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Abstract

The genome-wide association study of the Psychiatric Genomics Consortium identified over

one hundred schizophrenia susceptibility loci. The number of non-coding variants discov-

ered suggests that gene regulation could mediate the effect of these variants on disease.

Expression quantitative trait loci (eQTLs) contribute to variation in levels of mRNA. Given

the co-occurrence of schizophrenia and several traits not involving the central nervous sys-

tem (CNS), we investigated the enrichment of schizophrenia associations among eQTLs for

four non-CNS tissues: adipose tissue, epidermal tissue, lymphoblastoid cells and blood.

Significant enrichment was seen in eQTLs of all tissues: adipose (β = 0.18, p = 8.8 × 10−06),

epidermal (β = 0.12, p = 3.1 × 10−04), lymphoblastoid (β = 0.19, p = 6.2 × 10−08) and blood (β
= 0.19, p = 6.4 × 10−06). For comparison, we looked for enrichment of association with traits

of known relevance to one or more of these tissues (body mass index, height, rheumatoid

arthritis, systolic blood pressure and type-II diabetes) and found that schizophrenia enrich-

ment was of similar scale to that observed when studying diseases in the context of a more

likely causal tissue. To further investigate tissue specificity, we looked for differential enrich-

ment of eQTLs with relevant Roadmap affiliation (enhancers and promoters) and varying

distance from the transcription start site. Neither factor significantly contributed to the enrich-

ment, suggesting that this is equally distributed in tissue-specific and cross-tissue regulatory

elements. Our analyses suggest that functional correlates of schizophrenia risk are preva-

lent in non-CNS tissues. This could be because of pleiotropy or the effectiveness of variants

affecting expression in different contexts. This suggests the utility of large, single-tissue

eQTL experiments to increase eQTL discovery power in the study of schizophrenia, in addi-

tion to smaller, multiple-tissue approaches. Our results conform to the notion that schizo-

phrenia is a systemic disorder involving many tissues.
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Introduction

Since the completion of the human genome project, genome-wide association studies

(GWAS) have been useful instruments for improving our understanding of the genetics

behind human traits. However, the promise of identifying the genetic basis of disease and

determine its underlying mechanisms has only marginally been fulfilled.

The schizophrenia GWAS carried out by the Psychiatric Genomics Consortium (PGC)

identified many genomic loci plausibly involved in the etiology of the disorder [1] but much of

the heritability, estimated from familial studies, is yet to be identified [2, 3]. A considerable

portion of the variance in case-control status can be explained in many cohorts using available

GWAS data [3, 4], but identifying mechanisms by which these variants act has proved difficult.

The approach of GWAS is to independently test a vast genome-wide selection of representative

genetic variants for associations with the trait of interest, disregarding any other genetic infor-

mation. However, it is now known that there are many types of genetic variants with diverse

propensities to associate with phenotypic traits [5, 6]. Including functional annotations in the

analyses may thus aid in the quest of uncovering the genetic basis of the disease.

As seen by the large numbers of non-coding variants identified by GWASes of complex

traits, many causal variants are likely to act through the regulation of a gene rather than

through changes in the coding sequence [7–10]. This has boosted the interest in studies of

gene expression and has encouraged the development of transcriptomics and proteomics data-

bases and tools [11–18]. Expression quantitative trait loci (eQTLs) are genomic loci involved

in variation of mRNA levels. Many eQTLs have been associated with different human pheno-

types [8] including schizophrenia [19]. The latter was associated in particular to genetic varia-

tions affecting gene expression in various brain tissues [17, 20, 21].

People suffering from schizophrenia are often also affected by disorders of other traits

involving non-CNS tissues. Examples include high body mass index (BMI) and obesity, hyper-

tension, cardiovascular disease, as well as disturbances of metabolism and immune system.

This has led some to regard schizophrenia as a systemic disease [22]. Recent studies provided

support to the hypothesis of common genetic mechanisms underpinning schizophrenia and

other disorders [23, 24]. In line with such hypothesis, we looked for association enrichment

of eQTLs in non-CNS tissues that may be important for schizophrenia: adipose tissue, epider-

mal tissue, lymphoblastoid cell lines (LCLs) and whole blood [25]. In order to provide ade-

quate terms of comparison, we also included in the study GWAS data related to other traits

and diseases known to be polygenic or relevant to specific non-CNS tissues and thought to

share at least part of their pathophysiology with schizophrenia: obesity (high BMI) and type-II

diabetes involve metabolic processes known to be often affected in individuals with schizo-

phrenia [26]; hypertension (high blood pressure) is one of the main risk factors for cardiovas-

cular disease which is prevalent among individuals with schizophrenia [27] and may share

genetic mechanisms with it [23]; rheumatoid arthritis is a disorder of the immune system

which several lines of evidence [1, 24, 28–31] relate to schizophrenia; finally, height is one of

the most polygenic traits and is also anticipated to inversely correlate to the propensity to suf-

fer from SCZ [32].

