equal to 2 (Fig. 2E).

JUM Applies Stringent Criteria for the Analysis of Intron Retention
Events. Intron retention has been a relatively understudied cat-
egory compared with other AS patterns, but nevertheless a key

A

C

E

F

G

B

D

Fig. 1. JUM exclusively uses sequence reads mapped to splice junctions and defines AS structures as the basic quantitation unit for differential AS analysis. (A)
JUM uses RNA-seq reads mapped to splice junctions for AS quantification. Green rectangles indicate exons, and lines indicate introns. Green and blue short lines
represent reads that mapped to splice junctions connecting exons, which are the most direct evidence for the existence and quantitative assessment of a given
splice junction. JUM defines the start coordinate of a splice junction as the 5′ initiation site (5′IS) and the end coordinate of a splice junction as the 3′ ending site
(3′ES). An “AS structure” is defined as a set of junctions that share the same 5′IS or the same 3′ES. Each splice junction in an AS structure is defined as a sub-AS-
junction. (B–E) AS structures are the basic element that comprises all conventionally recognized AS patterns (B) for A3SS; (C) for A5SS; (D) for SE; (E) for MXE. (F)
JUMmodels the sequence reads thatmap to a sub-AS-junction as a negative binomial distribution to quantify the usage of each sub-AS-junction in an AS structure
under one biological condition. (G) JUM fits two generalized linear models to evaluate the influence of a given biological condition on the usage of a specific sub-
AS-junction in an AS structure.
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AS pattern. IR events have been reported to be frequently found in
mammals and have been shown to play crucial roles for the normal
functioning of the organism and in disease in eukaryotes (34, 35).
For example, tissue-specific IR of the Drosophila P-element
transposase pre-mRNA underlies the restriction of transposon
activity to germ-line tissues (36, 37). Recently, a bioinformatics
study reported that widespread retained introns were associated
with various cancer types compared with matched normal tissues
(38). Increased IR has also been shown to be associated with the
pluripotent state of embryonic stem cells (39). However, intron
retention is an intricate AS pattern that can be easily misclassified.
The most common approaches to quantifying retained intron-
containing isoforms in currently available AS analysis tools are
either to use the sum of sequence reads mapped to the upstream
exon–intron boundary and the downstream intron–exon boundary,
or to use any reads mapped to the intronic region or just the center
of the intron (Fig. 3A). A major caveat of these approaches is that
other AS patterns can be mistaken as IR, especially when alter-
native SEs or MXEs reside within an intron (Fig. 3 B–D) or an
A5SS/A3SS event resides at the edge of the intron (Fig. 3D). In
such scenarios, sequence reads from the intronic region can in fact
come from the SEs or MXEs and reads mapped to exon–intron or
intron–exon boundaries can come from A5SS or A3SS events, but
with the conventionally available methods these reads can be
mistakenly interpreted as support for intron-retained isoforms.
To avoid false positive calls of IR as described above, JUM

applies a stringent three-criterion strategy to profile and analyze
IR patterns (Fig. 3E). First, JUM profiles for splice junctions that
do not overlap with any other splice junctions from the RNA-seq
data. Second, for each of the resulting splice junctions and the
corresponding intron, JUM counts the number of sequence reads
mapped to the upstream exon–intron boundary (N1), reads
spanning across the splice junction (N2), and reads mapped to the
downstream intron–exon boundary (N3) (Fig. 3E). JUM then

defines two AS structures for each candidate intron:N1 versus N2,
and N3 versus N2. Both AS structures must be differentially
“used” with the same trend (N1 and N3 both significantly more
used than N2 or both significantly less used than N2) in order for
the candidate to be classified as a potential IR event. These two
criteria are set to avoid A5SS or A3SS events from being mistaken
as IR (Fig. 3D). Finally, JUM requires evidence from mapped
sequence reads that are approximately evenly distributed across
every base of the intron, to confirm a real IR event (Fig. 3E). This
criterion aims at preventing SE or MXE events from being mis-
classified as IR, as reads from SEs or MXEs residing in the intron
will present a much higher, “spikey” distribution pattern com-
pared with other regions of the intron.

