Oncogene (2018) 37:4903-4920
https://doi.org/10.1038/541388-018-0341-x

REVIEW ARTICLE
®

Check for

Molecular alterations of cancer cell and tumour microenvironment
in metastatic gastric cancer

Weilin Li'? - Jennifer Mun-Kar Ng? - Chi Chun Wong? - Enders Kwok Wai Ng' - Jun Yu?

Received: 6 March 2018 / Revised: 7 May 2018 / Accepted: 8 May 2018 / Published online: 23 May 2018
© The Author(s) 2018. This article is published with open access

Abstract

The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary
location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular
alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we
reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently
seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel
therapeutic targets that will lead to better patient outcomes.

Introduction

Gastric cancer (GC) is the fourth most common cancer and
second leading cause of cancer-related deaths worldwide
[1]. Over 70% of GC cases (~677,000 per annum) occur in
the developing regions, mainly in Asia, Central and Eastern
Europe and Latin America [2—4]. Despite improvements in
GC incidence and mortality over the last decade, the disease
burden still remains high. The majority of patients present
with clinically advanced disease such that curative surgical
resection is no longer possible and current therapeutics are
poor at controlling the progression of metastatic disease.
More worryingly, there are suggestions that advancements
in GC treatment are likely to be surpassed by other diseases,
consequently some foresee that GC is on a rising trend as a
leading cause of death worldwide [5].
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Metastasis is the main cause of cancer mortality (>90%)
and a critical step that hampers the development of anti-
cancer therapy due to its systemic nature and resistance to
existing therapeutic drugs [6, 7]. Metastasis of gastric ade-
nocarcinoma is no exception. It represents a multistep bio-
logical cascade that ultimately leads to widespread
dissemination of carcinoma cells in various tissue sites [6, 8,
9]. In this review, we take you step-by-step through the GC
metastatic cascade and the current understanding of the
spectrum of molecular alterations involved. We look for-
ward to this update being a guide for future research, and at
the same time, highlighting its potential for translation into
therapeutic strategies.

GC metastasis cascade

GC most commonly metastasises to the liver, peritoneum,
lung, bone and lymph nodes [10] either through direct
invasion or more distant seeding via the blood, lymphatic
system and intraperitoneal spread. Notwithstanding these
differences, they share the following series of sequential and
interrelated events: (1) local invasion into the surrounding
tumour-associated stroma, (2) intravasation into the hae-
matopoietic or lymphatic systems, or intraperitoneal spread,
(3) survival in vasculature transition or intraperitoneal fluid
circulation, (4) extravasation into 'fertile soil' at distant
organs with pre-metastatic niches and (5) colonisation and
proliferation to form detectable metastases (Fig. 1) [7, 11—
13]. These cellular events are normally kept in check under
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Fig. 1 Metastatic routes and
sites in gastric cancer. Major
routes of distant metastasis in
gastric cancer: intraperitoneal,
lymphatic and haematogenous
spread, and direct invasion into
neighbouring organs. Common
sites of metastases: spleen,
pancreas, colon, liver,
peritoneum, ovary, lymph
nodes, lung and bone
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the orchestration of both intrinsic and extrinsic molecular
pathways; however, aberrant molecular alterations allow the
transformation of nascent tumour cells to highly invasive
malignancies, which further lead to incurable metastatic
disease with systemic spread and therapeutic resistance [6].

Local invasion into surrounding tumour-
associated stromal microenvironment

Local invasion occurs when tumour cells no longer
obey the delineation of the basement membrane (BM),
and the invasive front infiltrates the neighbouring
tumour-associated stroma and surrounding normal tissues.
Three  major  players  facilitate  this  process:
epithelial-mesenchymal transition (EMT), matrix metallo-
proteinases (MMPs) and the stromal environment, within
which alterations and interactions amongst various mole-
cular processes determine the tumour cells’ invasive pro-
pensity [14].

EMT

EMT describes the dissociation of tightly knitted epithelial
cells and subsequent transdifferentiation into motile and
invasive mesenchymal cells [15]. In the mesenchymal cell
state, these cancer cells possess novel ability to invade into
the surrounding microenvironment. Thus, EMT is con-
sidered to be the crucial step in the initiation of local
invasion, and hence subsequent dissemination [14]. The
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transition involves relocalisation, dissolution and degrada-
tion of adherens junctions, subapical tight junctions, des-
mosomes and gap junctions between epithelial cells,
ultimately leading to the loss of cell polarity and cytoske-
leton changes [14—16]. As EMT becomes more established,
mesenchymal phenotypes become more prominent, and the
cells start to possess the ability to degrade extracellular
matrix (ECM) proteins (Fig. 2) [15].

In GC, a number of signalling pathways have been found
to regulate EMT, with the PI3K/AKT, MEK/ERK and
WNT/B-Catenin pathways taking leading roles (Fig. 3).
Transcription factors (TFs) and microRNAs, as described
below, are the primary modulators. Although either can act
independently, there is often some cross-modulation and
interdependence that provides further complexity to their
role in the regulation of signalling pathways.