The eQTLs are far from interchangeable but play different roles depending on what tissue

they affect expression in and what functional regions of the genome they are situated in [25,

33, 34]. The Roadmap [35] epigenomics project was instrumental for detailing the functional

annotation of large portions of the genome and expose the interplay of important regulation

mechanisms therein. We investigated the differential enrichment between distal and proximal

eQTLs and between eQTLs pertaining to different Roadmap functional annotation categories

(see Materials and methods), which could provide additional evidence for tissue specificity.
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The schizophrenia GWAS summary statistics are

publicly available upon terms agreement at the

PGC consortium’s downloads site: https://www.

med.unc.edu/pgc/results-and-downloads/data-

use-agreement-forms/SCZSNP_data_download_
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publicrelease_HapMapCeuFreq.txt.gz. The RA

GWAS summary statistics are publicly available at:
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GWASMetaResults/RA_GWASmeta_TransEthnic_

v2.txt.gz. The SBP GWAS summary statistics are

available at: https://www.nature.com/nature/

journal/v478/n7367/extref/nature10405-s3.zip. The

T2D GWAS summary statistics are available upon

terms agreement at the DIAGRAM consortium’s

download site (under ‘Stage 1 GWAS: Summary

Statistics’): http://diagram-consortium.org/

downloads.html.
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Results

EQTL enrichment in schizophrenia

The Q-Q and fold enrichment plots suggest a ubiquitous enrichment of associations with

schizophrenia (Fig 1) among non-CNS eQTLs that is comparable to the one observed among

GTEx brain eQTLs [36] (S1 Fig). In fact, only CommonMind [17] brain eQTLs presented sig-

nificantly higher schizophrenia association enrichment (S1 Fig, S1 Table) than non-CNS

eQTLs, perhaps driven by GTEx-designated cerebellum and possibly hypothalamus eQTLs,

although the low number of eQTLs available to the region-specific analyses provides only sug-

gestive evidence in this respect (S2 Fig, S1 Table). The non-CNS eQTL enrichment is reflected

in significant association chi-squared test statistics differences (S2 Table) between eQTLs and

control variants. However, the deflection in the distribution of the association statistics may be

due to factors other than the one we are interested in, i.e. eQTL status. The effects of other

such factors were assessed by fitting linear models of the association chi-squared statistics

including promoter and enhancer affiliation, and total LD as covariates.

The influence of LD on the linear models was pre-assessed by comparing the LD scores of

all eQTL types to those of the respective control variants (S3 Table, S3 and S4 Figs). The

eQTLs are ascribed in general more LD than their matched counterparts. Interestingly, this

difference seems mostly due to proximal eQTLs (see Materials and methods) active in multiple

tissues, since it disappears once these are excluded (data not shown). While potentially intrigu-

ing, as it may hint at some selective sweep process, these tests confirm the importance of con-

trolling for LD when assessing enrichment [5].

If an excess of schizophrenia associations exists among eQTLs, the association chi-squared

test statistics are expected to be higher for eQTLs than they are for control variants even while

covarying with total LD and affiliation to genetic and regulatory categories. The schizophrenia

coefficients for tissue-specific eQTLs and control variants, distal and proximal eQTLs, are

reported in Table 1. All eQTL types have significantly higher schizophrenia association chi-

squared (adipose �b ¼ 0:18, unadjusted p = 8.8E − 06; epidermal �b ¼ 0:16, unadjusted

Fig 1. Schizophrenia association enrichment in eQTLs. Q-Q and fold enrichment plots for adipose, epidermal, LCL and whole blood eQTLs. The baseline is

determined by respectively matched control SNP sets. The fold enrichment is displayed in logarithmic scale.

https://doi.org/10.1371/journal.pone.0202812.g001
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p = 3.1E − 04; lymphoblastoid �b ¼ 0:2, unadjusted p = 6.2E − 08; whole blood �b ¼ 0:19, unad-

justed p = 6.4E − 06) than the matched control variants. The higher chi-squared are generally

reflected in higher estimated proportions of non-null associations π1 and significantly discern

eQTLs from control variants (Mann-Whitney tests). All test statistics are somewhat dimin-

ished by exclusion of CommonMind and GTEx brain eQTLs (S4 Table) but do not change in

essence.

To contextualize the observed enrichment, we intersected the TwinsUK eQTLs with LD

windows at haplotype r2� 0.8 around the 128 LD-independent genomic loci of recognized

significance for schizophrenia [1]. The result is reported in Table 2. The overlap corresponds

to approximately 12% (15 out of 128) of the loci and is significantly larger than the fraction of

independent genomic loci (*1,000,000) represented by the TwinsUK eQTLs, which we esti-

mate to be between *2.8% (OR = 0.24, p = 9.5 � 10−5) and *3.2% (OR = 0.27, p = 4.3 � 10−5),

depending on whether one considers the designated cis-eQTLs (27,974) or an estimate of the

number of independent Roadmap promoter loci for the four tissues of interest (*32,000).

