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The cellular age distribution of hierarchically organized tissues can reveal

important insights into the dynamics of cell differentiation and self-renewal

and associated cancer risks. Here, we examine the effect of progenitor

compartments with varying differentiation and self-renewal capacities on

the resulting observable distributions of replicative cellular ages. We find

that strongly amplifying progenitor compartments, i.e. compartments with

high self-renewal capacities, substantially broaden the age distributions

which become skewed towards younger cells with a long tail of few old

cells. For several of these strongly amplifying compartments, the age

distribution becomes virtually independent of the influx from the stem cell

compartment. By contrast, if tissues are organized into many downstream

compartments with low self-renewal capacity, the shape of the replicative

cell distribution in more differentiated compartments is dominated by

stem cell dynamics with little added variation. In the limiting case of a

strict binary differentiation tree without self-renewal, the shape of the

output distribution becomes indistinguishable from that of the input distri-

bution. Our results suggest that a comparison of cellular age distributions

between healthy and cancerous tissues may inform about dynamical

changes within the hierarchical tissue structure, i.e. an acquired increased

self-renewal capacity in certain tumours. Furthermore, we compare our

theoretical results to telomere length distributions in granulocyte popu-

lations of 10 healthy individuals across different ages, highlighting that

our theoretical expectations agree with experimental observations.
1. Introduction
Many tissues in multicellular organisms resemble a compartmentalized structure

with a hierarchy of cells at different stages of differentiation and function. This

hierarchy is usually fuelled by a few stem cells that ideally can self-renew indefi-

nitely, whereas the majority of the tissues consist of shorter-lived differentiated

cells that emerge from these stem cells [1–3].

In most tissues it is thought that stem cells divide infrequently, while their

progenitors and further differentiated cells divide more frequently to ensure

tissue function under homeostasis [4]. Such structures allow both the pro-

duction of many cells in a short time and the reduction of the risk for the

accumulation of somatic mutations within the stem cell compartment [1,5–10].

Owing to these pronounced dynamical disparities in hierarchical tissues,

replicative age—the number of divisions a cell has undergone—can be an

important observable providing information about the structure and cellular

dynamics within these tissues. As many somatic mutations are acquired

during cell divisions [11,12], we would expect replicative age also to be strongly

correlated with different cancer risks in different hierarchical tissues [13–15].
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In the context of ageing, the focus is typically on changes

within the stem cell compartment, as stem cells have the abil-

ity to self-renew and persist long enough to become relevant

for organismal ageing [16,17]. It is generally assumed that

replicative cell age in downstream compartments is a good

proxy for replicative stem cell age. For example, some of us

previously developed and tested a mathematical model for

human haematopoietic stem cell ageing based on replicative

ages in human lymphocytes and granulocytes [18]. Here,

we do not model the detailed dynamics on the stem cell

level. Instead, we regard the cellular age distribution on the

stem cell level as a steady influx of progenitor cells into the

differentiation hierarchy to keep up homeostasis of the tissue.

Cellular dynamics in hierarchically organized tissue struc-

tures can be hard to explore experimentally due to the large

scaling differences between differentiation levels [19] and

the challenges to correctly assign cells to specific differen-

tiation stages. One possibility to assess the age distribution

of a cell population is to measure the telomere length of the

cellular chromosomes. Telomeres are the protective, non-

coding ends of chromosomes, consisting of the same short

DNA sequence repeated thousands of times. Telomeres typi-

cally shorten with each cell division [20–22]. Cells with

critically short telomeres enter replicative senescence, which

is thought to be a cancer suppression mechanism [23]. More-

over, critically short telomeres are often associated with

genome instability and corresponding increased risk of

cancer [24]. For our purpose, telomere length distributions

can be thought of as a measure for the cellular replicative

age distribution. These can be assessed in tissue samples

[25,26] which are, for example, especially accessible in differ-

entiated tissue in the haematopoietic system and thus, in

principle, would also allow for some time resolution within

healthy human individuals [18]. For simplicity, we concen-

trate solely on replicative ageing, that is the number of cell

divisions a cell has undergone, in contrast with temporal

ageing which is also commonly explored in models [27].