C Cassette exon Mutually exclusive exons

Alternative 5'SS Alternative 3'SS

Composite AS

D

A B

E

9,392,84 9,393,714 9,394,584 9,395,454

eIF-4E

Drosophila male head tissueF

543

483

345

680
262

138

22 651

a1 b1 a2 b2 b3 a1 b1 a2b2 b3b1a2
A1

b1b2

SI = 1

SI = 1

b1a2
A1

b2a2

SI = 1

SI = 1

a1 b1 a2 b2 b3a3 a1 b1 a2 b2 b3a3 b4a4

b1a2
A1

b1b3

SI = 1

SI = 2

b2a3
A2

b1a3

SI = 1

SI = 2

b1a2
A1

b1a3

SI = 1

SI = 1

b2a4
A2

b3a4

SI = 1

SI = 1
ai < bi < a(i+1)

a1 b1 a2b2 b3 a3 b4

b1a2
A1

b1a3

SI = 2

SI = 2

b2a2
A2

b2a3

SI = 2

SI = 2

b1a2
A3

b2a2

SI = 2

SI = 2
b2a3A4

b3a3

SI = 2

SI = 2

b1a3

SI = 1

Fig. 2. JUM profiles the AS atlas specific to the sample by assembling AS
structures into conventionally recognized categories of AS patterns based on
the unique topological features of each AS pattern type. (A–D) The topo-
logical features of AS patterns A5SS (A), A3SS (B), SE (C), and MXE (D) rep-
resented by the splicing graphs that are composed of a unique set of AS
structures and the values of frequency parameter SI of each sub-AS-junction
in the AS structures. (E) JUM defines an additional, previously unclassified AS
pattern category—the composite AS, which is a complex combination of
several conventionally recognized AS patterns. (F) An example for such a
composite AS pattern is shown for the eIF-4E gene transcripts found in
Drosophila male head tissue RNA-seq samples (49). Arcs represent splice
junctions that connect different exons.
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Fig. 3. JUM applies stringent criteria for detection, quantitation, and
analysis of IR events. (A) The conventional avenues for IR analysis in the
current available AS analysis tools. RNA-seq reads spanning intron–exon or
exon–intron boundaries are represented by short green or blue lines, re-
spectively. Short purple lines represent sequence reads mapped to intronic
regions. Short red lines represent sequence reads mapped to the splice
junction for the corresponding intron. (B–D) The commonly used strategies
in other AS analysis software can misclassify other AS patterns as IR. Three
MISO-reported (49) significantly changed IR events were shown that were
actually an MXE (B), alternative promoter event (C), and SE mixed with A3SS
(D) from Drosophila male head tissue in a comparison of a control wild-type
fly strain and a transgenic fly strain that expresses the truncated PSI protein.
The start and end points of the retained intron events reported by MISO are
denoted by red arrows. (E) The approach that JUM uses to analyze IR. Short
blue and green lines represent reads mapped to the exon–intron or intron–
exon boundaries, respectively. Short red lines represent sequence reads
mapped to the splice junctions. Two AS structures are constructed to analyze
the level of retained intron isoform versus spliced intron isoform. Short
purple reads represent sequence reads mapped to the intronic regions and
are required to be approximately uniformly distributed across the entire
intronic region of the retained intron.
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JUM Demonstrates Superior Performance in Both Specificity and
Sensitivity Compared with Other Methods in Computationally Simulated
RNA-Seq Experiments. To fully assess the performance of JUM in
differential global AS analysis, we performed computational sim-
ulations of RNA-seq datasets with varying degrees of alternative
splicing in a prefixed set of genes (SI Appendix, Table S1) and used
the simulated datasets to test the ability of JUM to profile true
differentially spliced AS events. We compared JUM with five other
commonly used annotation-based tools—MISO (10), Whippet
(21), Cufflinks (40), MAJIQ (18), and rMATS (15) (SI Appendix,
Table S2). The five tools were chosen to represent the three most
commonly used strategies in annotation-based AS analysis meth-
ods: MISO is completely dependent on a developer-provided
preannotation of AS events and cannot detect novel AS events
outside of the provided database (10, 21); Whippet also analyzes
known AS events from a user-provided transcriptome annotation,
but in addition can detect a subclass of novel splicing events that
utilize various combinations of annotated 5′ or 3′ splice sites that
are present in the provided annotation database (21); Cufflinks
first performs the challenging de novo transcriptome assembly
from shotgun sequencing and then quantifies AS changes based on
the annotation of the assembled transcriptome (40); MAJIQ and
rMATS both use a preannotation of the transcriptome to guide the
AS analysis but add in novel splicing junctions detected in the
specific RNA-seq sample (15, 18). The latter four methods can
extend analysis to novel splicing events in the sample.
The test datasets are simulated based on real experimental