The question of whether proximal and distal eQTLs have different incidence of associations

with schizophrenia can be addressed with a test in all respects analogous to the one comparing

eQTLs to control variants, where proximal and distal eQTLs act as the two categories. In spite

of the larger estimated fraction of distal associations, the eQTL’s position relative to the TSS

does not make a significant difference: both proximal and distal eQTLs have higher association

chi-squared but in similar measure (Table 1).

Roadmap

The Roadmap functional affiliation effects were estimated upon fitting the linear models

described above. These predictably suggest that the variants affiliated to any Roadmap func-

tional elements are considerably more likely to associate to schizophrenia (S5 Table). However,

when the linear model fit is restricted to eQTLs and control variants only, the functional affili-

ation is partially accounted for and the Roadmap functional affiliation association is visibly

reduced (S6 Table). Curiously, the reduction is more prominent for enhancers even though

these are expected to be farther removed from the coding elements than TwinsUK’s cis-

Table 1. Enrichment statistics and general linear model coefficients for squared schizophrenia association z-scores differences between adipose tissue, epidermal tis-

sue, lymphoblastoid cell lines (LCL) and whole blood eQTLs, and matching control variants.

annotation �β β (low 95%) β (high 95%) p π1 pMW

Adipose eQTL 0.18 0.099 0.25 8.75E-06 0.21 8.03E-12

control -0.083 -0.12 -0.042 6.79E-05 0.07

Epidermal eQTL 0.12 0.055 0.19 0.00031 0.17 2.18E-06

control -0.079 -0.13 -0.033 0.00077 0.076

LCL eQTL 0.19 0.12 0.27 6.21E-08 0.14 5.20E-11

control -0.097 -0.14 -0.055 4.23E-06 0.082

Whole blood eQTL 0.19 0.11 0.27 6.38E-06 0.14 0.0027

control -0.0021 -0.045 0.041 0.92 0.098

All prox 0.24 0.18 0.30 1.75E-15 0.14 0.80

dist 0.13 0.083 0.18 5.38E-08 0.19 0.20

eQTL 0.22 0.18 0.26 5.66E-31 0.17 7.41E-26

�b is the mean effect size over the general linear model replicas with functional genetic affiliation covariates; p is the corresponding unadjusted p-value (see methods for

more details); π1 is the estimated proportion of non-null associations; pMW is the unadjusted Mann-Whitney test p-value for differences in association chi-squared

between eQTL and respective matched control variants; prox stands for proximal eQTLs, dist for distal eQTLs.

https://doi.org/10.1371/journal.pone.0202812.t001
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eQTLs. Variations in schizophrenia association propensity between eQTLs acting in different

regulatory elements were assessed using the same method. We fitted linear models of schizo-

phrenia association chi-squared test statistics including eQTLxRoadmap “interaction” terms.

If the eQTL functional category were of importance the effect size estimates for such terms

would be expected to be significantly different from zero. We observed no effect size estimates

significantly different from zero, suggesting that if a variant already has an eQTL designation,

its placement within diverse genetic functional elements does not to play any important role

(Fig 2 and S7 and S8 Tables). The exclusion of CommonMind and GTEx brain eQTls from the

analyses did not noticeably alter the results (S9 and S10 Tables).

Comparison with other phenotypes

The results of the analyses of other GWASes are reported in the supplementary information

(S5–S9 Figs, S11–S20 Tables). For comparison with schizophrenia, various measures of eQTL

enrichment are reported in Fig 3 (see S10 Fig) for all GWASes. The trait names or acronyms

are printed with sizes proportional to the GWAS chi-squared general linear model coefficients.

Their coordinates were determined respectively by the estimated proportions of non-null asso-

ciations (π1) and the Mann-Whitney −log10(p)-values for chi-squared differences among

eQTLs and control variants. The height GWAS shows widespread eQTL enrichment in con-

cert with a uniformly high estimated proportion of associations. Other GWASes like BMI, RA

Table 2. Cross-tissue eQTLs in the loci with genome-wide significant association with schizophrenia.

Chr Base pair

(GRCh37)

GWAS

p-value [1]