However, it remains unclear if cellular age distributions in

hierarchically organized tissues are dominated by stem cell

dynamics or alternatively are determined by the possibility

of a multi-step differentiation process with strong intermedi-

ate self-renewal of progenitor cells. Here, we develop a

mathematical framework that allows us to describe the distri-

bution of replicative cellular ages across several hierarchical

levels of differentiation. Thereby, we demonstrate under

which conditions the distribution of replicative ages in differ-

entiated cell populations can provide insights into the

properties of the dynamics within the underlying tissue.
2. Model
In the following, we present a mathematical description for

the replicative age distributions within compartmentalized

tissue structures (figure 1). First, we discuss the simplest

case of only two compartments—one stem cell compartment

and the focal downstream progenitor compartment. We then

ask what is the distribution of replicative ages of cells in the

progenitor compartment provided a continuous influx of

cells from the stem cell compartment. For example, it is esti-

mated that in haematopoiesis of mice there is a constant

production of early progenitor cells from stem cells with a

rate of around 150 cells d21 [4]. However, we do not discuss
the time dynamics on the stem cell level explicitly. The tem-

poral change of replicative age distributions in stem cell

compartments and the resulting potential influx distributions

for progenitor compartments are discussed in detail in [18].

We assume that in the progenitor compartment there are

nj cells of each replicative age class j. Progenitor cells divide

with proliferation rate r and after each division the replicative

age of both daughter cells increases by one j! jþ 1. Each

daughter cell can, in principle, take a different cell fate that

contributes differently to the distribution of replicative ages

(figure 1a). In general, the following outcomes are possible

after a single cell division.

(i) With probability p a cell self-renews symmetrically,

both daughter cells stay in the same compart-

ment and increase their cellular age by one

(nj ! nj � 1, n jþ1 ! n jþ1 þ 2).

(ii) With probability d a cell differentiates symmetrically,

effectively removing it from the compartment of dif-

ferentiated cells (nj ! nj � 1).

(iii) With probability 1 2 p 2 d, a cells divides asymmetri-

cally, with one cell staying in the pool of differentiated

cells, while the other cell leaves the compartment [28]

(nj ! nj � 1, n jþ1 ! n jþ1 þ 1).

We choose the influx of cells from the stem cell compart-

ment to be a constant rate ij that might differ for each cellular

age j. Below we give explicit examples for different distri-

butions of ij. We assume the dynamics on the stem cell

level to be much slower compared to downstream compart-

ments and hence consider the influx ij into the progenitor

compartment to be constant over time.

Using the above, we can formulate differential equations

for the change of the number of cells in each age class nj.

Thereby, we account for the loss of cells due to prolifera-

tion and subsequent differentiation and gain of cells due to

symmetric self-renewal and cell influx from the stem cell

compartment,

@nj

@t
¼

i0 � rn0 j ¼ 0,
ij � rnj þ (1þ p� d)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

a

rn j�1 j � 1,

8<
: ð2:1Þ

where we set a ¼ 1 þ p 2 d to be the self-renewal parameter

which critically determines the most relevant results of our

model. As p and d are probabilities with p þ d � 1, the self-

renewal parameter can be in the range 0 � a � 2. However,

as we are interested in homeostasis and not an exponentially

growing tissue, the symmetric division probability p in our

case must be smaller than the symmetric differentiation

probability d and therefore 0 � a , 1.

The above system of ordinary differential equations can be

solved analytically (see appendix E). However, as we assume

that the dynamics on the level of stem cells is much slower

compared to progenitor compartments, we can investigate

the equilibrium solutions n*j to equation (2.1) for each age

class j. The equilibrium solutions can be obtained via recursion

by setting @nj/@t ¼ 0 (see appendix A). The general solution is

n�j ¼
Xj

k¼0

ik

r
a j�k, ð2:2Þ

which is equivalent to a convolution sum of the influx ik and

ak/r between zero and j.
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Figure 1. Sketch of the basic model. (a) Three different modes of cell division in the focal progenitor compartment. Blue cells are cells within the compartment, red
cells differentiate and leave the compartment. The replicative age of a cell in the specific compartment is j, increasing by one in each cell division. (b) Full model for
ageing in progenitor compartment. The number of cells in each age class is nj, and all cells age according to the modes of cell division (a). The cell influx i into the
compartment has a certain distribution of replicative age ij. The cell outflux from the compartment includes all differentiating cells and is denoted by the
distribution v. (Online version in colour.)
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2.1. Multiple compartments
In reality, most tissues will consist of multiple progenitor cell

