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High failure rates of femoropopliteal artery (FPA) interventions are often

attributed to severe mechanical deformations that occur with limb flexion.

One of these deformations, cross-sectional pinching, has a direct effect on

blood flow, but is poorly characterized. Intra-arterial markers were deployed

into n ¼ 50 in situ cadaveric FPAs (80+ 12 years old, 14F/11M), and limbs

were imaged in standing, walking, sitting and gardening postures. Image

analysis was used to measure marker openings and calculate FPA pinching.

Parametric finite element analysis on a stent section was used to determine

the optimal combination of stent strut amplitude, thickness and the number

of struts per section to maximize cross-sectional opening and minimize

intramural mechanical stress and low wall shear stress. Pinching was

higher distally and increased with increasing limb flexion. In the walking,

sitting and gardening postures, it was 1.16–1.24, 1.17–1.26 and 1.19–1.35,

respectively. Stent strut amplitude and thickness had strong effects on

both intramural stresses and pinching. Stents with a strut amplitude of

3 mm, thickness of 175 mm and 20 struts per section produced pinching

and intramural stresses typical for a non-stented FPA, while also minimizing

low wall shear stress areas, and ensuring a stent lifespan of at least 107

cycles. These results can help guide the development of improved devices

and materials to treat peripheral arterial disease.
1. Introduction
Peripheral arterial disease (PAD) often manifests as an atherosclerotic obstruc-

tion of the femoropopliteal artery (FPA), reducing blood flow to the lower

limbs. It is a major public health burden and is associated with significant

costs [1] because of the high numbers of peripheral vascular operations and

interventions that fail, resulting in poor clinical outcomes and a frequent

need for repetitive interventions [2–5].

A significantly higher frequency of FPA reinterventions compared with

other arterial beds, such as carotid or iliac arteries, suggests that the local mech-

anical environment of the FPA plays a significant role in its pathophysiology

[6]. Surrounded by powerful muscles, the FPA experiences severe mechanical

deformations with limb flexion that include axial compression [7], bending

[7,8], twisting [9] and cross-sectional pinching. These deformations and the

associated forces acting cyclically with each limb flexion can ultimately injure

the arterial wall, producing deleterious cellular and biochemical responses,

and culminating in disease development, progression and reconstruction failure

[6,8,10–14]. Understanding the magnitude of these deformations and the
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associated forces is particularly important for the design of

materials and devices used in PAD repair, as these devices

need to withstand the severity of the mechanical environment

in the lower limb.

Several prior studies have used in vivo imaging [15–17] to

quantify limb flexion-induced deformations of the leg artery,

but these measurements often relied on arterial side branches

that tether the FPA to the surrounding tissues, thereby

restricting deformations and resulting in significantly under-

estimated results [6,8]. Other studies have used stents [18–21]

to assess deformations of the FPA, but because different

stents affect baseline deformations differently [21–23], these

results may be applicable only to a particular device that

was used to perform measurements. In addition, intricate

stent patterns significantly complicate independent measure-

ments of FPA deformation modes because many devices

demonstrate coupled compression/bending/twisting/pinching

behaviour [21,23].

To overcome these limitations, a new approach using a

perfused human cadaver model was successfully imple-

mented to measure limb flexion-induced axial compression,

bending and twisting of the FPA with limb flexion and

extension [7–9,21]. In this approach, a custom-designed

intra-arterial marker system and clinical computerized tom-

ography (CT) imaging was used to spatially track the FPA

in different limb flexion postures corresponding to normal

daily activities of standing, walking, sitting and gardening.

Intra-arterial markers had no sizable effect on limb flexion-

induced deformations [9,21], but allowed their accurate and

repeatable measurements without relying on arterial side

branches. Using this technique, recent studies reported axial

compression [7], bending [7] and twisting [9] of the FPA

with limb flexion, but the method also allows direct assess-

ment of cross-sectional pinching—a characteristic that has a

paramount effect on blood flow but has not yet been evalu-

ated in previous studies and is therefore poorly understood.