EQTL Ensembl gene HGNC Tissue

1 8424984 1.17�10−9 chr1:8464509 ENSG00000142599 RERE A

150031490 4.49�10−10 chr1:149999764 ENSG00000250661 n.a. B

4 170626552 1.47�10−9 chr4:170646003 ENSG00000109572 CLCN3 A

5 140143664 4.85�10−8 chr5:140107679 ENSG00000146007 ZMAT2 L

chr5:140157427 ENSG00000170445 HARS A

chr5:140109155 ENSG00000256453 DND1 E

10 104612335 6.2�10−19 chr10:104628873 ENSG00000214435 AS3MT BE

11 57510294 2.24�10−9 chr11:57424040 ENSG00000156599 ZDHHC5 B

chr11:57585662 ENSG00000213593 TMX2 L

12 29917265 3.91�10−8 chr12:29934586 ENSG00000133687 TMTC1 L

57487814 2.13�10−8 chr12:57490100 ENSG00000166888 STAT6 E

chr12:123735937 ENSG00000111325 OGFOD2 AE

chr12:123689386 ENSG00000111328 CDK2AP1 L

123665113 1.86�10−14 chr12:123704844 ENSG00000130921 C12orf65 A

chr12:123697007 L

chr12:123689386 ENSG00000235423 n.a. L

15 40567237 4.18�10−9 chr15:40569884 ENSG00000137841 PLCB2 B

91426560 8.3�10−14 chr15:91426560 ENSG00000140564 FURIN A

16 29939877 4.55�10−11 chr16:29924905 ENSG00000149929 HIRIP3 A

58681393 1.87�10−8 chr16:58681393 ENSG00000103034 NDRG4 L

19 50091199 4.69�10−8 chr19:50100295 ENSG00000126460 PRRG2 E

chr19:50103252 ENSG00000126464 PRR12 A

22 42340844 3.43�10−8 chr22:42343091 ENSG00000100197 CYP2D6 A

Tissue code: A = adipose, E = epidermal, L = LCL, B = whole blood

https://doi.org/10.1371/journal.pone.0202812.t002
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and SBP show various degrees of enrichment but not always at a significant level. Notably, the

schizophrenia GWAS shows as high π1 as RA, if not higher, among lymphoblastoid eQTLs,

and as high π1 as BMI and height among adipose tissue eQTLs. It must be noted that the vari-

ous GWASes do not offer the same eQTL coverage. However, we found that the results did not

appreciably vary upon restricting the analyses to the minimal common set of GWAS variants

(data not shown).

Discussion

The main finding of the present study is that eQTLs for all investigated tissue types (adipose,

epidermal, LCL, blood) are enriched of associations with schizophrenia, suggesting that a part

of the risk for the illness involves genetic dysregulation in non-CNS tissue types. The non-CNS

eQTL enrichment is comparable to that of GTEx [36] brain eQTLs and only slightly lower

than that of CommonMind [17] brain eQTLs and is not driven by any of these.

Fig 2. Schizophrenia association enrichment of eQTLs with different Roadmap functional annotations. Chi-

squared general linear model coefficients for eQTLs of different tissues (adipose, epidermal, lymphoblastoid cell lines

(LCL), whole blood) and location (proximal, distal) affiliated to different Roadmap functional elements. “All” stands

for all eQTLs (� p< 0.05, �� p< 0.001).

https://doi.org/10.1371/journal.pone.0202812.g002
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The observed enrichment is reflected in the intersection between the TwinsUK eQTLs and

the genome-wide significant loci identified by the PGC. Instantly recognizable in Table 2 are

the experimentally validated eQTLs for the CLCN3 and FURIN genes [17].

As the interaction analyses show, the eQTL prevalence of schizophrenia associations is sta-

tistically indifferent to their specific functional annotation. Given the gleaned [25] roles of pro-

moters and enhancers in transcription, respectively context-free and context-specific, this

indicates that schizophrenia risk variants are distributed among context-specific and generic

transcription functional elements.

Upon comparing different measures of enrichment across different GWASes, we find that

the schizophrenia GWAS scores often as high as GWASes of traits for which the respective tis-

sue is known to be of physiological relevance. In adipose tissue eQTLs for instance, the enrich-

ment of schizophrenia associations equals that of BMI and height, while in LCL the estimated

proportion of non-null schizophrenia associations is as high as that of non-null RA

Fig 3. Relationship between polygenicity and eQTL association enrichment across different GWASes. Differences

(Mann-Whitney test p-values) in association p-values between eQTLs and control variants of various types as

functions of the estimated proportions of non-null associations. The GWAS names or acronyms are color-coded to

represent different categories (azure = anthropometric [height]; red = cardiovascular, systolic blood pressure [SBP];

green = immune, rheumatoid arthritis [RA]; gold = metabolic, body mass index [BMI], type-II diabetes [T2D];

black = schizophrenia) and their sizes are proportional to the respective chi-squared linear model coefficients

(� p< 0.05, �� p< 0.001).

https://doi.org/10.1371/journal.pone.0202812.g003
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associations. Such observations may indicate an overlap between the pathophysiological sub-

strate of schizophrenia and that of the other traits, which in turn may be a consequence of

genetic pleiotropy, as suggested by earlier findings [23, 24]. A recent study has also posited an

“omnigenic” model of genetic risk, and suggested that eQTLs that act in a large number of tis-

sues may have as large a role to play as eQTLs that are tissue specific [37]. The enrichment of

associations among non-CNS eQTLs does not go to the detriment of that of eQTLs of brain

tissues, the natural substrates for schizophrenia’s pathophysiology. The latter predictably pres-

ent an even higher incidence of associations with the disorder. The lack of relative enrichment

among GTEx brain eQTLs is probably due to their lower mapping power, given the smaller

sample they were obtained from. The GTEx consortium reported that brain eQTLs replicated

most strongly in other brain tissues, demonstrating that a proportion of the eQTLs mapped

are indeed specific to brain tissue, but the low sample size will mean that most tissue specific

eQTLs will not be discovered, reducing power to observe enrichment.