RNA-seq data in Drosophila Schneider-2 cell lines comparing AS
changes brought about by the RNA interference (RNAi) knock-
down of a splicing factor called PSI (41) and a nontargeting,
control RNAi knockdown. The simulation follows a method that
has been previously described (42). Specifically, a randomly cho-
sen 2,000 genes from expressed genes in the Drosophila Schneider-
2 cell line are set to be alternatively spliced, serving as the “true”
AS genes, with AS patterns covering all patterns. Triplicates of
∼80 million total 100-bp RNA-seq reads were simulated for both
the PSI knockdown and control knockdown samples. Three in-
dependent simulations were performed, with 20, 40, and 60%
differential splicing changes in the true AS genes between the
control and knockdown conditions. The performance of each AS
analysis software under comparison was evaluated in terms of the
receiver operating characteristic (ROC) curves and the area under
the curve (AUC) metric. The ROC curve depicts the true positive
rate (sensitivity) against the false positive rates (1-specificity) for
each threshold setting to call an AS event. AUC is a numerical
metric that determines how well a method can distinguish between
the true AS events and non-AS events. AUC scores range between
0.5 and 1, and a higher AUC score indicates a method with better
discrimination between AS and non-AS events.
Importantly, JUM received the best AUC score in all three

simulated RNA-seq experiments among the six methods tested,
indicating its superior performance in both sensitivity and speci-
ficity (Fig. 4). The AUC scores for JUM in all three simulations
ranged from 0.92 to 0.95, indicating that JUM is a superior
method for accurate differential AS analysis by the AUC standard
(AUC value between 0.9 and 1). rMATS and MAJIQ show
comparable performance, with AUC values ranging between
0.83 and 0.88; Whippet and Cufflinks perform worse than both
rMATS and MAJIQ, with AUC values ranging between 0.62 and
0.69, but still better than the completely annotation-dependent
method MISO, which has AUC values of 0.52 to 0.55 (Fig. 4).
The poor performance of MISO is to some extent understandable,
because the true AS genes in the test set used here are randomly
chosen, which is vastly different from the developer-provided
MISO annotation. The results from these simulations further
demonstrate the importance for an AS analysis method to account
for sample-specific, novel AS patterns rather than using a pre-

annotated library of AS events to achieve better performance in
AS analysis.
The computation times of the six software tools in analyzing

the simulated datasets are summarized in SI Appendix, Fig. S5.
Following the simulation, we applied JUM to multiple ex-

perimental RNA-seq datasets from two different organisms to
evaluate the performance of JUM in real RNA-seq datasets.

JUM Revealed Remarkable Heterogeneity of IR Splicing in Colon
Cancer Patient Tumor Samples and Significantly Reduced the False
Positive Rate of IR Detection. To assess the performance of JUM in
IR analysis, we used JUM to analyze differential splicing of IR
between the tumor and the matched normal tissue samples from
colon cancer patients in The Cancer Genome Atlas (TCGA)
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Fig. 4. Comparison of JUM with five other of the most widely used com-
putational methods (rMATS, MAJIQ, Whippet, Cufflinks, and MISO) for AS
analysis using computationally simulated RNA-seq experiments. Receiver
operating characteristic curves are shown for each method to illustrate their
sensitivity and specificity in identifying true differentially spliced AS events.
The y axis of the ROC figure shows the true positive rate and the x axis shows
the false positive rate. The metric area under a ROC curve is listed (Right).
Three independent simulations were done by varying the alternative splicing
changes at levels of 60 (A), 40 (B), and 20% (C).
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database. A previous study (38) used MISO and the MISO built-in
preannotation of human AS events to compare the AS profiles
between patient tumor and matched normal tissues and reported
that extensive intron retention is a prevalent feature and was a
highly elevated splicing pattern observed in cancer, with colon
cancer among the cancer types where this phenomenon was the
most obvious (38). However, MISO restricts cancer IR analysis to a
fixed set of only 6,895 IR events in its annotation library (10), which
may only be partially present in various cancer cells or tissues and
also includes numerous false positive events called by MISO (Fig. 3
B–D). Moreover, cancer cells are well-known to display diverse
splicing patterns that are novel and cancer-specific (6, 43–45). To
explore the features and functions of IR splicing in cancer, we
conducted a detailed IR analysis on the colon cancer patient RNA-
seq datasets from TCGA using JUM (Datasets S1–S34).
To avoid technical and sampling bias brought about by factors