Characterization of limb flexion-induced pinching of the

FPA is particularly important for treatment of heavily

calcified lesions [24] in arterial segments that experience

significant deformations and require stents that can maintain

an open lumen during acute bending of the artery. While

making a stiff device that would remain open is fairly

straightforward, the trade-off is high intramural stresses

that such a device would chronically introduce to the arterial

wall [25,26], thereby disrupting the healing process and

potentially worsening clinical outcomes. In this study, we

performed a parametric computational analysis to determine

the optimal combination of stent strut amplitude, thickness,

number of struts per section and length of interconnectors to

maximize the cross-sectional opening of the artery during

limb flexion while maintaining the baseline intramural

stress level, ensuring adequate fatigue performance of the

stent and minimizing low pathogenic wall shear stress.
2. Methods
2.1. Human cadaver model and assessment of

femoropopliteal artery pinching
Custom-made four-legged intra-arterial markers were laser-cut

from nitinol tubes and heat-set to the shape depicted in the

insert of figure 1. Two of the four legs were longer, and one of
the long legs had extra material at the tip for easy identification

of marker orientation on imaging. The markers were designed to

exert the same small radial force on both the long and the short

pairs of legs, which was achieved by varying the length and

width of these legs.

The hollow head of each marker allowed them to be placed

on a string for easy delivery and retrieval. Two sets of markers,

each containing 22 devices spaced 2 cm apart, were made and

validated in silicone tubes to ensure that markers maintained

their position during tube deformations without sliding along

the lumen [9]. Each set of markers was then compressed and

loaded into a 6-French plastic tube for minimally invasive

delivery into the cadaveric FPA (figure 1).

Markers were deployed under fluoroscopic guidance into

n ¼ 50 limbs of 25 perfused lightly embalmed human cadavers

(80+12 years old, 14 female, 11 male, no peripheral artery inter-

ventions, no aneurysmal disease and no metal prostheses that

can interfere with CT imaging). The use of human cadavers is

not considered human subjects research, and did not require

Institutional Review Board approval. Light embalming [27]

with glutaraldehyde-based solution as opposed to formal-

dehyde-based solution allowed preservation of natural tissue

elasticity, which was verified by performing tensile mechanical

testing [28–30] and comparing data with similarly aged fresh

FPAs [21,31,32] (figure 2a).

Details of the intra-arterial marker deployment method and

its validation are provided in our previous works [7,9,21], but

the technique was designed to maintain the integrity of the

anatomical structures surrounding the FPA while providing a

sufficient number of radiopaque reference points for accurate

characterization of FPA deformations. Arteries were perfused

with the Harvard Apparatus Large Animal pump (Harvard

Apparatus, Holliston, MA) using a 3788888C radiopaque custom

mixture fluid containing calcium carbonate to avoid tissue

swelling. CT images (GE Light Speed VCTXT scanner; GE

Healthcare, Waukesha, USA) were obtained with limbs in the

standing (180o), walking (110o), sitting (90o) and gardening

(60o) postures, and used to measure openings between the

long and short legs of each marker in each limb flexion state

using the Mimics (Materialize Co., Leuven, Belgium) software.

All measurements were acquired by a single operator to

reduce variability.

Deployment of intra-arterial markers had no measurable

effect on limb flexion-induced FPA deformations [21], which

was verified by imaging the artery before and after marker

deployment (figure 2b). For the FPA presented in figure 2b, aver-

age pinching without the markers was 1.129+ 0.13 (range

1.009–1.431) and with the markers 1.130+0.13 (range 1.004–

1.458), and a paired two-tailed t-test demonstrated no difference

between the two cases (p ¼ 0.93).

To further characterize the amount of radial force that

markers exerted on the FPA wall, 10 markers were randomly

selected from the batch and tested under uniaxial compression

using a CellScale Biotester equipped with a 5 N loadcell.

During the test the head of each marker was fixed between

the clamps on one axis of the Biotester, and compressive

displacement was applied on another axis (figure 3a,b).