The enrichment observed for eQTLs of non-CNS tissues suggests that the genetic makeup

of schizophrenia may also involve non-neural tissues. The non significant effect of the eQTL

regulatory affiliation corroborates the involvement of specific non-CNS tissues in schizophre-

nia. This supports the long discussed [28] notion of schizophrenia as a systemic disease [22],

and fosters the hypothesis of common genetic mechanisms, in line with proposed pleiotropy

such as that with cardiovascular and immune diseases [23, 24]. The findings of the present

study complement the ones of several recent studies identifying specific or generic eQTLs

associations with schizophrenia in brain tissue [17, 20, 21, 38] in that they extend the search

space to non-CNS tissue types. They suggest that schizophrenia risk loci affect a range of

human tissues. As hinted by the slight overall effects of promoter and enhancer eQTL affilia-

tion, it is possible for some non-CNS eQTLs to be proxy agents for CNS tissue eQTLs. How-

ever, the estimated pairwise overlap between eQTLs pertaining to different tissues is relatively

low (*10%). Although such estimates can be slightly biased by the small sample, they encour-

age to regard TwinsUK’s eQTLs as quite tissue-specific. This considerations added to the neg-

ligible effect of double agents, including those active in the brain, on the analyses (see

Materials and methods), suggest that the ones detected here are largely non-CNS effects.

Insofar as they indicate that genetic risk of schizophrenia associates with gene expression

across different somatic tissues, our findings could also have clinical implications. At the very

least they warrant further research to assess the relevance of altered gene expression for the

high somatic co-morbidity associated with schizophrenia, which is a major health concern. In

this respect, comprehensive studies of gene expression across the lifespan, such as the Human

Brain Transcriptome [14] or the Brainspan [15, 16] studies carried out for brain tissues, would

be of considerable interest for non-CNS tissues as well.

A few limitations of the present study should be mentioned. First, some caution may have

to be exercised when interpreting the eQTL association enrichment as, due to the intricate pat-

terns of linkage disequilibrium, the overlap of associations with distinct traits could in part be

coincidental [39, 40]. Second, the numbers presented here should be regarded in light of the

scope of genetic cis-regulation. As highlighted by Buil et al. [25], cis-eQTLs are generally

responsible for considerably less than a third and possibly as little as a sixth of the variation in

gene expression. Variants affecting trans-regulation have previously been seen to be important

in disease [41]. The importance of trans-regulation must therefore be kept in mind when

weighing the implications of eQTL enrichment in GWAS. Some trans-regulation will be the

downstream consequences of cis-eQTL effects along the genetic pathway, and we would expect

to detect enrichment of such signals in our analysis; however, much trans-regulation is

expected to be highly tissue-specific, and such enrichment will be detectable only when study-

ing a small minority of tissues. Third, the higher the statistical power the easier it is to discern
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weak associations. An enrichment of associations is therefore more likely to be detected in the

BMI GWAS (sample size N = 339, 224) than in the RA GWAS (sample size N = 103, 638). The

widespread enrichment observed in the schizophrenia GWAS (sample size N = 150, 064) may

be due in part to its relatively high statistical power. Its cross-tissue enrichment pattern, how-

ever, resembles the ones observed for BMI and height, two highly polygenic traits, and is quite

different from the one observed for the T2D GWAS (sample size N = 149, 821), a roughly

equally powered study. We therefore conclude that the different polygenic architectures must

also be a relevant factor.

In summary, we find that investigating functional correlates of schizophrenia risk loci in

non-CNS tissues may be productive. The observed non-CNS enrichment of schizophrenia

association could be due to pleiotropic effects or increased effectiveness of variants that work

in many different environmental contexts. To further delineate the functional molecular

mechanisms underlying schizophrenia, it could therefore be useful to complement multiple

tissue eQTL experiments with larger single tissue eQTL experiments.

Materials and methods

Material

GWAS summary statistics. We used summary p-value statistics from schizophrenia

(SCZ, N = 150, 064) [1] as well as body mass index (BMI, N = 339, 224) [42], height (N = 253,

288) [43], rheumatoid arthritis (RA, N = 103, 638) [44], systolic blood pressure (SBP, N = 203,

056) [45] and type-II diabetes (T2D, N = 149, 821) [46] GWASes. Two sets of about 2.5 and 9

million SNPs encompassing high-quality variants from all GWASes [5], were used for better

comparisons in analyses involving non-CNS eQTLs only, and brain as well as non-CNS

eQTLs, respectively.