Transcription factors

EMT is tightly regulated by TFs. Apart from the prominent
TFs, such as Slug [17], Snail [18], Twistl/2 [19, 20],
FOXQI1 [21] and ZEB1/2 [22-25] in GC, there are emer-
ging novel TFs that have also been found to regulate EMT.
For example, runt-related TF 3 (RUNX3), which has a role
in suppressing EMT through the TGF-B-activated SMAD
pathway, has been observed to be frequently downregulated
[26, 27]. Similarly, there is loss of RUNX3-dependent miR-
30a activation which normally inhibits vimentin expression
and EMT [28]. In addition, a study based on array profiling
identified significant upregulation of serum response factor
(SRF) in metastatic GC cells. SRF functions to promote
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Fig. 2 Epithelial-mesenchymal transition and tumour—stromal inter-
actions in gastric cancer. Main phenotypic changes of EMT in gastric
cancer include loss of cell polarity, degradation of cell-anchoring
junctions, cytoskeleton changes, acquisition of invasiveness and ulti-
mately degradation of basement membrane. Interactions within

EMT through miR-199a-5p-mediated decrease in E-
cadherin expression [29]. Also of interest, HOXB9 has
been shown to halt GC progression. Studies have
shown that restoration of HOXB9 expression in GC cells
led to inhibited invasion and migration, at the same time
stimulated the reversal of EMT process [30].

microRNAs

EMT can also be modulated by microRNAs [28]. For
example, miR-544a induces EMT, as shown by the
decreased expression of E-cadherin, APC2 and AXIN2,
which stabilises the nuclear import of pB-catenin and acti-
vates Wnt signalling to promote cell invasiveness in GC cell
lines [31]. miR-2392 inhibits EMT through downregulating
TFs, such as Slug and Twistl, in GC cells [32]. miR-223
promotes GC cell invasion and resistance to cisplatin
by targeting FBXW7 [33, 34]. Conversely, miR-338-3p
suppresses EMT through downregulating ZEB2, a TF that
plays a vital role in promoting EMT in GC [25]. miR-506
suppresses EMT directly and its low expression is

between key components of the stromal environment. EMT
epithelial-mesenchymal transition, ECM extracellular matrix, CAF
cancer-associated fibroblast, MSC mesenchymal stem cell, MMP
matrix metalloproteinase

correlated with poor prognosis which indicates that it
can serve as an independent prognosis fact in GC patients
[27, 35]. Therefore, microRNAs can also be utilised
as a potential therapeutic target for blocking EMT
progression. For example, ACIMMYR?2, a specific small-
molecular inhibitor that can block the maturation of
pre-miR-21 to miR-21, has been shown to reverse EMT
and eventually lead to the suppression of GC cell
metastasis [36].

Other molecules

In addition to TFs and microRNAs, EMT can be regulated
by many other endogenous molecules. For example,
Jumonji domain-containing protein 2B (JMJD2B) and
erythropoietin-producing hepatocellular A2 (EphA2) which
belongs to hydroxylase superfamily and protein-tyrosine
kinase family, respectively, have both been suggested to
induce EMT via the Wnt/p-catenin signalling pathway and
further stimulate GC development and metastasis [37, 38].
Another example is melatonin, which a recent in vitro study
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Fig. 3 Molecular mechanisms of ZIPK DDAH1
EMT in gastric cancer. Major NMI RhoGDI2 JMJD2B
signalling pathways that regulate EPHA2
EMT in gastric cancer. PI3K/ IL-6 TBL1XR1
AKT, WNT/p-Catenin, ERK, IL-17 miR-544a
TGF-B/SMAD and Snail
signalling pathways promote CMTM3
EMT; Notch1/2 inhibits EMT in miR-216a
gastric cancer \ NFkB WNT/
B-Catenin
JAK2/ RKéP23b
STAT3 el
\ Notch1/2
CBL B IGF .
miR-7 \
/ Snail
HIF-a
ERK HOTAIR
ECF PI3K/
AEP TGF-3/ AKT
CCR7 SMAD
CBL-B
TBL1XR1 PAQR
PAQR miR-128
AEP — miR-338-3p
ACK1
CCR7 CCR7
miR-130 CUL4B
miR-181b Shh
ZIPK

revealed suppression of EMT in GC cells via the induction
of endoplasmic reticulum stress and inhibition of f-catenin
activity. Melatonin therapy decreased peritoneal dis-
semination in mice [39]. A more comprehensive list of the
genes and microRNAs involved in regulating EMT are
listed in Tables 1 and 2.

MMP

The BM is an important regulator of cellular behaviour in
addition to its passive role in supporting surrounding tissues
[40]. In cancer, BM functions as a mechanical barrier that
prohibits cancer cells from penetrating the neighbouring
stroma [41]. MMPs are proteolytic enzymes with a phy-
siological role in degrading ECM proteins. However, dys-
regulation of MMPs, as seen in cancer cells, lead to
uncontrolled proteolytic activity, tissue remodelling and
disproportionate degradation of BM, thereby granting
tumour cells stromal access [42, 43]. MMPs are upregulated
in nearly all cancers, and their increased expressivity is
generally associated with a poorer prognosis. Accumulating
evidence has highlighted the role of MMPs in lymph
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node metastasis, peritoneal metastasis and distant metastasis
[44—-49].