Loading–unloading force–displacement curves (figure 3c) were

fitted with a line equation using Matlab (MathWorks, Natick,

MA, USA), which produced a measure of marker stiffness k
that related displacements to force, and allowed assessment of

the local radial force associated with limb flexion in each

marker in situ by measuring the difference between marker open-

ings in the straight and flexed limb postures and multiplying the

result by k ¼ 21.6+1.3 mN mm21.

Marker openings were also used to assess pinching of the

FPA by calculating the ratios of largest to smallest openings

(figure 1). Comparison of these openings in all flexed limb
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Figure 1. Perfused human cadaver model in straight (standing) and flexed (gardening) postures with inserted intra-arterial markers. Differences between openings
of the long and short pairs of marker legs in the straight (green) and flexed (blue) postures were used to determine radial displacements associated with limb
flexion.
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postures with those in the straight limb posture allowed

measurement of limb flexion-induced change in cross-sectional

diameter, i.e. the d=D ratio, which will be further referred to as

compression. Here, d and D are marker openings (i.e. FPA diam-

eters) in the flexed and straight postures, respectively, that

were measured for both short and long pairs of marker legs

(figure 1). As many FPA cross sections were skewed, we have

selected the smallest d=D ratio between the long and short

pairs of marker legs to represent the most severe compression

in a given FPA segment. Change in cross-sectional area along

the length of the FPA was assessed as the area of the ellipse

with major and minor axes represented by marker openings.

Finally, the FPA along its length was divided into the super-

ficial femoral artery (SFA), spanning from the profunda femoris

(PF) artery take-off to the adductor hiatus (AH), and the popli-

teal artery (PA), which spanned from the AH to the

tibioperoneal trunk (TPT). The centre of the AH was defined

using the anterior projection view to locate the point at which

the FPA crosses the femur, and the length of the AH was

assumed to occupy the last and first 10% of the SFA and PA

lengths, respectively. Maximum pinching, most severe com-

pression and forces occurring in each of the three FPA segments

were calculated for each limb in each posture. Pearson’s corre-

lation coefficient r was used to assess the strength of correlations

with age. The hypothesis of no correlation was tested against

the alternative that there is a non-zero correlation assuming

statistical significance at p , 0.05. When appropriate, paired

two-tailed t-tests with statistical significance set at p , 0.05 were

used to assess differences between two groups.
2.2. Influence of stent design on femoropopliteal artery
pinching, intramural stresses and fatigue
performance

Finite element analysis (FEA) was used to study how FPA

pinching is affected by different stent designs. A generic 7 mm

diameter sine-wave stent section with a circular cross section

was parametrically constructed using Python scripting in

Abaqus 2017 CAE (Simulia; Dassault Systemes, Waltham, MA),

taking advantage of the model symmetry to reduce compu-

tational cost. Three geometric parameters were varied to

change stent characteristics, including strut amplitude (A ¼ 1,

2, 3 mm), strut thickness (t ¼ 100 mm, 175 mm, 250 mm) and the

number of struts per stent section (N ¼ 8, 12, 20) (figure 4),

resulting in a total of 27 models. The stent was modelled using

a superelastic material model for nitinol available in Abaqus

with two different sets of material properties adopted from

Gökgöl et al. [33] and Kleinstreuer et al. [34]. For convenience

these parameters are summarized in table 1.

The arterial segment was modelled as a tube with an inner

diameter of 6 mm and wall thickness of 1.1 mm typical for human

FPA. Axial loading was not simulated because during limb flexion

FPAs undergo axial compression [7] that releases most of the

axial tension [29]. A two-fibre family Holzapfel–Gasser–Ogden

constitutive model [35] with C0 ¼ 23:3 kPa, Ccol
1 ¼ 12:04 kPa,

Ccol
2 ¼ 18:2, g ¼ 45:22� parameters corresponding to a 60–70

year old artery [32,36] were used to describe the mechanical

behaviour of the arterial wall. Compressibility was simulated
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by setting the ratio of the initial bulk modulus to the shear

modulus at K0=C0 ¼ 20, and arterial density was assumed to

be 1 g cm23. The tube was filled with a soft and near incompres-

sible material to simulate the effects of blood in supporting the

wall during bending. Linear elastic material was used to simulate

the filling, and the elastic modulus was set to 0.1 kPa with a

Poisson’s ratio of 0.499 producing a 1.41 pinching ratio during

bending—an upper limit of FPA pinching observed in the cadaver

experiments.