TwinsUK eQTLs. The eQTL data were obtained from the TwinsUK sample [47] compris-

ing 856 Caucasian female individuals. We regard these to be suitable due to the size of the

TwinsUK sample and because the sample was collected from healthy living individuals and

thus free of post-mortem biases. As previously reported [25], TwinsUK’s eQTLs are repre-

sented by the single nucleotide variants with strongest association within each locus, with cis-

gene expression in adipose tissue, epidermal tissue, lymphoblastoid cell lines (LCLs), and

whole blood. The variants used in the current study (9166 adipose tissue, 8731 epidermal tis-

sue, 9551 LCLs, and 5313 blood eQTLs; see [25] for a full description of the eQTL detection

method) were designated as eQTLs at a 1% FDR level. Due to their location and the observed

association, eQTLs have properties which can differ from other variants in the genome, includ-

ing minor allele frequency, and regional conservation score and linkage disequilibrium struc-

ture, which may cause them to show enrichment in GWAS independently of their role in

genetic regulation. To control for these factors when looking for enrichment, we used a set of

40,194 “control” eQTLs produced in [25], which were matched with the eQTLs on two proxies

for these factors (minor allele frequency and distance to TSS). In addition to the criteria used

in [25] we required that the control eQTLs did not present significant evidence of association

with the expression levels of any genes (p-value� 10−4). A census of the eQTLs included in the

analyzed data sets is reported in S21 Table. As described by Buil et al. [25], gene regulation is

not always tissue-specific and some loci act as eQTLs in more than one type of tissue. The pair-

wise overlap counts are shown in S11 Table. All analyses described below were repeated after

exclusion of double agents and found to be robust to such exclusion.

Brain eQTLs. GTEx version 7 [36] and CommonMind release 1.2 [17] eQTL data were

downloaded from the projects’ respective web-services (www.gtexportal.org, www.synapse.

org). A wealth of region-specific (amygdala, anterior cingulate cortex, caudate basal ganglia,
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cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus,

nucleus accumbens basal ganglia, putamen basal ganglia, spinal cord cervical, substantia nigra)

brain eQTLs at FDR< 0.01 were readily available in the GTEx data, allowing in detail as well

as whole brain analyses. GTEx brain eQTLs were defined as eQTLs for any of the GTEx brain

regions. The CommonMind eQTLs were from a larger set of dorsolateral prefrontal cortex tis-

sue samples. The CommonMind brain eQTLs resulted from the intersection of the two eQTL

sets designated respectively in the analysis including and the one not including surrogate vari-

ables. GTEx and CommonMind eQTLs at the same FDR level were subsequently intersected

to obtain a consensus set of brain eQTLs.

Roadmap annotation. Even if all eQTLs considered here are cis-eQTLs, some differences

may still exist between eQTLs located at different positions with respect to promoters. We

therefore subdivided eQTLs into proximal and distal eQTLs, depending on their distance

from the TSS. We set the threshold at 25 kbp to equally populate the two categories. In order

to further detail the eventual enrichment patterns, eQTLs were further assigned one of four tis-

sue-specific Roadmap functional annotations: strong enhancer, weak enhancer, active pro-

moter, and weak promoter eQTLs. The functional annotations were extracted from adipose

nuclei tracks (E063) for adipose tissue eQTLs, from normal human epidermal keratinocytes

tracks (E127) for epidermal tissue eQTLs, from lymphoblastoid cell lines tracks (E116) for

lymphoblastoid cell lines eQTLs, and from primary mononuclear cells tracks (E062) for whole

blood eQTLs. The distribution of eQTLs across all functional elements is reported in S22

Table.

Statistics

Random linkage disequilibrium-based pruning. The TwinsUK eQTLs are not guaran-

teed to be independent, because different genes can have different eQTLs in linkage disequilib-

rium with one another. A possible way to account for the known intricate correlation

structure of the genome data is to include linkage disequilibrium (LD) as an integral part of

the analyses [48]. Another way is to reduce the bias caused by LD by restricting the analyses to

near-independent variants. When pursuing the second avenue, the problem of choosing LD-

independent representatives arises. To reduce sampling bias, we generated ten sets of near-

independent variants (LD r2 < 0.2 within 1Mbase) picked at random [49] with no replacement

to repeatedly perform our analyses on. In order for the genomic correction to be representative

of these sets of variants, the genome-wide intergenic correction factor [5] was computed across

such sets (median of medians) and applied to all GWAS summary statistics before the ensuing

analyses. All results reported are robust to the choice of near-independent variants sets.

Conditional fold enrichment and quantile-quantile plots. It is common practice to use

quantile-quantile (Q-Q) plots to compare two distributions; Q-Q plots are used in GWAS to

compare the expected −log10(p)-value distribution to the one actually observed and thus assess

the non-spurious association content of the latter. Further leftward deflections of the observed

distribution in a subset of interest reflect a higher incidence, in other words, enrichment, of

low p-values (high −log10(p)-values) in such subset.