MMP-1

MMP-1 is an interstitial collagenase that plays a role in the
degradation of type I collagen (a major ECM component of
stomach mucosa) [S0-52]. One study reported that Heli-
cobacter pylori infection can stimulate the upregulation of
MMP-1, which could further enhance the potential of GC
metastasis [51].

MMP-2 and MMP-9

MMP-2 and MMP-9 belong to the family of type IV col-
lagenases or gelatinases. Both have been reported to con-
tribute to vessel invasion and lymph node metastasis in
intra-mucosal GC by degrading type IV collagen, which
enabled infiltration of lymph capillaries [44, 53]. Certain
oncogenic proteins play a role in regulating expression of
MMP-2/9 in promoting cell invasion. For example, Bcl-w,
which belongs to Bcl-2 protein family, has been demon-
strated to induce MMP-2 expression via a sequential
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Table 1 Molecular alterations that promote EMT

Table 2 Molecular alterations that suppress EMT

Molecular alterations  Signalling pathways References Molecular alterations  Signalling pathways References

ACh M3R/AMPK/MACCI1 [155] ARIDIA - [201]

ACKI1 AKT/POU2F1/ECD [156, 157] CBL-B AKT/ERK [202]

AEP AKT/MARK [158] CMTM3 STAT3/Twistl/EMT [203]

CCR7 TGFB/ERK/PI3K/Snail [159-161] DDAHI1 WNT/B-Catenin [204]

CUL4A Hippo [162] FBXLS - [205]

CUL4B PI3K/AKT [163] FBXW7 RhoA/pS3 [33, 34, 206-211]
ECM1 ITGB4/FAK/SOX2/HIF-1ae  [164] HOXB9 - [30, 212, 213]
EGF Arf6-ERK [22, 165-167] NMI NFkB/p65 [214]

EphA2 WNT/B-Catenin [38, 168, 169] PAQR3 Raf/MAPK PI3K/AKT  [19, 215, 216]
FOXK1 C-jun [170] PDK1 - [217]

FOXM1 - [171] PPARy - [218]

FOXO03a - [172] Rap1GAP - [219]

HIF-1a Snail [173] RKIP Notchl [220-222]
HOTAIR HGF/CMet/Snail [174] TOPIMT - [223]

IFITM2 IGF1/IGF1R/STAT3 [175] miR-BART6-3p - [224]

1IL-6 JAK2/STAT3 [176] miR-7 IGF [225]

IL-17 STAT3 [177] miR-22 - [69]

JMID2B WNT/B-Catenin [37, 178, 179] miR-23b Notch2 [226]

MICAL2 - [180] miR-128 PI3K/AKT [227]

Orail, STIM]1 - [181] miR-143, miR-145 - [228]
Rab11-FIP2 - [182] miR-200b - [229]

RBP2 TGFp1/Smad3 [183] miR-216a JAK2/STAT3 [230]

RhoGDI2 NFxB/Snail [18, 184, 185] miR-338-3p MET/AKT/PTEN [25, 231-233]
SALLA4 - [186] miR-551b - [234]

SENP3 - [187] miR-1271 - [21]

Shh PI3K/AKT [188] miR-2392 - [32]

SPOCK1 - [17, 189, 190]

SRF - [29, 191]

TBLIXRI1 Peatenin/MMP7/EGFR/ERK  [192] been shown to prevent auto-degradation of MMP-9. Col-
TMPRSS4 - (193] lectively, both MMP-2 and MMP-9 are highly expressed in
ZIPK AKT/IxB/NFxB [194] GC and their expression is positively associated with the
miR-21 - [36] poor survival of GC patients [56].

miR-130 TGFp [195]

miR-181a-5p MAKP [196] MMP-7

miR-181b TGFp/SMAD2/3/4 [197]

miR-363 - [198] MMP-7 (matrilysin) is another MMP that is highly
miR-421 - [199] expressed in GC [57, 58]. It is the smallest (molecular
miR-544a WNT [31] weight) member of MMP family but with most efficient
miR-940 _ [200] ECM-degrading activity on a wide spectrum of matrix

activation of PI3K, Akt and Spl, thereby enhancing cell
invasiveness and GC metastasis [54]. Similarly, androgen
receptor, which is believed to play vital roles in various
types of cancers, has been reported to bind directly to the
promoter region of MMP-9, which upregulates MMP-9
expression and in turn promotes GC cell migration and
invasion [55]. Furthermore, lipocalin-2, which is regarded
as neutrophil gelatinase-associated lipocalin, has recently

substrates, such as proteoglycans, elastin, caseins, laminins,
fibronectins, collagens, gelatins, entactins, vitronectins [59—
61]. The expression level of MMP-7 at the invasive front of
the tumour is relatively higher than the core, which indi-
cates that the upregulation of MMP-7 is associated with
cancer aggressiveness in GC [60]. Interestingly, several
studies indicate that psychological stress-related changes
may be involved in promoting cancer metastasis through
stimulating the expression of MMPs [62-64]. For instance,
it has been reported that catecholamines, which are stress-
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Promotes angiogenesis, gastric cancer cell survivability and invasiveness; degrades the basement membrane;

facilitates permeation into lymphatics

Promotes metastasis

Table 3 MMPs regulating EMT
Functions

MMPs
MMP1
MMP2
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[46, 59, 60]

AP-1/STAT3

Unknown. Associated with invasion of the gastric wall, lymph node metastasis, peritoneal metastasis and poor

survival of gastric cancer patients

MMP7

Promotes cell migration, invasion, lymph node metastasis, distant metastasis and lymphangiogenesis; degrades the Sonic Hedgehog (Shh)/Akt [27, 44, 45, 47-49, 55, 188, 235,

MMP9

238]

basement membrane; facilitates permeation into lymphatics

[67, 239, 240]

[68-70]
[241]

IGF1 pathway

Decreases cancer cell death through apoptosis and necrosis; increases proliferation and invasion.