Prior to deployment into the artery, the stent was crimped

using a rigid tubular catheter meshed with surface elements

SFM3D4R with 7 g cm23 density. The ends of the artery were

constrained to move as rigid bodies guided by reference points,

and equal and opposite rotations of 908 were prescribed

to these reference points, followed by distance adjustment to

produce a bent configuration. The stent was then deployed

accounting for the contact between the stent and the inner

arterial surface using a general contact algorithm with a friction
coefficient of 0.4. To reduce oscillations during stent deployment,

a small viscous pressure of 0.01 kPa was applied to the inner

surface of the wall. The amount of viscous pressure was chosen

such that it eliminated oscillations yet did not affect arterial defor-

mation. Finally, the stabilization step was performed to allow the

stent–artery system to equilibrate. During all steps, loading rates

and time increments were chosen to keep the kinetic energy

within 5% of the internal energy of the system. Mesh sensitivity

analyses for the stent and the arterial wall were performed to

ensure mesh-independent results in terms of maximum principal

strains and von Mises stresses, respectively.

Stent designs and material parameters were compared in

terms of the degree of arterial pinching they produced, measured

as the ratio of the long to short axes of the elliptical cross section;

in terms of the maximum principal strains in the stent; and in

terms of the average intramural von Mises stress in the region

that involved the stent and 1 mm of artery on both sides of the

stent. Finally, the stent fatigue safety factor (FSF) for each



Table 1. Nitinol material properties used in simulations [33,34].

Gökgöl
et al. [33]

Kleinstreuer
et al. [34]

austenite elastic modulus EA, MPa 65 000 51 700

austenite Poisson’s ratio nA 0.33 0.3

martensite elastic modulus EM, MPa 23 500 47 800

martensite Poisson’s ratio nM 0.33 0.3

transformation strain eL 0.046 0.063

start of transformation loading sS
L, MPa 465 600

end of transformation loading sE
L, MPa 535 670

start of transformation unloading sS
U, MPa 227 288

end of transformation unloading s1UE , MPa 187 254

start of transformation stress in compression sS
CL, MPa 582 900

volumetric transformation strain eL
V 0.046 0.063

density r, g cm23 6.5 6.5

A = 1 mm
t = 100 µm
N = 20

A = 2 mm

N

t

2A

t = 175 µm
N = 12

A = 3 mm
t = 250 µm
N = 8

Figure 4. Three representative stent designs with different strut amplitudes (A), strut thicknesses (t) and number of struts per stent section (N ). (Online version in
colour.)
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design was assessed based on the nitinol endurance limit of 0.4%

[37], and stent strain amplitude 1a calculated as the difference

between deployed stents in straight and bent FPA configurations

at any given integration point as FSF ¼ 0:4=1a [38].

2.3. Influence of stent design on wall shear stress
Computational fluid dynamics (CFD) analysis was performed to

assess the effects of different stent designs on FPA haemody-

namics. The inner surface of the bent and stented FPA segment

was extracted from Abaqus, and the volume mesh was created

using the 3Matic (Materialize Co., Leuven, Belgium) software.