other than the cancerous state, we chose samples from two sets of
colon cancer patients in TCGA database: (i) five male colon cancer
patients that are of similar ages (60 to 68 y old), same colon tumor
type (primary tumor), same vital states (alive), and with matched
tumor and normal tissue samples sequenced using the same plat-
form; and (ii) six female colon cancer patients chosen with similar
parameters as described above except with a larger age span from
40 to 85 y old, as there were limited choices in age for female
patient samples in TCGA database (SI Appendix, Table S4).
JUM identified 168 to 544 significantly different IR events in

colon tumor versus matched normal tissues in each of the
11 patients (SI Appendix, Tables S5–S6). Among them, three
patients (two males, AA3712 and F46704, and one female,
A65667) displayed more retained introns in normal tissues
compared with matched tumor tissue, while for the rest of the
patients the tumor samples were associated with more retained
introns (Fig. 5A and SI Appendix, Fig. S2 A and B). We also
observed a wide range in the magnitude of retained intron
isoform levels (IR= intron_retained

intron_retained+ intron spliced) and changes be-
tween tumor and matched normal tissues (ΔΨ= IRtumor−normal)
across these patients’ samples (Fig. 5A and SI Appendix, Fig. S2A).
To evaluate IR diversity among these patients and to compare
our results with the previous study (38), we specifically profiled
both the magnitude and direction of retained intron isoform-
level changes (ΔΨ; IRtumor–normal) across all patients for a set
of 414 IR events that were identified by JUM as significantly
changed in at least one patient’s tumor versus matched normal tissue
samples and also in the MISO annotation library (Fig. 5B and
Dataset S36). Remarkably, we found that each patient has his or her
own spectrum of significantly tumor- or normal tissue-differential IR
events and the direction, as well as the extent of the retained intron
isoform-level changes in these IR events, is heterogeneous across all
patient samples analyzed (Fig. 5B). An overview of all JUM-
identified significantly changed IR events from patients (including
novel, tumor-specific, and known IR events) also showed a similar
pattern (SI Appendix, Fig. S2C and Dataset S37). Moreover, each
patient’s cancer-differential IR events affect distinct sets of genes in
each patient’s tumor tissue (SI Appendix, Fig. S2D). A Gene On-
tology (GO) analysis of the cancer-differential IR-affected genes in
each patient revealed distinct functional enrichments that cover
multiple aspects of carcinogenic metabolisms and activities (SI Ap-
pendix, Fig. S3A and Dataset S35), except for the GO category of
RNA splicing, which is significantly enriched in most patients (8 out
of 11) (SI Appendix, Fig. S3A). This result further highlights the
association between aberrant splicing and cancerous cellular states,
as previously recognized (6, 43–45). We profiled a total of 90 IR
events influencing 44 splicing factors that are affected by cancer-
differential IRs in at least one patient’s samples (Dataset S38). In-
terestingly, however, distinct introns of these splicing factors tend to
be affected by IR in different patients (Dataset S38). To evaluate IR
heterogeneity that perturbs splicing factors in cancer, we profiled a

total set of 30 IR events (affecting 21 splicing factors) that are sig-
nificantly different in tumor versus matched normal tissues in at least
three patients and plotted the magnitude and direction of retained
intron isoform-level changes (ΔΨ; IRtumor–normal) across all patients
(Fig. 5C and Dataset S39). Again, we found that in general each
patient’s tumor sample possesses its own specific spectrum of IR
events for the identity of retained introns, direction of IR splicing
changes, as well as the extent of IR changes affecting these splicing
factors (Fig. 5C and Dataset S39). However, for four factors,
FASTK, METTL3, SLC39A5, and SRSF2, the same intron and
similar direction of changes in IR were observed in most patients,
but still with variations in the extent of change in IR across pa-
tients (Fig. 5C). Thus, we conclude that aberrant IR splicing
events in cancer are highly heterogeneous across individual patient
tumors even within the same cancer type and that the functional
effects of IR splicing events in cancer are probably more random
and diverse than previously thought. There is indeed an associa-
tion of IR changes with splicing regulators in colon tumors;
however, the variance in how IR can affect the splicing program in
different patients’ tumors is also high.
We also compared the performance of JUM in analyzing IR