compartments. It is thus natural to ask how multiple down-

stream compartments affect cellular age distributions. To

answer this question, we can generalize our previous frame-

work (figure 2). Differentiated cells in a downstream

compartment are produced either by symmetric differen-

tiation with probability d or by asymmetric division with

probability 1 2 p 2 d. If we denote the output of cells per

unit of time for each age class as vj, we can write

vj ¼ (1� p� d)rn j�1 þ 2drn j�1

¼ (2� a)rn j�1:

To allow for multiple compartments, we can identify

the output distribution of a compartment c and the input

distribution of the next downstream compartment c þ 1,

i
(cþ1)
j ¼ v

(c)
j : ð2:3Þ

2.1.1. Total cell outflux
For our purpose, it is desirable to compare the effect of differ-

ent tissue structures, that is a different number of total

compartments C, but with the same tissue function, that is

the same total outflux of fully differentiated cells. In our

model, the total outflux of differentiated cells V ¼
P

j vj is

determined by the total influx of cells I ¼
P

j ij, the number

of compartments C and the self-renewal parameter a. We

therefore choose a such that the total output of cells remains

constant, i.e. assuring certain replenishing needs of a specific

tissue. For this, we formulate differential equations for the

change of the total number of cells N(c) ¼
P

j n(c)
j in each of

the compartments c with a compartment-specific prolifer-

ation rate for each cell r(c) by collecting all influx and

outflux terms:

@N(0)

@t
¼ (a� 1)r(0)N(0) þ I,

@N(c)

@t
¼ (a� 1)r(c)N(c) þ (2� a)r(c�1)N(c�1):
Here, I is the total influx into the first compartment (c ¼ 0)

(i.e. the sum of all direct stem cell derived progenitors per

time unit). The total outflux V is related to the number of

cells in the last compartment N(C21) via

V ¼ (2� a)r(C�1)N(C�1):

Under steady-state conditions, the above equations can be

solved explicitly for the self-renewal parameter a (see

appendix B):

a ¼
C
ffiffiffi
V
I

q
� 2

C
ffiffiffi
V
I

q
� 1

: ð2:4Þ

This allows us to adjust the self-renewal parameter a such

that the outflux V remains constant given an influx I for

any number of compartments C. However, as the self-

renewal parameter is constrained 0 � a , 1 (see above

section), the minimum amplification of cell production is

given by (V=I)min ¼ 2C corresponding to a ¼ 0.

2.2. Properties of the replicative age distribution
2.2.1. Mean and variance
The mean and variance of the replicative age distribution

under steady-state conditions can be calculated analytically,

see appendix C. The mean m of the replicative age distri-

bution in the progenitor compartment increases compared

to the influx based on the self-renewal a to

m ¼ hjin� ¼ hjii þ
a

1� a
¼ mi þ

a

1� a
,

where kjln* is the first moment of the replicative age distri-

bution in the focal progenitor compartment and kjli ¼ mi is

the average replicative age of the influx. Note that the average

replicative age of the outflux mv ¼ kjlv is increased by one to

account for the extra differentiation step

mv ¼ hjiv ¼ mþ 1 ¼ 1

1� a
: ð2:5Þ

The minimal increase of the mean between influx and outflux

for no self-renewal (a ¼ 0) is therefore equal to one.
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Figure 2. Several downstream compartments amplifying the rate of cell production from influx to outflux. In each compartment, there are self-renewal or differ-
entiation processes as described in figure 1. Each cell division thereby leads to an increase of replicative age and changes the age distribution of the corresponding
compartment. Self-renewal occurs proportional to the self-renewal parameter a, whereas differentiated cells are produced with 1 2 a and go into the next
downstream compartment. The compartment number c is shown as superscript, the total number of compartments is C ¼ 4. (Online version in colour.)
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The variance s2 of the replicative age distribution

increases similarly as the mean above

s2 ¼ hj2ii � hji
2
i þ

a

(1� a)2
¼ s2

i þ
a

(1� a)2
: ð2:6Þ

Here, s2
i denotes the variance of the replicative age distri-

bution of the influx.