CFD analysis was performed using the Abaqus 2016 CFD solver

(Simulia; Dassault Systemes, Waltham, MA), modelling blood

as a Newtonian fluid with a viscosity of 0.0035 Pa s and density

of 1.05 g cm23 [39]. Inflow boundary conditions were adopted

from Patel et al. [40] and represented a typical femoral artery

pulsatile waveform. A zero pressure condition was imposed at

the outlet of the artery, and two cardiac cycles were simulated

[39]. Time averaged wall shear stress (TAWSS) was calculated to

asses FPA haemodynamics using the last computed cardiac

cycle. Mesh convergence was achieved with respect to a less

than 5% difference in area with pathological TAWSS, which was

defined as TAWSS less than or equal to 0.4 Pa [41].
2.4. Effect of axial interconnections on femoropopliteal
artery pinching and intramural stresses

The best performing stent section design chosen based on intra-

mural stress and haemodynamics analyses was used to make a

20–24 mm device by connecting several stent sections with

axial links. Two interconnector lengths were used, one short

(1 mm) and one long (3 mm), to study the effect of connector

length on FPA stresses and pinching. FE models were constructed

and analysed using Abaqus 2017 as described above in §2.2. As

stent models were no longer symmetric due to the presence of

links, the analysis employed full stent and arterial geometries.

3. Results
3.1. Pinching and cross-sectional area in each arterial

segment
Cross-sectional pinching of the FPA in different segments and

limb postures is demonstrated in figure 5a–d. The central red

line in each box indicates the median, and the bottom and top

edges indicate the 25th and 75th percentiles. Mean values

are represented with blue dots inside the box. The whiskers
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extend to the most extreme data points not considered to be

outliers, and the outliers are plotted using the red dot and are

found as q3 þ 1:5 � (q3 � q1) , outlier , q1 � 1:5 � (q3 � q1),

where q1,q3 are the 25th and 75th percentiles, respectively.

Whiskers correspond to approximately +2.7 standard devi-

ation or 99.3% coverage. The cross section of the FPA was

not circular even in the standing posture with 1.14–1.19

major to minor axis ratios and more elliptical cross sections

observed distally (figure 5a). Limb flexion resulted in

more pinched cross sections (p , 0.01) in all postures and

arterial segments, and the increase was largest for the PA.

Within the arterial segments pinching changed non-

uniformly with peaks around the AH and in the PA

below the knee where the artery also demonstrated severe

bending [7,8] (figure 1). Representative variation in cross-

sectional pinching along the length of the FPA is presented

in figure 6a.
The most severe compression represented by the smallest

d=D ratios observed in the FPA in the walking, sitting and

gardening postures is presented in figure 5e–g. The ratio

was smaller than 1 during limb flexion in all segments and

all postures (p , 0.01). In the SFA, mean compression

ranged from 0.90 to 0.87, at the AH 0.94 to 0.83 and in the

PA 0.87 to 0.74, with more severe compression occurring in

more flexed limb postures (p , 0.01). Overall, the largest

(i.e. the most severe) compression was 0.53 and it was

measured in the PA in the gardening posture.

In the walking posture, the FPA experienced more

compression in the SFA than at the AH (p , 0.01), but com-

pression in the PA was higher than in the SFA (p ¼ 0.02). The

same was true for the sitting posture (p ¼ 0.02, p , 0.01), but

not for the gardening posture. In the gardening posture, the

largest compression was also observed in the PA (p , 0.01),

but compression at the AH was higher than in the SFA
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(r ¼ 0.04). No correlations were observed between compression

and age.

Despite changes in pinching and compression, the

cross-sectional area of the entire FPA did not change sig-

nificantly from standing to walking and sitting postures

(p ¼ 0.07 and p ¼ 0.13, respectively), but decreased in the

gardening posture (p , 0.01). Average cross-sectional areas

of the SFA, AH and PA in the standing posture were

20.18+7.86 mm2, 20.38+9.36 mm2 and 16.75+ 6.46 mm2,

respectively. In the gardening posture, these values decreased

to 20.00+7.78 mm2, 18.57+8.45 mm2 and 15.23+6.14 mm2,

respectively. Representative variation in cross-sectional area

along the length of the FPA in all four postures is presented

in figure 6b.