events in these patient datasets with MISO, rMATS, as well as
IRFinder, a tool tailored for IR analyses (46) (SI Appendix, Fig. S3
B–D and Datasets S1–S34). We found that JUM and IRFinder
identified the most number of significantly changed IR events
(∼200 to 600) while rMATS identified the lowest (11 to 99) (SI
Appendix, Fig. S3B and Tables S5 and S6). Importantly, JUM
analysis yields the lowest false positive rate in calling IR (SI Ap-
pendix, Figs. S3C and S4).

JUM Detected Significantly More Differentially Spliced AS Events in
Human Cell Lines Bearing Cancer-Associated Mutation in the Splicing
Factor SRSF2 with High Accuracy. To further evaluate the sensitivity
of JUM in detecting global AS changes in cell samples with
complex AS patterns, we used JUM to analyze global AS
changes caused by a cancer-associated point mutation (P95H) in
the splicing factor SRSF2 in endogenously CRISPR-edited hu-
man K562 cell lines (47). Previously, Zhang et al. used rMATS to
profile AS changes in the datasets and reported a total of
548 significantly changed AS events, including 374 SE events, 68
IR events, 15 A3SS events, 25 A5SS events, and 66 MXE events
(47) (Fig. 6A). The numbers of differentially spliced AS events
are distributed with high bias among AS pattern categories, with
the majority reported in SE (∼68%) and only 5 and 3% in A5SS
and A3SS patterns, respectively. By contrast, using JUM with the
same statistical cutoff reported in the previous study (47) (ad-
justed P value ≤ 0.1, ΔΨ ≤ 0.1), we found a total of 1,001 AS
events that are differentially spliced in cells carrying the point
mutation in SRSF2, almost double the number of events found
by rMATS (Dataset S40). Among them, JUM found 185 SE
events, 135 IR events, 102 A3SS events, 99 A5SS events, 3 MXE
events, and 477 composite events, with significantly less bias in
the detection of AS events across different AS categories com-
pared with rMATS. Moreover, to test if the distinctively high
number of SE events reported by rMATS is real, we visually
examined the top 112 most significantly differentially spliced SE
events reported by rMATS using IGV (48) (Fig. 6B). In-
terestingly, we found about 46% (51 out of 112) of these events
are not SE events but occur in combination with other AS pat-
terns, similar to what JUM classifies as composite (Fig. 6 B and
C). We also examined 112 randomly chosen JUM-reported dif-
ferentially spliced SE events out of 185 and found 97% of these
are indeed true SE events (Fig. 6B). In summary, these results
demonstrate that JUM can detect significantly more differen-
tially spliced AS events with high accuracy in cell samples with
complex AS patterns in comparison with other annotation-based
methods like rMATS.

E8186 | www.pnas.org/cgi/doi/10.1073/pnas.1806018115 Wang and Rio

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806018115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1806018115


JUM Identified Significantly More Real, Novel, and Functionally Important
AS Events in the Head Sample of a Drosophila Strain Carrying a Mutation
in the Splicing Factor PSI and Is Capable of Predicting the Regulatory
Function of PSI Based on the Splicing Pattern Changes. To assess JUM’s
performance in profiling AS changes in tissues with complex AS
patterns, we compared the performance of JUM, MISO, and
rMATS in identifying global AS changes in the male head tran-
scriptome of aDrosophila strain that carries a mutation in the splicing
factor PSI, leading to the expression of truncated PSI protein (41, 49)
(Datasets S41–S43). The resultant strain exhibits male courtship

behavior defects (41). Importantly, the specific mutation in PSI dis-
rupts its interaction with U1 small nuclear ribonucleoprotein particle
(U1 snRNP), and thus is expected to affect splicing decisions on a set
of target 5′ splice sites (50).
We performed two single-blind, counter tests that compared the