Fold enrichment plots are also used to visualize enrichment as a function of the association

p-value [50]. They were obtained here by comparing the empirical cumulative distributions

of −log10(p)-values for SNP association among eQTLs and control variants. Each eQTL

subset Ss fold enrichment was calculated as the cumulative distribution functions (CDFs)

ratio CDFS=CDFcontrol between the −log10(p) cumulative distribution for eQTLS and the

−log10(p) cumulative distribution for the respective control variants. Left-cumulative associa-

tion −log10(p)-value bin centers are reported on the x-axis, fold enrichment on the y-axis [51].
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Chi-squared general linear models and enrichment estimates. The fold enrichment

plots are effective in conveying a visual impression of enrichment. However, they do not pro-

vide any quantitative measure of enrichment and are not suited to control for potential mediat-

ing effects. General linear models allow to account for any such effects and, assuming no strong

interdependence among predictor variables, to assess their significance. To get quantities with

better statistical properties, we converted the association p-values to z-scores and squared these

(z2 = F−1(p/2)2, where F is the standard normal cumulative distribution function) to recover the

original association chi-squared test statistic. We then fitted a chi-squared general linear model

[5] including eQTL and Roadmap categories [35], and total LD score [48] as covariates. Interac-

tions between eQTL and Roadmap or genic categories were subsequently included to detail the

effect of the eQTLs’ affiliation to specific functional elements. The reported effect sizes and p-

values are meta-analysis effect sizes and p-values across the ten analyses relative to the single

pruned sets of eQTL and control variants. In order to provide a full characterization of the

enrichment, we also compared the association chi-squared among different eQTL types and

corresponding matched control variants (Mann-Whitney tests) and estimated the proportion

π1 of non-null associations in the two groups using R’s qvalue package [52, 53]. The Mann-

Whitney tests and the π1 estimations were performed on the full set of variants.

Supporting information

S1 Fig. Enrichment plots for CommonMind, GTEx, GTEx/CommonMind consensus brain

and non-CNS eQTLs. The top panels contain Q-Q and fold enrichment plots for the Com-

monMind, GTEx brain and TwinsUK non-CNS eQTLs. The bottom panels contain relative

fold enrichment plots for CommonMind and GTEx and for GTEx/CommonMind consensus

brain eQTLs compared to non-CNS eQTL variants.

(PDF)

S2 Fig. Enrichment plots for GTEx/CommonMind consensus region-specific brain eQTLs.

The fold enrichment is relative to non-CNS eQTL variants.

(PDF)

S3 Fig. Histograms of total LD. Total LD-tagging power of eQTLs and control SNPs, and

proximal (prox) and distal (dist) eQTLs.

(PDF)

S4 Fig. Total LD for different eQTL types and control variants in the study. Box plots are

overlaid on kernel density plots [54].

(PDF)

S5 Fig. BMI association enrichment in eQTLs. Q-Q and fold enrichment plots for adipose,

epidermal, LCL and whole blood eQTLs. The baseline is determined by respectively matched

control SNP sets. The fold enrichment is displayed in logarithmic scale.

(PDF)

S6 Fig. Height association enrichment in eQTLs. Q-Q and fold enrichment plots for adipose,

epidermal, LCL and whole blood eQTLs. The baseline is determined by respectively matched

control SNP sets. The fold enrichment is displayed in logarithmic scale.

(PDF)

S7 Fig. Rheumatoid arthritis association enrichment in eQTLs. Q-Q and fold enrichment

plots for adipose, epidermal, LCL and whole blood eQTLs. The baseline is determined by

respectively matched control SNP sets. The fold enrichment is displayed in logarithmic scale.

(PDF)
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S8 Fig. Systolic blood pressure association enrichment in eQTLs. Q-Q and fold enrichment

plots for adipose, epidermal, LCL and whole blood eQTLs. The baseline is determined by

respectively matched control SNP sets. The fold enrichment is displayed in logarithmic scale.

(PDF)

S9 Fig. Type-II diabetes association enrichment in eQTLs. Q-Q and fold enrichment plots

for adipose, epidermal, LCL and whole blood eQTLs. The baseline is determined by respec-

tively matched control SNP sets. The fold enrichment is displayed in logarithmic scale.

(PDF)

S10 Fig. Differences (Mann-Whitney test p-values) in association p-values between proxi-

mal and distal eQTLs as functions of the estimated proportions of non-null associations.

The GWAS names or acronyms are color-coded to represent different categories

(azure = anthropometric, [height]; red = cardiovascular, systolic blood pressure [SBP];

green = immune, rheumatoid arthritis [RA]; gold = metabolic, body mass index [BMI], type-II

diabetes [T2D]; black = schizophrenia) and their sizes are proportional to the respective

ANCOVA coefficients (� p< 0.05, �� p< 0.001).

(PDF)

S11 Fig. eQTL distribution across tissues. As established in [25], eQTLs have some tendency

to act in more than one tissue.

(PDF)

S1 Table. Schizophrenia association chi-squared general linear model coefficients for

GTEx brain and GTEx/CommonMind consensus brain eQTLs compared to non-CNS

eQTLs. The test statistics refer to a general linear model of all brain and non-CNS variants in

the *9 million variant template.

(PDF)

S2 Table. Schizophrenia association chi-squared differences between various eQTL types

and matching control variants.

(PDF)

S3 Table. Total LD differences between various eQTL types and matching control variants.