Generally, also the higher moments kjgln* of the replicative

age distribution can be calculated based on the moments of

the influx distribution kjbli with b � g. The corresponding

calculations and results are shown in appendix C.

2.2.2. Limiting behaviour
For very low self-renewal, a�1, the only age class of influx

that significantly contributes to the age distribution n*j in

equation (2.2) is ik¼j, as it is in zeroth order of a. The influx

of all other age classes is of higher order of self-renewal a

and will therefore vanish for a�1 such that

n�j �
ij

r
:

Hence, the outflux distribution will look approximately

like the influx distribution.

To evaluate the impact of the progenitor compartment

on the replicative age distribution in the limit of high

self-renewal 1 2 a�1, we rewrite equation (2.2) to

n�j ¼
aj

r

Xj

k¼0

ik

ak :

The limiting behaviour therefore strongly depends on the age

distribution of the influx ik. If the influx has an upper bound

K on replicative age, such that for all k�K holds ik� ak, the

sum in the above equation is constant and the distribution of

replicative age will decline exponentially

n�j /
aj

r
for j � K:

If, on the other hand, the influx distribution ik is not declining

fast enough and is in the same order as ak (ik�ak), we cannot

make a general prediction for this limit.
3. Results
It seems natural to suspect that the specific distribution of

replicative ages in downstream compartments strongly
depends on the distribution of cellular ages within the stem

cell compartment. In the following, we present the resulting

age distributions for various different influx distributions.

Additionally, we will compare tissue structures with many

subsequent downstream compartments and a low probability

for self-renewal against having only very few compartments

with a high probability for self-renewal.

An important parameter for the age distribution in the

progenitor compartment is a ¼ 1 þ p 2 d which depends on

the probability for both symmetric splitting and symmetric

differentiation and critically defines the total size of the

compartment as well as the amount of cells produced

(appendix B). For a compartment model of haematopoiesis

with many differentiation steps as for example in [1,29], a

would be around 0.3, whereas for other models with fewer

compartments a would need to be higher to allow for suffi-

cient output of fully differentiated cells per unit time [30–32].
3.1. A single progenitor compartment
Here, we discuss the distributions of replicative age in the

special case of a single progenitor compartment given four

different influx distributions from the stem cell compartment.

All distributions are calculated analytically and the corre-

sponding calculations can be found in the appendix D.

Realizations of the resulting replicative age distributions are

shown in figure 3.
3.1.1. Identical replicative cellular age influx
We first discuss the simplest case for a cellular age distri-

bution on the stem cell level that is all stem cells have

identical replicative age v. This results in a delta function

input ik ¼ rsd(k 2 v), where d(x) is the Dirac delta distribution

and rs is the rate of cell production. Together with

equation (2.2), this implies for the age distribution

n�j ¼
rs

r

Xj

k¼0

d(k � v)a j�k

¼
rs

r
a j�v for j � v

0 else
:

( ð3:1Þ

The resulting distribution is shown in figure 3a. Cellular ages

within the single progenitor compartment follow an expo-

nential distribution that approaches zero faster for smaller
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self-renewal parameters a and always has the maximum at

the influx replicative age v.
3.1.2. Geometrically distributed replicative cellular age influx
The former section is of course an oversimplification. We

expect some form of distributed cellular ages on the stem

cell level. We first discuss the possibility of a geometrically

distributed replicative age ik ¼ rsl
k(1 2 l) with distribution

parameter l and total cell influx rs as input from the stem

cell level. This replicative age distribution resembles the dis-

tribution in the first progenitor compartment for an influx

with identical replicative age from the stem cell compart-

ment, as shown in the previous section (§3.1.1); it would

therefore correspond to the second downstream compartment

for that specific influx.