performance of JUM with MISO and rMATS. For the first test,
we took the set of 21 JUM-identified differentially spliced non-
composite AS events that are functionally linked to the male
courtship behavior defects observed in the male Drosophila PSI
mutant flies (49), and asked if rMATS and MISO can identify
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Fig. 5. JUM revealed striking diversity and high variance of intron retention splicing in colon cancer patients’ tumor samples versus matched normal tissues. (A)
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the x axis and the statistical significance of change [−log10(P value)] on the y axis for every JUM-profiled IR event in each of the five male patients AA3511,
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tissues (adjusted P value ≤ 0.05 and ΔΨ ≥ 0.1). Dots (IR events) plotted on the right side of the dashed line in each panel are IR events with more retained intron
isoform in the tumor, while dots on the left side are IR events with more retained intron isoform in normal tissues. (B) Heatmap plot showing the magnitude and
direction of retained intron isoform-level changes (ΔΨ; IRtumor–normal) between tumor and matched normal tissues for the 414 IR events that are significantly
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The bigger the absolute value of ΔΨ, the deeper the color. (C) Heatmap plot showing the magnitude and direction of retained intron isoform-level changes (ΔΨ;
IRtumor–normal) between tumor and matched normal tissues for the 30 IR events affecting 21 splicing factors that are significantly changed in at least three patients’
tumors versus matched normal tissues. Each row is an IR event affecting a splicing factor, with the name of the splicing factor listed in each row. If multiple introns
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these phenotypically related AS events as well (Fig. 7A and SI
Appendix, Table S8). A visual validation using IGV showed that all
of these 21 AS events are correctly classified in the corresponding
AS pattern category by JUM. Among them, we found that the
majority of these AS events (12 out of 21; 57%) were identified
exclusively by JUM, since neither the annotated AS library for MISO
nor the novel splicing-aided mode of rMATS was able to identify
these true, novel, and phenotypically associated AS events in the
male PSI mutant fly head samples (Fig. 7A and SI Appendix, Table
S8). Only 1 AS event (5%) was identified by all three methods.
Interestingly, this is an SE event which is the most well-annotated AS
pattern among all AS pattern categories (Fig. 7A and SI Appendix,
Table S8). Four AS events are identified by rMATS and JUM but
not MISO (19%) and four by MISO and JUM but not rMATS
(19%) (Fig. 7A and SI Appendix, Table S8). To confirm that JUM is
capable of detecting true AS events that are missed by other soft-
ware, we performed experimental qRT-PCR validation of the
12 male courtship-associated AS events that were only identified by
JUM but not rMATS or MISO (SI Appendix, Fig. S7). Interestingly,
all 12 events were validated as true, significantly changed AS events
in the PSI mutant male fly head tissue compared with wild type (SI
Appendix, Fig. S7). These results suggest that JUM is clearly capable
of identifying significantly more (in this case two times) functionally
relevant, novel, and tissue-specific AS events that are not recognized
by other annotation-based techniques, even when the annotation-
based software is aided by a novel splice junction-detection mode.
For the counter test, we took the set of 40 rMATS-identified,

significantly changed AS events that are within genes associated
with male courtship behavior regulation and asked if JUM can
identify these AS events as well (Fig. 7B and SI Appendix, Table
S9). We found that among them, five events (12.5%) are identified
by JUM also as significantly changed AS events in the category
classified by rMATS (Fig. 7B and SI Appendix, Table S9);
27 events (67.5%) are identified by JUM also as differentially
spliced AS events but reclassified as composite AS events, and a
visual examination using the IGV browser confirmed the predic-
tions of JUM (Fig. 7 B and D and SI Appendix, Fig. S12A and
Table S9). Eight events (20%) are not identified by JUM. How-
ever, when we examined these events individually by the genome
browser, we found that three events (7.5%) are incorrectly an-

notated AS events called by rMATS in the first place (Fig. 7B and
SI Appendix, Fig. S12B and Table S9). As for the rest, five events
(12.5%) that rMATS reported/annotated as AS isoforms are ei-
ther not expressed or too poorly expressed to be detected by
RNA-seq in the head tissue samples under study (Fig. 7B and SI
Appendix, Fig. S12C and Table S9). These results suggest that
JUM is capable of identifying true differentially spliced AS events
and profiling the events into the correct AS pattern category
compared with other annotation-based software.
We further examined the distribution of differentially spliced AS