MMP11

Unknown. Associated with high clinical stage, lymph node metastasis and distant metastasis

MMP14

WNT/B-Catenin

MT3-MMP Increases invasiveness

inducible hormones responsive to stress, depression or
panic, can upregulate MMP-7 expression through AP-1 and
STAT?3 stimulation [59].

MMP-11

MMP-11, also known as Stromelysin-3, is distinct from
other MMPs as it can only weakly degrade the main com-
ponents of ECM. Additionally, it needs to be proteolytically
cleaved and activated intracellularly by Furin-like serine
proteinases prior to its relocalisation to the cell membrane
[65, 66]. MMP-11 was first identified as a breast cancer-
related gene which was later found to be highly expressed in
most metastatic primary tumours as well as in some of their
metastases when compared to matched normal tissues. Not
only was this evident in GC, it could also be seen in renal,
colon and lung cancers [67]. Moreover, one study found
that MMP-11 levels were markedly elevated in the serum of
GC patients compared with those from healthy subjects, and
the enhanced expression of MMP-11 was well associated
with metastases in these GC patients [66].

MMP-14

MMP-14 belongs to one of the six membrane-anchored
MMPs, unlike the majority which are secreted proteins [68].
MMP-14 is normally located at the leading edge or inva-
dopodia of a cell, which facilitates the degradation of ECM
and guides cells to invade in a specific direction [68].
Additionally, MMP-14 promotes the secretion and activa-
tion of pro-MMP-2 and pro-MMP-9 [68, 69]. A recent
meta-analysis showed that MMP-14 levels were sig-
nificantly higher in GC tissues, and the increased MMP-14
expression correlated to higher clinical stage and metastases
[70].

While most of the studies thus far focus on cancer cells-
derived MMPs, emerging evidence indicate that MMPs
(including MMP-2 and MMP-9) can also be secreted by the
surrounding stromal cells, such as endothelial cells, fibro-
blasts, myofibroblasts and inflammatory cells [65]. These
findings imply the importance of the tumour micro-
environment in GC metastatic progression, as discussed
below (Table 3).

Stromal environment

When cancer cells reach the surrounding stroma following
EMT and BM penetration, the next step involves over-
coming the barriers to allow further infiltration. Recent
studies revealed that tumours function as a complex mul-
ticellular organ composed of both cancer cells and tumour
stroma with significant interactive cross-talks [71]. It is thus
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unsurprising that tumour progression may be driven by
molecular alterations in cancer cells as well as the tumour-
associated stromal microenvironment [71-74]. GC cells
invading into surrounding stroma will thus be confronted
with neutrophils [75], carcinoma-associated fibroblasts
(CAFs) [72, 74, 76], and a range of bone marrow-derived
cells such as mesenchymal stem cells (MSCs) [72, 77, 78]
and tumour-associated macrophages (TAMs) [79]. In
response, it has been shown that cancer cells generate a
variety of growth factors, chemokines and proteases that
modulate surrounding stroma to establish a tolerant and
contributory stromal environment for tumour progression
[71].

Stromal cells

Stromal cells can heighten the aggressiveness and inva-
siveness of cancer cells through different molecular sig-
nalling pathways. For instance, interactions between
neutrophils and MSCs via an IL-6-STAT3 axis lead to
neutrophil activation and MSCs differentiation into CAFs,
which provide a pro-inflammatory habitat. These stromal
cells in turn collaboratively induce angiogenesis and inva-
siveness of GC cells to stimulate metastatic dissemination
[75]. Furthermore, CAFs, derived from bone marrow, and
MSCs are frequently enriched during progression into
dysplasia. They express cytokine IL-6, glycoprotein Wnt5a,
bone morphogenetic protein BMP4, as well as exhibit DNA
hypomethylation and induce invasive growth [72]. Addi-
tionally, enhanced IL-17B expression in GC tissues leads to
MSCs activation and increased migration and stemness,
which further accelerates GC cell migration [77]. Interest-
ingly, a recent study showed that MSCs are recruited and
reprogrammed in tumour-specific manner. For example,
lung cancer cell characteristics are independent of their
MSC counterparts while GC cell proliferation, migration
and invasion are dependent on the activation of hepatocyte
growth factor (HGF)/c-MET signalling pathway specifically
induced by HGF from GC-MSCs [78]. Moreover, gene-
expression profiling of GC patients has identified a 'stromal-
response' expression signature, which is highly enriched in
inflammation-, ECM-, cytokine- and growth factor-related
proteins. Most of these genes are specifically expressed in
the surrounding stroma, but not cancer cells themselves,
indicating the important role of stromal cells in promoting
GC cell migration and metastasis [79].