Radial forces associated with limb flexion were relatively

small and were in the range 12–15 mN in the SFA, 6–19 mN

at the AH and 12–28 mN in the PA with higher values

observed at more acute limb flexions.
3.2. Effect of stent design on femoropopliteal artery
pinching, intramural stresses and stent fatigue
performance

Effects of different stent designs on arterial pinching during

limb flexion-induced bending and the associated average intra-

mural von Mises stresses are illustrated in figure 7. Here the

colour of the markers represents stent strut amplitude, while

shape refers to different strut thicknesses. Arrows depict

the increase in the number of struts per stent section. The aver-

age cross-sectional ratio of the artery without the stent in the

standing posture is marked with a red vertical line drawn at

1.16 (figure 5a). In an acutely flexed limb, this ratio can be as

high as 1.41 (figure 5d), which is marked with a star symbol

and a horizontal blue line that marks the baseline intramural

von Mises stress associated with bending in figure 7. Two sets
of nitinol material parameters resulted in average differences

of 0.8% and 1.9% in terms of pinching and average intramural

von Mises stresses, respectively, and maximum differences

reached 1.5% and 4.4%. Results below are presented for nitinol

parameters adopted from Gökgöl et al. [33].

Illustration of how stenting affects FPA pinching, changing

it from 1.41 at baseline to 1.01 with the stent, is demonstrated

in figure 8. Here, figure 8a illustrates the model of the artery

and the inner body representing blood in a cross-sectional

view before and after stenting, and figure 8b shows intramural

von Mises stresses (kPa) in the same sections when the inner

body is removed for better visualization. Figure 8c depicts

intramural stresses due to stenting in the bent artery in the

longitudinal view, illustrating high stress concentrations at

the outer and inner bends.

Figure 7 demonstrates that strut amplitude and thickness

had the strongest effects on both intramural stresses and pinch-

ing. Thicker struts produced less pinching but higher intramural

stresses, and similar results were observed for strut amplitude.

The number of struts per stent section had a weaker effect, with

the increase in the number of struts producing smaller intra-

mural stresses and more severe pinching. Interestingly, in the

case of very stiff stents depicted in the upper left corner of

figure 7, the effect was reversed, and intramural stresses were

higher for stents with more struts per cross section, while pinch-

ing was largely unaffected and the artery remained practically

circular with the diameter close to the stent nominal size.

A stent with a strut amplitude of 3 mm, strut thickness of

175 mm and 20 struts per section produced a pinching of 1.14

(which is close to the average cross-sectional ratio of the

non-stented FPA in the straight limb), while maintaining

the baseline non-stented intramural von Mises stress level.

Though it was possible to achieve an even more round FPA

stented lumen in the acutely flexed limb, this was associated

with significantly higher intramural stresses, particularly in

designs that used short and thick stent struts.
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Figure 8. (a) Three-dimensional model of the bent FPA without and with the stent, and (b) the associated intramural von Mises stresses (kPa). In (b), the inner
body representing the fluid is removed for better visualization. (c) Longitudinal view of the stented FPA demonstrating high stress concentrations at the outer and
inner bends. Stent is removed for better visualization of its stress imprint in the arterial wall. (Online version in colour.)
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Stent strain amplitudes and FSF calculated as differences

between bent and straight configurations are shown in

figure 9. Figure 9a demonstrates box plots of strain ampli-

tudes for each stent design and each integration point. All

stents demonstrated much lower strain amplitude than the

nitinol endurance limit of 0.4%, shown in the graph as a

red line, which suggests a lifespan of at least 107 cycles.

Mean strains mostly ranged from 20.4% to 0.4% for all

devices. The smallest FSF calculated for each stent design is

demonstrated in figure 9b. A minimum FSF of 4.1 was

observed for the stent with A ¼ 1 mm, t ¼ 100 mm and N ¼
20, which suggests that this design was more prone to failure

due to fatigue. In all designs, failure was more likely to occur

at stent apexes where higher strain amplitudes and higher

von Mises stresses tended to localize.
3.3. Effect of stent design on femoropopliteal artery
haemodynamics

The effect of stent design on the area of pathological TAWSS

(less than or equal to 0.4 Pa) as a function of arterial pinching

is demonstrated in figure 10a. Overall, TAWSS demonstrated

similar trends to the intramural stresses presented in figure 7.
In particular, strut amplitude and thickness had the strongest

effect on haemodynamics, with stents that had shorter and

thicker struts producing larger areas of pathological

TAWSS. Though less important than amplitude and thick-

ness, the increase in the number of struts resulted in

smaller areas of low TAWSS. As observed previously with

stresses, the latter trend was reversed for stiff stent designs

depicted in the upper left corner of figure 10a.