The resulting age distribution within this progenitor com-

partment—equation (2.2)—can be solved analytically (see

appendix D.1):

n�j ¼
rs

r (1� l) l
jþ1�a jþ1

l�a for a = l,
rs

r (1� l)aj(jþ 1) for a ¼ l:

(

These age distributions are shown for different self-renewal

parameters a in figure 3b. For low self-renewal, the shape of

the replicative age in the progenitor compartment strongly

resembles that of the influx distribution, i.e. a monotoni-

cally decreasing function of replicative age. For large

self-renewal a�0.5, however, the distribution of replicative

cellular ages in equilibrium becomes increasingly inde-

pendent of the influx distribution and very similar to the

age distributions resulting from other influx distributions,

see figure 3c,d.
3.1.3. Influx from stem cell pool with random stem cell divisions
We previously investigated the dynamics within the stem cell

compartment given that stem cell proliferations are indepen-

dent and cell division times are exponentially distributed

[18]. Once a stem cell is picked for division, it either divides

symmetrically with probability ps, resulting in two stem cells,

or asymmetrically with probability 1 2 ps, resulting in one

progenitor and one stem cell. Now, we ask how influx from

such a stem cell pool percolates through the hierarchy.

3.1.3.1. Asymmetric stem cell divisions
Exclusively asymmetric divisions (ps ¼ 0) on the stem cell

level result in a Poisson distribution of replicative age [18]

and the corresponding influx into the progenitor compartment

is given by

ik ¼ rsN0 e�rst=N0
(rst=N0)k

k!
:

The distribution depends on age t, proliferation rate rs, as

well as the initial number of cells N0 in the stem cell compart-

ment. We can set l ¼ rst/N0 to see that this is a Poisson

distribution multiplied by rsN0:

ik ¼ rsN0
e�llk

k!
,

with a time-dependent rate parameter l ¼ l(t).
The corresponding sum from equation (2.2) can be solved

analytically (see appendix D.2) and the distribution of

replicative age becomes

n�j ¼
rs

r
N0

aj e(l=a)(1�a)

j!
G jþ 1,

l

a

� �
,
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where G(a, x) ¼
Ð1

x ta�1 e�t dt is the upper incomplete gamma

function [33].

The above distribution of replicative age is shown in

figure 3c for various values of the self-renewal probability

a. The normalization factor rsN0 is set to one, as this does

not change the general shape of the underlying distribution.

Similar to our previous observations, the age distribution is

heavily skewed towards younger cells. This effect is more

pronounced for higher values of a, corresponding to more

cells in the compartment.

3.1.3.2. Symmetric stem cell divisions
The age distribution for a growing stem cell compartment

due to occasional symmetric stem cell self-renewals with

probability ps . 0 are given by Werner et al. [18]

ij ¼ rs(1� ps)
N0

j!
1þ ps

ps

� �j
�ps ffiffiffiffit�
p

lnj (t�)

with t* ¼ rspst/N0 þ 1. Here, the exact distribution depends

explicitly on the initial number of stem cells N0 and the

ageing factor t*, which itself depends on the relative increase

of the stem cell pool size during time t given a symmetric div-

ision probability ps and a proliferation rate rs. However, the

distribution is again a Poisson distribution with a different

normalization. This becomes apparent if we substitute
~l ¼ ((1þ ps)= ps) ln (t�) and get

ij ¼ rs(1� ps)N0t�
e�

~l~l
j

j!
:

The solution of the convolution sum in equation (2.2) is there-

fore the same as for purely asymmetric stem cell divisions

and the corresponding calculations are identical (if we

exchange l! ~l) (Appendix D.2),

n�j ¼
rs(1� ps)

r
N0t�

aj e(~l=a)(1�a)

j!
G jþ 1,

~l

a

� �
:

The shape of the resulting influx distribution therefore

varies only slightly from the asymmetric case and differences

in the age distribution of the progenitor compartment are

minimal (figure 3c,d ). However, the difference in average

replicative age on the stem cell level is conserved in the pro-

genitor compartment and still can be used to distinguish

between those processes on the stem cell level [18].

3.2. Multiple compartments
In most organs, the maturation of functional tissue-specific

cells requires multiple stages of differentiation. We therefore

generalize our approach above and discuss the impact of

multiple subsequent non-stem cell compartments on the

replicative age distribution within such hierarchical tissue

organizations.