Angiogenesis

Angiogenesis represents a tumour response to the hypoxic
and nutrient-deficient environment driven by uncontrolled
cellular proliferation and consequent explosive enlargement
of tumour bulk [80, 81]. This process is fine-tuned by

multiple signalling molecules and pathways in the tumour
microenvironment. For example, miR-130a and miR-495
mediated downregulation of RUNX3, a suppressor of
tumour angiogenesis, induces the metastatic ability of GC
cells [82]. Based on the hypothesis that neovasculature can
be formed through sprouting new vessels from existing
blood vessels, emerging evidence indicate that tumour-
associated angiogenesis can be initiated by cells recruited
from the bone marrow or differentiated from putative cancer
stem-like cells [81, 83]. Tumour-induced neovascularisation
serves to supply sufficient oxygen and nutrients to meet the
metabolic needs of uncontrolled tumour growth. Further-
more, studies show that tumour-associated angiogenesis are
usually leaky and tortuous with high permeability, which
could increase the chance of surrounding tumour cells
intravasating into the blood circulation and disseminating to
distant sites [12, 81, 84].

Lymphangiogenesis

Recent studies have shown that the growth of lymphatic
vasculature, also known as lymphangiogenesis, -either
around the tumour or in the sentinel lymph nodes, is asso-
ciated with increased incidence of lymphatic metastasis [85,
86]. In GC patients, lymph nodes are among top metastatic
destinations, and accumulating evidence has shown that LN
metastasis predicts GC prognosis [87, 88]. A study reported
that the lymphatic vessel density (LVD) within lymph
nodes is closely associated with nodal metastasis and
malignancy of GC. Concomitantly, GC patients with high
LVD showed notably poorer prognosis compared to low-
LVD group, suggesting that intranodal lymphangiogenesis
is tightly correlated with lymph node metastasis and poor
prognosis in GC patients [86]. Mechanistic studies have
highlighted the molecular mechanisms underlying the reg-
ulation of lymphangiogenesis. For instance, it has been
shown that VEGF-C, VEGF-D and VEGFR-3 have an
inducive role in promoting lymphangiogenesis in various
cancers [85, 89-91], including GC [86, 92, 93]. Using
human lymphatic endothelial cells co-cultured with VEGF-
C-induced high-lymphangiogenesis GC cell line MKN45
and SGC-7901, the researchers identified several
lymphangiogenesis-associated microRNAs such as upre-
gulation of miR-648, miR-5002-3p and downregulation of
miR-3178, miR-593-5p, miR-4485 [92]. Rosiglitazone [87],
a peroxisome proliferator-activated receptor y (PPARYy)
agonist, has shown promising suppressive effect on lym-
phangiogenesis by concurrently downregulating the
expression of VEGF-C and VEGFR-3 in GC xenograft
mice models [93].

Collectively, these findings provide evidence that inter-
actions between cancer cells and the tumour-associated
stromal microenvironment could establish a potential

SPRINGER NATURE
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positive-feedback loop, which provides substantial con-
tributions to GC progression and metastasis. Accordingly, it
is reasonable to hypothesise that tumour malignancy may be
suppressed or even reversed by normalising the stromal
environment.

Intravasation into the circulation

During the path of local invasion, cancer cells may
encounter blood vessels or lymphatics to facilitate move-
ment towards distant pre-metastatic niches. Alternatively,
they may reach and penetrate beyond the serosa to initiate
intraperitoneal seeding or direct invasion into neighbouring
organs. Here we focus on intravasation which describes the
process in which cancer cells gain access into the tumour-
associated vasculatures located in the gastric submucosa
[10, 43, 93].

Intravasation can be accelerated by molecular alterations
that improve the potency of cancer cells in transendothelial
invasion. Accumulating evidence has shown the positive
correlation among vascular invasion, intratumoral angio-
genesis and distant metastasis [94, 95]. For example, the
first cloned member of CCN family, Cysteine-rich 61
(Cyr61), was shown to enhance the IL-8-dependent che-
motactic migration of GC cells through inducing CXCR1/
CXCR?2 function, which promotes transendothelial invasion
and intravasation [96].

Apart from its role as passive channels for tumour cell
dissemination, emerging evidence also illustrated that
lymphatic vessels actively stimulate recruitment of tumour
cells to lymph nodes, immune regulation and cancer cell
survival [85, 89]. The quantity of lymphatic vessels in the
vicinity of primary tumours correlates with the rate of
lymph node metastasis, and lymphatic metastasis is a key
factor for prognosis and tumour staging in majority of
cancers [85, 90, 97].

Intraperitoneal spread after serosal
penetration

In addition to distant metastasis, ~10-20% of GC patients
were found to harbour peritoneal metastasis that have likely
arisen from exfoliated cancer cells through penetration of
the gastric serosa [13, 98, 99]. However, this is likely to be
an underestimation as intraperitoneal seeding was subse-
quently found in some who had undergone radical gas-
trectomy [98]. These microscopic metastases can initially be
difficult to identify by imaging or even during surgery, and
is only realised when patients present with progressive
disease despite curative surgery. The field has yet to identify
any molecular alterations that facilitate this pathway.