events predicted by each method across different AS pattern cat-
egories (Fig. 7C). rMATS again reported the highest number of
differentially spliced AS events in SE (1,716 out of a total of 3,634;
47%), andMISO reported the highest number of AS changes in IR
(1,248 out of a total of 2,192; 57%). JUM, on the other hand,
reported the highest number of changes in A5SS (580 out of a total
of 2,245; 26%) and again reported a much less skewed distribution
in the other AS pattern categories (217 in SE, 360 in A3SS, 183 in
IR, and 25 in MXE) than rMATS and MISO. Importantly, the
changed AS event distribution reported by JUM correctly reflects
the functional association of the specific PSI mutation with U1
snRNP and the regulation of 5′ splice site usage. Taken together,
we conclude that JUM is not only able to accurately detect novel,
tissue-specific AS events that are missed or misclassified by other
annotation-based methods but JUM’s unique feature of accurately
assembling AS patterns directly from RNA-seq data can be useful
in predicting the functions of splicing regulators from the global AS
changes caused by the regulator. Such unique features are not
found in other currently available AS analysis methods.

Discussion
As a major mechanism for eukaryotic gene regulation, AS gen-
erates exceptionally diverse patterns of mRNA populations and
their encoded proteins in metazoans. Different tissues, even
subcellular populations within a given tissue or organ, possess
their own distinct AS profiles that are dynamically altered over
temporal stages of development and cellular activities (SI Ap-
pendix, Fig. S1). The diversity and dynamics of AS patterns im-
pose a major challenge for computational tools to quantify and
compare AS profiles from RNA-seq data. Currently available AS
analysis software tools commonly employ a top-down strategy
based on prebuilt annotated collections of known AS events to
outline the general picture of splicing patterns for downstream
analysis. This strategy greatly facilitates downstream quantita-
tion, but at the same time fails to address the diversity and tissue
specificity in AS patterns, even when aided with workarounds to
include novel splicing events specific to the sample under study.
With JUM, we approach the problem of tissue-specific AS pattern

analysis with a different philosophy, the bottom-up approach that
profiles, quantitates, and analyzes AS patterns directly from the
sample under study (Figs. 1 and 2). By utilizing the unique topo-
logical features of the splicing graph representing each AS pattern,
JUM is able to accurately construct and quantitate the sample-
specific AS atlas through assembling the basic graphical nodes of
the atlas-called AS structures that are profiled directly from the
sample (Fig. 1). It should be noted that two other methods, MAJIQ
(18) and LeafCutter (19), share similar conceptual designs as JUM in
which they utilize graphs of splicing junction clusters for splicing
quantification. However, MAJIQ is not annotation-free and is still
dependent on a preannotated transcriptome for the construction of
splicing graphs; LeafCutter, although annotation-free, only empha-
sizes quantifying levels of intron excision, without regard to detection,
quantification, or analysis of AS event patterns; LeafCutter also does
not detect intron retention events, an important class of AS.
JUM is further equipped with three unique features. First,

JUM applies a well-developed approach to analyzing IR events
and significantly decreases the high false positive rate of IR
classification in currently available AS analysis tools (Figs. 3 and
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5 and SI Appendix, Fig. S4). Second, JUM profiles the composite
AS events as a separate AS pattern category, which is widespread
in various tissue types and can play important roles in shaping
cellular physiology but is not usually covered in other currently
available AS methods (Fig. 2). Last but not least, JUM accurately
profiles changed AS events in terms of the standard AS pattern
categories of SE, A5SS, A3SS, IR, and MXE directly from the
RNA-seq datasets (Figs. 6 and 7). This feature is especially im-
portant when investigating regulatory mechanisms of splicing
regulators, which can be reflected in the distribution of changed
AS events among the different AS pattern categories (Fig. 7).
In conclusion, JUM presents a statistically rigorous approach to

address, evaluate, quantitate, and classify the complex and diverse
patterns of AS profiles in eukaryotic transcriptomes. We are con-
fident that this approach will provide important insights into the
dynamic regulation of AS and gene expression, particularly in
poorly annotated genomes and complex cell or tissue types that are
already known to generate extremely diverse mRNA isoform
profiles, such as gonads (testes and ovaries), pluripotent stem cells,
and a variety of neuronal cell types and nervous system tissues.