3.2.1. Impact of the number of compartments
In order to deduce the impact of the number of compart-

ments on the age distributions, we vary the number of

compartments by simultaneously keeping the final outflux

of cells constant. This requires an adjustment of the self-

renewal parameter a accordingly and is motivated by the

idea that certain tissues might require a certain constant cell

replenishment per unit time, but this could, in principle, be
achieved in different tissue architectures. We use the same

principal influx distributions from the stem cell compart-

ment discussed above, see figure 3. Solutions in this section

were obtained by numerically calculating the sums of

equation (2.2).

Figure 4 shows the resulting replicative age distributions

for a broad range of compartment numbers. Interestingly,

the age distribution in the final compartment is very sensitive

to the number of compartments, even though the total cell

number amplification of the compartments is the same by

construction. For a large number of compartments and corre-

sponding small self-renewal a, the shape of the influx

distribution is basically conserved through all stages of the

hierarchy, especially for the extreme case of a purely binary

tree (a ¼ 0) where the shape of the distributions is

unchanged, but only shifts towards older replicative age.

For the other extreme case of only one or two downstream

compartments (a � 1), the distribution of replicative age is

almost flat, such that the frequency of young cells is the same

as the frequency of very old cells. Note, however, that in this

case the steady-state assumption might be violated as the

time to reach homeostasis, i.e. the state where the system

does not change anymore, might exceed realistic biological

timescales. This is shown in appendix E in more detail.

However, distributions of replicative age become similar

already for intermediate, but biologically still high, values

of self-renewal a � 0.5. It might therefore be impossible to

distinguish between age distributions on the stem cell

(influx) level from measurement in the differentiated tissue

alone, provided there is considerable self-renewal in non-

stem cell compartments. This is especially surprising consid-

ering the extreme differences in influx distributions, for

example delta distributed (figure 4a) and Poisson distributed

(figure 4c,d ), which become seemingly undistinguishable in

downstream compartments (at equilibrium). This effect is

reminiscent of the law of large numbers for random vari-

ables, where the sum of independent random variables

tends to a normal distribution regardless of the actual distri-

bution of the random variable. In our case, though, the

distribution approached is not a Gaussian.
3.2.2. Mean and variance through multiple compartments
In a system with multiple downstream compartments, it is

also interesting to see how mean and variance of replicative

age change from compartment to compartment. As shown

in equations (2.5) and (2.6) for a single progenitor compart-

ment, mean and variance increase linearly from

compartment to compartment with a slope of 1/(1 2 a) for

the mean and a/(1 2 a)2 for the variance. Strong self-renewal

therefore has a more pronounced effect on the variance than

the mean due to the quadratic term in the denominator.

Figure 5 shows the mean and variance of replicative age

for multiple subsequent compartments for different total

number of compartments, but as above with the same

tissue function, that is the same overall cell production. In

this example, the variance for strong self-renewal, a ¼ 0.67,

at the second out of 10 compartments is already larger than

in the last compartment for the case of lower self-renewal,

a ¼ 0.34, even though there are five compartments more in

the latter case. The impact on the mean of the distribution

throughout the compartments is not nearly as pronounced.

As both mean and variance only depend on self-renewal a
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and the number of compartments, in principle, stem cell

dynamics can be inferred from comparing mean and/or var-

iance of telomere length distributions over time [18,34], as

long as the general tissue structure and dynamics does not

change.
3.2.3. Telomere length data
In order to compare our theoretical expectations to biological

data, we use previously published telomere length distri-

butions of human granulocyte cell populations [18] in

healthy adults across different ages. Granulocytes are differ-

entiated cells of the myeloid arm of the haematopoietic

system. Differentiation from haematopoietic stem cells to

fully mature granulocytes requires multiple steps, allowing

us to use our multi-compartment model.
The telomere length distributions for 10 healthy humans

along with the best parameter fit are shown in figure 6. We

use a least-squares fit, varying the number of compartments

C and the initial telomere length of cells with a replicative age

of zero. However, the initial telomere length is a model par-

ameter that only shifts the full distribution along the x-axis

and is therefore of limited interest. On the other hand, the

number of compartments determines the shape of the result-

ing replicative age distribution. The self-renewal a is a

function of the total number of compartments C given that

we assume a constant total daily output of granulocytes

according to equation (2.4).