SPRINGER NATURE

Survival within vasculature transition and
intraperitoneal environment

Following successful intravasation into the circulation, the
disseminating cancer cells, now termed circulating tumour
cells (CTCs), must survive the precarious microenviron-
ment en route to new sites of dissemination. The exposure
to blood introduces stressors such as haemodynamic shear
forces and recognition by the innate immune system. Fur-
thermore, CTCs must also gain the ability to survive in the
absence of substratum [100-102].

Anoikis resistance

The concept of 'anoikis' represents a form of programmed
cell death triggered by loss of ECM attachment in epithelial
cells [103]. Anoikis is crucial for maintaining epithelial
architecture by prohibiting abnormal proliferation in
unwanted locations after detachment. Cancer cells are fre-
quently resistant to anoikis, which enable them to survive
and thrive even after detachment from its substratum.
Anoikis resistance is mechanistically facilitated by cell
adhesion molecules, integrins and apoptosis modulators
[103, 104], which promotes cell survival and dissemination
in the periphery, thereby increasing the possibility of
metastatic spread. For example, the peritoneal dissemina-
tion of GC cells can be inhibited by Caspase-8-augmented
anoikis, which reduced cell survival in vitro and in vivo
[105]. Meanwhile, tight junction protein Claudin-1 can
induce anoikis resistance through [-catenin-modulated
cell—cell adhesion and survival signals [106]. Of interest,
RhoA, which belongs to Rho family GTPases, is upregu-
lated in primary GC and its activation has been suggested to
be essential for anoikis resistance by eliciting pro-survival
responses [4, 107]. Hypoxia-induced ANGPTL4A in GC
cells also induces increased resistance to anoikis by acti-
vating ANGPTL4A-dependent FAK/Src/PI3K-Akt/ERK
pathway, leading to elevated peritoneal metastasis in scir-
rhous GC cells [108].

Platelets

Auxiliary pro-metastatic signals exist during intravascular
transition in the circulation to aid cancer metastasis.
Emerging evidence has shown that the interaction between
platelets and cancer cells, more specifically the formation of
emboli, are constructive in priming CTCs for intravascular
survival [100, 109-111]. On the one hand, the platelet-
coated tumour cells can protect them from blood flow shear
forces, substratum absence and direct lysis by natural killer
cells [112]; on the other hand, their association could also
induce EMT in cancer cells [109], enhance adhesion to
endothelial cells [111], or even disrupt the function of
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endothelial barrier, making it more porous for extravasation
of cancer cells [101]. One recent study postulated an asso-
ciation between microRNAs and platelets using microRNA
microarray analysis of MKN45 cell line. The group iden-
tified miR-4670-5p as the most significantly upregulated
microRNA that promoted GC cell proliferation and that its
proliferation-promoting effects are inhibited by aspirin
in vivo [113]. This finding is consistent with five large
randomised clinical trials showing that platelet inhibition by
low-dose aspirin is beneficial in reducing the incidence of
cancer metastasis [114]. Platelet micro-particles (PMP),
submicroscopic vesicles shed by activated platelets mem-
brane, are significantly upregulated in GC patients as
compared to healthy subjects. Plasma PMP can be used as a
platelet activation marker for GC diagnosis and to screen
GC patients with increased potential for metastasis [115].
These results indicate that interaction between platelets and
CTCs function as intrinsic determinants for distant metas-
tasis through promoting cancer cell survival during intra-
vascular transition, thereby raising the prospect of
developing platelet inhibition drugs to aid anti-metastasis
therapy.

Extravasation into 'fertile soil' at distant pre-
metastatic niches

Despite the theoretical possibility that CTCs can be
deposited at any metastatic niche within or surrounding
both circulation systems, clinical observations have shown
that certain cancer types have a higher probability of giving
rise to metastasis in certain target organ(s) because of
exosome-initiated pre-metastatic niches formation. For
example, GC tends to form distant metastasis in the liver,
peritoneum, lung, bone and lymph nodes [10]. Two
hypotheses have postulated the pattern of metastasis trop-
ism: (1) passive transfer, whereby the site of dissemination
is dependent on vessel diameter as circulating cancer cells
are arrested as they reach the microvasculature, which
suggests that the metastatic pattern could be influenced by
the layout of circulation systems [116]; (2) active homing,
whereby the CTCs have genetically programmed
receptor—ligand signalling that have predetermined pre-
dilections to target specific organs [6].

Extravasation

Extravasation represents the exiting of circulating cancer
cells out of the vessel lumen to establish new sites of
metastasis. There are two recognised forms of extravasation
dependent on vessel diameter. Firstly, CTCs with adhesive
molecules on the surface can attach to and penetrate the
endothelium of the vessel walls irrespective of vessel size

[6]. Alternatively, CTCs may be arrested and trapped at the
microvasculature due to their relatively larger diameters of
20-30 um compared to that of around 8um [6]. Once
trapped, CTCs tend to grow into microcolonies which dis-
rupt the luminal wall and invade into the surrounding tissue
environment. Emerging evidence shows that the latter
choice is the prevalent pathway by which CTCs grow into a
distant metastasis, as single extravasated cancer cells may
easily be eliminated by the surrounding microenvironment
[117].