The optimal stent design characteristics that were chosen

based on stress and pinching analyses produced a pathological

TAWSS area of 1 mm2, which again was the optimal choice

that allowed the baseline pinching ratio of 1.16 to be preserved.

Figure 10b demonstrates TAWSS in the artery repaired with

this optimal design (3 mm strut amplitude, 175 mm strut

thickness and 20 struts), and compares it with the stent that

produced the largest area of pathological TAWSS (2 mm

strut amplitude, 250 mm strut thickness and 12 struts).
3.4. Effect of axial interconnections on femoropopliteal
artery pinching and stresses

The best performing stent design with A ¼ 3 mm, t ¼ 175 mm

and N ¼ 20 was used to create a stent section by
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interconnecting three rings with L ¼ 1 mm and L ¼ 3 mm

axial connectors. Figure 11a,b demonstrates that average von

Mises stresses and pinching were the same for arteries with

both lengths of axial interconnections and averaged 4 kPa

and 1.04, respectively. Peak stresses and pinching of the

artery outside of the stented segment were somewhat

higher for the stent with longer axial connectors, with von

Mises stresses of 37 kPa versus 30 kPa and pinching of 2.34

versus 1.98.

To understand if similar trends were observed for stiffer

stents with shorter struts, similar calculations were per-

formed for rings with A ¼ 1 mm but the same strut

thickness, number of struts and link sizes. Results presented

in figure 11c,d demonstrate that stiffer stents with longer axial
connectors demonstrate lower intramural stresses and

slightly less pinching outside of the stented area than stents

with shorter axial interconnectors.
4. Discussion
The FPA is a dynamic artery in the lower limb that experiences

complex deformations with limb flexion, which include axial

compression, bending, twisting and cross-sectional pinching.

The severity of axial compression, bending and twisting has

recently been demonstrated using a perfused human cadaver

model [7–9], and was speculated to contribute to poor clinical

outcomes of open and endovascular PAD repairs [6]. The
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Figure 11. Intramural von Mises stresses in the artery repaired with stents that have axial interconnector lengths of L ¼ 1 mm (a,c) and L ¼ 3 mm (b,d ). Results
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focus of the current study was to characterize cross-sectional

pinching of the FPA during limb flexion because it has a

direct effect on blood flow, and to determine optimal stent

design parameters that maximize stented cross-sectional

area while minimizing intramural stresses.

Our data demonstrate that the FPA cross section deforms

significantly with limb flexion, achieving on average 0.75 and

a minimum 0.53 compression ratio in the gardening posture.

These deformations are associated with significant pinching

of the FPA and an increase in its cross-sectional aspect ratio

from 1.14 to 1.19 in the standing posture to 1.19–1.35 in the

gardening posture, with a maximum of 1.41 at the 75th

percentile. In addition, compression ratios decrease with

increasing limb flexion angle, and are non-uniformly

distributed along the length of the artery, achieving lowest

values distally in the PA below the knee where the artery

experiences severe bending [7].

Pinching of the FPA with limb flexion is poorly described

in the literature. One computational study by Ghriallais &

Bruzzi [42] reported a minimum lumen aspect ratio of 0.24

in the sitting posture, which is equivalent to 4.2 pinching as

defined here. Authors have also reported average cross-

sectional areas of straight and flexed limbs of 37.9 mm2 and

28.3 mm2, respectively, which allow calculation of the aver-

age arterial diameter in the straight limb (6.9 mm), and

long and short diameters of the elliptical cross section in

the flexed limb (12.3 mm and 2.9 mm, respectively). This cor-

responds to the d=D ratio of 2.9/6.9 ¼ 0.42, which is smaller

than the 0.53 minimum ratio reported here. The discrepancy

can stem from the choice of boundary conditions and material

properties in the computational model by Nı́ Ghriallais &

Bruzzi [42], and may also be attributed to buckling of the

hollow tube that they used to model the FPA.