Materials and Methods
RNA-Seq Data. Raw RNA-seq data (FASTQ format) for Drosophila male fly
heads and K562 cell lines with SRSF2 mutations described in this paper were
derived as previously described (47, 49). Human colon tumor and matched

normal tissue poly-A–selected RNA-seq data (in BAM format) were acquired
from TCGA database. A detailed description of the patient tumor and normal
samples used in this study is given in SI Appendix, Table S4. The downloaded
BAM files were transformed back to FASTQ format by using the SamToFastq
function in PICARD tools (broadinstitute.github.io/picard/) before analysis. The
FASTQ data were then mapped to human genome hg38 as described below.
The sequencing read mapping results are summarized in SI Appendix, Table S7
for each patient. Approval from the NCBI Database of Genotypes and
Phenotypes (dbGaP) was obtained for TCGA controlled data access.

RNA-Seq Data Mapping for JUM. RNA-seq reads are mapped to the human
(hg38) (or hg19 for MISO, as the MISO-provided annotation library is in hg19)
and Drosophila (dm3) genomes using STAR (51) in the two-pass mode, as
instructed in the STAR manual as well as the JUM manual on Github. Only
unique mapped reads are kept in the output for downstream JUM analysis.

RNA-Seq Data Experiment Simulation. We used the ASmethodBenchmarking
software as described in ref. 42 to simulate RNA-seq datasets; triplicates of
∼80 million 100-bp reads are simulated for each condition, with three levels
of AS changes. Parameters are listed in SI Appendix, Table S1.

Running JUM, MISO, MAJIQ, Cufflinks, Whippet, rMATS, and IRFinder in This Study
for Differential AS Analysis. The detailed commands for each software tool as
well as the versions of each software tool used in this study are listed in SI
Appendix, Tables S2 and S3. Detailed statistical cutoffs applied in each case for
all software tools are listed in SI Appendix, Materials and Methods.
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Fig. 7. Comparison of JUM, rMATS, and MISO in analyzing global AS changes brought about by a truncation mutation in the splicing factor PSI in Drosophila
male heads. (A) Test of whether rMATS and MISO can also identify JUM-predicted, experimentally validated, and functionally crucial differentially spliced
noncomposite AS events that are associated with the male courtship defect phenotype in the male head sample of a PSI mutant Drosophila strain. (B) Test of
whether JUM can also identify rMATS-predicted, significantly changed AS events in genes associated with male courtship regulation in the male head sample of a
PSI mutant Drosophila strain. (C) Number of significantly differentially spliced AS events reported in every AS pattern category by the three methods. (D) An
example of an rMATS-predicted “SE” event that actually represents a much more complicated AS pattern in the male fly head and was reclassified correctly by
JUM as a composite AS event is shown. Exon coverage from RNA-seq data is shown in blue; arcs represent splice junctions identified from the RNA-seq data;
Drosophila annotation (dm3) of the transcripts is shown (Bottom). The rMATS-predicted SE exon is specified by a red arrow. This SE exon is in fact alternatively
spliced in combination with an upstream novel, unannotated alternatively spliced exon (left green arrow; whose existence was proven by the RNA-seq tracks and
splice junction reads), as well as an A5SS site in the upstream exon (right green arrow; a zoom-in at that upstream exon is shown to provide a detailed view of the
A5SS site).
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ROC Curve Plotting and AUC Calculation. The ranking score for ROC curve
plotting is chosen to be 1-adjusted_pvalue for JUM, Cufflinks, and rMATS, as
the three methods provide adjusted P values from multiple testing correction.
For the rest, the ranking score is set to be the maximum value of E(dPSI)
among local splicing variations in an AS event for MAJIQ (18), the value of the
Bayes factor for MISO (10), and the probability value for Whippet (21). The R
package ROCR (52) is used to plot ROC curves and calculate the AUC metric.

Algorithm to Construct AS Patterns from Profiled AS Structures.We first profile
all AS structures from the RNA-seq data and calculate the SI value for each sub-
AS-junction in these AS structures. Two AS structures are defined as “linked”
if they share one specific sub-AS-junction, and a “path” is drawn between the
two AS structures. Under this definition, a “loop” of AS structures is searched
in the whole pool of AS structures, with every AS structure in the loop linked
to one other by a path. Each profiled loop of AS structures corresponds to an
AS event, and is allocated to each AS pattern category based on the features
of the sub-AS-junction SI value distributions.

Visualization. All RNA-seq track data and junction reads were visualized using
IGV (48) and the Sashimi plots tool (53).

Gene Ontology Analysis. Gene Ontology analyses were performed using
GOrilla (cbl-gorilla.cs.technion.ac.il/) (54). For each patient, a list of tran-
scripts expressed at greater than 10 reads was used as a background
dataset.
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