Naturally, factors that promote vasculature permeability
are associated with increased extravasation. Calponin hl, an
actin-binding protein which is mainly expressed in smooth
muscle cells, plays a role in stabilising the actin filament
system. Calponin hl deficiency can induce the fragility of
blood vessels and peritoneum, leading to the increased
incidence of extravasation and tumour metastasis [118].
Accumulating evidence has shown that ANGPTL-4 plays a
role in promoting metastasis by inducing the permeability of
vasculatures in cancers that metastasise to the lungs [119,
120], and that ANGPTL-4 can increase the frequency of
venous invasion. The potential role of ANGPTL-4 in dis-
rupting vascular permeability in promoting GC metastasis
requires further investigation [121].

Furthermore, studies focusing on targeting extravasation
has led to the discovery of a double anti-angiogenic decoy
receptor, double anti-angiogenic protein (DAAP), which
simultaneously targets VEGF-A and angiopoietins to block
tumour-associated angiogenesis and vascular leakage [122].
Hence this suggests that there is potential for analogues to
be developed that can limit primary tumour growth as well
as inhibit distant spread.

Exosome and pre-metastatic niche formation

Exosomes are membranous nanoparticles 40-50 nm in
diameter and they can be released by both tumour cells and
surrounding stromal cells, which will interact reciprocally to
modulate immune responses, remodel tumour micro-
environments and facilitate cancer metastases [123-125].
The role of GC-derived exosomes in metastasis has been
extensively studied over the years.

GC-derived exosomes can modulate immune responses.
For example, GC-derived exosomes can stimulate macro-
phages to generate a pro-inflammatory microenvironment
via activation of nuclear factor kB (NFkB) signalling
pathway, resulting in increased cell proliferation and
migration [126]. Similarly, GC-derived exosomes envel-
oped with miR-451 can be translocated to infiltrating T cells
and induces mTOR signalling pathway activation, which in
turn leads to T-helper 17 (Th17) cells differentiation [127].
Hence, GC-derived exosomes may play important roles in
mediating immune surveillance escape.
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In terms of tumour microenvironment remodelling and
cancer metastasis, mounting evidence indicates that GC-
derived exosomes can initiate or accelerate pre-metastatic
formation [124, 128, 129]. For example, EGFR-containing
exosomes secreted by GC cells can be transported to liver
and activate hepatocyte growth factor (HGF), which inter-
acts with ¢c-MET on disseminated GC cells in a paracrine
fashion, thereby further promotes their colonisation and
proliferation [130]. In addition, another study demonstrated
that GC-derived exosomes can bolster pre-metastatic niche
formation in peritoneum by inducing fibrosis and the dis-
ruption of mesothelium, which originally functions as a
protective barrier to restrain peritoneal metastasis [131].
Similarly, GC-derived exosomes can promote expression of
adhesion-related molecules, such as fibronectin 1 (FN 1)
and laminin gamma 1 (LAMC 1), in mesothelial cells,
which result in a favourable microenvironment for dis-
seminating cancer cells to colonise and initiate metastasis
[132].

Nevertheless, researchers are utilising the unique features
of exosomes for drug delivery. Exosomes are loaded with
drugs or siRNA to target the tumour regions [133, 134].
Exosomes loaded with HGF siRNAs have shown promising
efficacy in inhibiting tumour growth, migration and angio-
genesis in vitro and in vivo [133]. Exosomes isolated from
heat stress-treated malignant ascites of GC patients showed
elevated immunogenicity and might be employed as a
cancer vaccine. Such exosomes can induce dendritic cell
maturation and stimulate a tumour-specific cytotoxic T
lymphocyte response [135].

Despite intensive efforts, limitations still exist in the
study of exosomes as they are mainly restricted to in vitro
co-culture or in vivo injection using labelled-exosomes,
which is markedly different from their physiological loca-
tion and concentration [123]. These concerns accentuate the
necessity of developing novel models to overcome the
limitations in exosome studies.

Colonisation and proliferation reactivation
into clinical detectable metastases

Given the divergent microenvironment of the metastasised
sites from that of the stomach, successfully extravasated
cells need to adapt to the foreign microenvironments in
order to survive and colonise. Currently, there are two
universally acknowledged mechanisms by which cancer
cells adapt to their new microenvironment: (1) cell auton-
omous programmes and (2) non-autonomous programmes
[6].