(PDF)

S4 Table. Enrichment statistics and general linear model coefficients for squared schizo-

phrenia association z-scores differences between adipose tissue, epidermal tissue, lympho-

blastoid cell lines (LCL) and whole blood eQTLs, and matching control variants. All eQTLs

designated by CommonMind or GTEx as brain eQTLs were excluded from these analyses.

(PDF)

S5 Table. Schizophrenia association chi-squared general linear model coefficients for the

four Roadmap functional affiliations.

(PDF)

S6 Table. Schizophrenia association chi-squared general linear model coefficients for the

four Roadmap functional affiliations restricted to eQTLs and control variants.

(PDF)

S7 Table. Schizophrenia association chi-squared general linear model coefficients for tis-

sue-specific eQTLs with different functional affiliations. The test statistics refer to the

respective interaction terms. The interaction with TotLD represents the enrichment ascribable
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to the eQTLs irrespective of their LD-tagging power. Enhancer and Promoter affiliations were

assigned by Roadmap in the corresponding tissues.

(PDF)

S8 Table. Schizophrenia association chi-squared general linear model coefficients for all,

proximal or distal eQTLs with different functional affiliations. The test statistics refer to the

respective interaction terms. The interaction with TotLD represents the enrichment ascribable

to the eQTLs irrespective of their LD-tagging power. Enhancer and Promoter affiliations were

assigned by Roadmap in the corresponding tissues.

(PDF)

S9 Table. Schizophrenia association chi-squared general linear model coefficients for tis-

sue-specific eQTLs with different functional affiliations upon exclusion of CommonMind

and GTEx brain eQTLs. The test statistics refer to the respective interaction terms. The inter-

action with TotLD represents the enrichment ascribable to the eQTLs irrespective of their LD-

tagging power. Enhancer and Promoter affiliations were assigned by Roadmap in the corre-

sponding tissues.

(PDF)

S10 Table. Schizophrenia association chi-squared general linear model coefficients for all,

proximal or distal eQTLs with different functional affiliations upon exclusion of Com-

monMind and GTEx brain eQTLs. The test statistics refer to the respective interaction terms.

The interaction with TotLD represents the enrichment ascribable to the eQTLs irrespective of

their LD-tagging power. Enhancer and Promoter affiliations were assigned by Roadmap in the

corresponding tissues.

(PDF)

S11 Table. Enrichment statistics and general linear model coefficients for squared BMI

association z-scores differences between adipose tissue, epidermal tissue, lymphoblastoid

cell lines (LCL) and whole blood eQTLs, and matching control variants.

(PDF)

S12 Table. BMI association chi-squared general linear model coefficients for all eQTL

types with the four Roadmap functional affiliations. Enhancer and Promoter affiliations

were assigned by Roadmap in the corresponding tissues.

(PDF)

S13 Table. Enrichment statistics and general linear model coefficients for squared Height

association z-scores differences between adipose tissue, epidermal tissue, lymphoblastoid

cell lines (LCL) and whole blood eQTLs, and matching control variants.

(PDF)

S14 Table. Height association chi-squared general linear model coefficients for all eQTL

types with the four Roadmap functional affiliations. Enhancer and Promoter affiliations

were assigned by Roadmap in the corresponding tissues.

(PDF)

S15 Table. Enrichment statistics and general linear model coefficients for squared RA

association z-scores differences between adipose tissue, epidermal tissue, lymphoblastoid

cell lines (LCL) and whole blood eQTLs, and matching control variants.

(PDF)
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S16 Table. Rheumatoid arthritis association chi-squared general linear model coefficients

for all eQTL types with the four Roadmap functional affiliations. Enhancer and Promoter

affiliations were assigned by Roadmap in the corresponding tissues.

(PDF)

S17 Table. Enrichment statistics and general linear model coefficients for squared SBP

association z-scores differences between adipose tissue, epidermal tissue, lymphoblastoid

cell lines (LCL) and whole blood eQTLs, and matching control variants.

(PDF)

S18 Table. Systolic blood pressure association chi-squared general linear model coeffi-

cients for all eQTL types with the four Roadmap functional affiliations. Enhancer and Pro-

moter affiliations were assigned by Roadmap in the corresponding tissues.

(PDF)

S19 Table. Enrichment statistics and general linear model coefficients for squared T2D

association z-scores differences between adipose tissue, epidermal tissue, lymphoblastoid

cell lines (LCL) and whole blood eQTLs, and matching control variants.

(PDF)

S20 Table. Type-II diabetes association chi-squared general linear model coefficients for

all eQTL types with the four Roadmap functional affiliations. Enhancer and Promoter affili-

ations were assigned by Roadmap in the corresponding tissues.

(PDF)

S21 Table. eQTLs and matched control variants census in the data set used. The eQTLs and

control variants from [25] were projected onto templates of *2.5 million variants (*9 million

variants for analyses involving brain eQTLs) with known pairwise LD.

(PDF)

S22 Table. eQTL VS ENCODE demographics. The numbers refer to the *9 million tem-

plate.

(PDF)
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