Another study that described cross-sectional pinching of

the FPA was performed by Brown et al. [43], but measure-

ments were obtained only in the straight limb posture

under isometric thigh contraction. They reported a change

in the cross-sectional aspect ratio from 1.14 in the relaxed

thigh state to 1.30 in the contracted state with the cross-

sectional area remaining approximately constant, which
corresponds to the
d
D
¼

ffiffiffiffiffiffiffiffiffi
1:14

1:30

r
¼ 0:94 associated with active

muscle contraction. Cross-sectional pinching measured in

our cadaver model agrees well with values obtained in a

relaxed thigh demonstrating a 1.14–1.19 FPA aspect ratio in

the straight limb. The increase in cross-sectional pinching

with muscle contraction observed by Brown et al. [43]

suggests that pinching reported here can be even more

severe in vivo when the shape of the artery is affected by

the powerful muscles of the limb.

Finally, several recent studies have used stents to charac-

terize FPA pinching during limb flexion [21,44], and have

associated pinching with bending deformations. Furthermore,

they have demonstrated appreciable differences in pinching

produced by the intricacies of different stent designs [21],

and reported pinching in the range of 1.03–1.34 with an

average of 1.18+0.11 across seven different devices. This

large discrepancy in values and their dependence on device

patterns suggest that, in order to inform future stent designs,

baseline pinching should be assessed in non-stented FPAs.

Measurements of baseline FPA pinching can potentially

be performed in vivo, but it is challenging to identify the

same arterial locations along the length of the artery, and

the same pairs of long and short axes in all cross sections

as the artery progresses through the limb flexion states. The

intra-arterial marker technique helps mitigate these chal-

lenges and allows straightforward measurement of baseline

arterial pinching in the same arterial locations across all pos-

tures, but it can only be used in cadaver models that cannot

account for active muscle contraction. Further analysis using

patient data in different limb flexion states to supplement

cadaver data can provide useful insights on the effects of

active muscle contraction on FPA deformations through

inverse methods and computational modelling. In the mean-

time, the data provided can inform stent design to maximize

cross-sectional opening in the acutely bent limb while mini-

mizing intramural stresses and ensuring adequate fatigue life.

Our analysis demonstrates that this goal is achievable

when using a large number of long medium-thickness

stent struts. The stent with these parameters produced
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cross-sectional ratios typical for a straight limb posture, kept

intramural stresses at the baseline non-stented level and was

able to minimize areas with pathological low wall shear

stress. In addition, this design appeared to maintain adequate

fatigue life and could be used with either short or long axial

interconnectors that produced similar results in terms of

intramural stresses and pinching.

While these results are promising, it is important to

remember that current analysis did not include the effects

of atherosclerotic plaques that significantly influence

stent–artery interaction. Specifically, stiff calcified lesions

may require stents with higher radial force to maintain an

open lumen, which may require shorter and thicker struts

that come at the expense of higher intramural stresses.

As demonstrated here, in this case the use of longer axial

interconnectors appears beneficial as they can help reduce

intramural stresses while maintaining luminal opening.

Similar results with respect to computational stent design

optimization have been reported previously [45,46], also indi-

cating that longer struts and axial interconnectors reduce

intramural stresses and result in less intimal hyperplasia

[25,45]. While the list of stent design features considered here

is quite small, in the future this analysis can be augmented by
including more design characteristics and other deformation

modes to develop devices with fine-tuned patient- and

segment-specific performance. Such studies will build on the

body of existing stent optimization work [26,33,45–53], and

will use data on human FPA mechanical properties

in different age and risk-factor groups and information on

limb flexion-induced deformations [6–9,21,23,24,28–32]. We

envisage that such parametric analyses can become versatile

tools in developing new-generation FPA stents that would

have optimized mechanical and clinical performance.
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