For cell autonomous programmes, disseminating tumour
cells (DTCs) acquire molecular alterations to increase
their colonising ability. Colonising abilities are normally
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evaluated by detecting pulmonary metastases after intrave-
nous (IV) injection in immune-deficient mice. For example,
ectopic expression of RUNX3 repressed lung colonisation
of GC cells in nude mice [28]. Similarly, the silencing of
IL-32 in GC cells inhibited cell motility, invasion and lung
colonisation in severe combined immunodeficiency (SCID)
mice [136]. In the case of peritoneal metastasis after serosa
penetration, increased expression of connexin 43 (Cx43) in
GC cells exfoliated into peritoneal cavity was found to
enhance their heterocellular gap-junctional intercellular
communication (GJIC) with peritoneal mesothelial cells,
which in turn mediated heterocellular gap junction and
accelerated the infiltration of GC cells into peritoneal
mesothelium for further colonisation [137]. This finding
provides implications for further studies on GC cells seeded
onto the lining mesothelial layer. Another mechanism is
based on ligand-receptor interaction. For example, the
expression of stromal cell-derived factor-1, together with its
sole interactive receptor CXCR4, correlated with increased
probability of lymph node and liver metastases [138]. For
non-autonomous programmes, certain organ sites provide
supportive niches which better facilitate the survival of
DTCs. A recent retrospective study found that patients with
STAT3 activation in cancer cell-free lymph nodes demon-
strated higher rate of metastasis and poorer prognosis,
which implicated the possibility of p-STAT3-induced pre-
metastatic niches in lymph nodes [139]. Indeed, STAT3
blockade in myeloid cells abrogated the formation of pre-
metastatic niches [140]. Moreover, the inflammatory cyto-
kine tumour necrosis factor-o (TNFa) has been reported to
induce morphological changes of mesothelial cells and
regulate interactions between peritoneal mesothelial cells
and DTCs, which in turn promotes peritoneal metastasis of
GC cells in the intraperitoneal (IP) injected mouse model
[141]. Hence, cytokines and chemokines also play a role in
the shaping of pre-metastatic niches for GC peritoneal
metastasis. Collectively, both autonomous and non-
autonomous programmes promote cancer cells’ colonisa-
tion in pre-metastatic niches.

However, clinical observations showed that relapses are
often detected long after removal of the primary tumour,
spanning from months to years even when there was no
previous evidence of metastasis [142]. This implies that
these patients already carry DTCs in the body, where those
DTCs remain dormant in two modes: (1) cellular dormancy
and (2) tumour mass dormancy [143]. For example, in some
GC patients, dormant DTCs can be detected harbouring
inside bone marrow and they eventually develop into
detectable metastasis in brain after 10 years, illustrating that
dormant DTCs derived from GC retained both metastatic
and growth ability for long periods of time [143, 144].

Latency represents a state in which metastatic cancer
cells undergo proliferative quiescent in order to escape from
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immune clearance, attack from the new microenvironment
and the surrounding growth inhibitory signals. They remain
latent until certain, currently unknown factors re-activate
their proliferative potency. At present, our knowledge of the
underlying mechanisms of latent metastasis is limited due to
the lack of mouse models that faithfully recapitulates the
metastatic process and microenvironment.

Conclusion and perspective

Over the past decades, research progress on GC metastasis-
related molecular alterations has provided valuable knowl-
edge for deciphering this complex biological phenomenon.
Although by no means comprehensive, we have rapidly
gained an appreciation for the importance of stromal cells
and the microenvironment. Nevertheless, due to the com-
plexity and systemic nature of metastasis, a number of
fundamental questions concerning the mechanisms of GC
metastasis remain unanswered.

The major hurdle in the study of tumour metastasis is the
lack of a mouse model with a competent immune system
that can perfectly mimic the entire metastatic cascade.
Therefore, this bottleneck imposes restrictions on in-depth
study of the latter stages in the GC metastatic cascade.
Attempts to establish a better metastatic mouse model have
recently achieved intriguing progress, such as the imple-
menting genome-wide or high-throughput screening
approaches into immune-competent mice for identification
of novel regulators of metastases [145, 146]. In this way,
researchers can evaluate both tumour-cell-intrinsic (mole-
cular manipulation of cancer cells) and tumour-cell extrinsic
factors (tumour microenvironment of genetically engineered
mice or drug treated mice) that modulates the metastasis
cascade. Interestingly, a recent study used vascular endo-
thelial growth factor receptor (VEGFR3) as an 'lymphor-
ecporter' and established a novel mouse model that allows
whole-body imaging of lymphovascular niches, which shed
new lights on pre-metastatic niches [147]. These innovative
technologies can all be considered as tools for future GC
metastasis study.

Metastatic cancer cells that have successfully intrava-
sated into the circulation system can survive and extravasate
efficiently (>80%) [145]. This phenomenon suggests that
effective mechanisms exist to protect CTCs from being
eliminated during the transition. Mounting evidence has
shown the correlations between neutrophil/lymphocyte ratio
(NLR) and GC patients outcome that high NLR predicts
poor prognosis and survival status [148—150]. However,
few research has done on the mechanism by which neu-
trophils interact with CTCs in the circulation system to
promote metastasis progression. Meanwhile, the role of
other tumour-infiltrating immune cells, such as TAMs,

natural killer (NK) cells, CAFs, also deserves further
investigation.

Mechanistically, apart from the widely reported function
of MMPs in the degradation of ECM, recent studies
have revealed alternative roles of MMPs in metastasis,
such as regulation of growth signals, apoptosis, tumour
vasculature, inflammation and non-proteolytic functions
[42]. Moreover, long noncoding RNAs (IncRNAs) are also
gaining attention, since emerging data indicate that the
deregulation of IncRNAs might contribute to tumour
metastasis [151-154]. Apart from cell intrinsic alterations
that contribute to GC metastasis, tumour-derived exosomes
also showed great influences on inducing pre-metastatic
niches [128]. These potential targets also deserve further
exploration.

We hope that our understanding of the evolution of
cancer metastasis continues to excel at this impressive pace,
and that some of these findings will be translated into
clinical use, especially in light of the current proportion of
patients with metastatic GC.
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