We compare the fits for all four previously discussed

influx distributions (figure 3), but adjust the age t for the

stem cell model according to the dataset (see §3.1.3 for

details), while assuming a daily total influx of cells from
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the stem cell compartment of approximately I ¼ rs ¼ 1 cell

d21 and N0 ¼ 400 haematopoietic stem cells [1]. The daily

outflux of granulocytes is set to V ¼ 2.1 � 1010 cells d21, as

can be estimated from the total number of mature granulo-

cytes in humans Ngran � 2.1 � 1010 cells [35] and a removal

rate of mature granulocytes from circulation with rate g � 1

d21 [36]. Additionally, we assume a fixed loss of telomeric

DNA of 100 base pairs per cell division.

By varying a single parameter for the shape of the distri-

bution, we obtain a good agreement between our model and

the granulocyte data of healthy humans, regardless of the

specific influx distribution from the stem cell compartment.

The results point towards relatively high self-renewal a � 0.85

with around 10 downstream compartments and the fit result

is virtually independent of the influx distribution applied. The

telomere length distributions could, in principle, also be fitted

by Gaussian distributions (e.g. in the upper left panel of
figure 6 we find a Gaussian with mean m ¼ 9.65 kbp and stan-

dard deviation s ¼ 2.04 kbp with a mean squared error of

S ¼ 3.51 � 1024). In contrast with that approach, we provide

a model with a dynamical interpretation of the observed distri-

bution. However, the results presented here rely on rather

strong assumptions and experimentally challenging to estimate

parameters such as telomeric loss per cell division or the

number of haematopoietic stem cell participating in homeosta-

sis. As the replicative age distributions within the stem cell

compartment are unknown and hard to assess experimentally,

in principle it is also possible that the observed telomere length

distributions are caused by much broader influx distribu-

tions from the stem cell level with far less self-renewal in the

downstream compartments. Nevertheless, our results suggest

that it is difficult to infer detailed stem cell dynamics from

telomere length data of differentiated tissue in the case of high

self-renewal in the downstream compartments.



40 60 80 100 120
replicative age

0

0.025

0.050

0.075

0.100

fr
eq

ue
nc

y

m = 51.4

s = 5.27 m = 79.0

s = 10.3

healthy a = 0.3
CML a = 0.58

Figure 7. Replicative age distributions for healthy haematopoiesis and for
haematopoiesis under chronic myeloid leukaemia (CML). The self-renewal
parameter a is the same in all 29 downstream compartments, a ¼ 0.3
for healthy and a ¼ 0.56 for cancerous haematopoiesis [37]. With CML,
the replicative age distribution is much wider and shifted to a higher
mean. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180272

9
3.2.4. Change of replicative age distribution in chronic myeloid
leukaemia

Chronic myeloid leukaemia (CML) is a cancer of the haemato-

poietic system that can be characterized by enhanced

self-renewal of cancerous cells in the progenitor compartments

compared to healthy cells [37]. Here, we compare the replicative

age distribution for different self-renewal probabilities in the

same tissue structure. For this, the tissue consists of 29 down-

stream compartments with either self-renewal probability p ¼
0.15 for healthy cells [1] or self-renewal p ¼ 0.28 for cancerous

cells [37] and without asymmetric division (d ¼ 1 2 p), leading

to self-renewal parameters ahealthy ¼ 0.3 or aCML ¼ 0.56.

The resulting distributions are shown in figure 7. For

CML both mean and standard deviation are strongly

increased compared to healthy haematopoiesis, which can

be measured by comparing telomere length distributions

during treatment of the disease [38]. We accordingly expect

that both mean and standard deviation will decrease under

successful treatment, when self-renewal in progenitor com-

partments normalizes again, which is consistent with

available clinical data [39].
4. Discussion
While the age structure of cells within a tissue is driven by the

age structure of the tissue specific stem cells, the progenitor

compartments can substantially alter this age distribution.

From a perspective of signal processing, they act as a filter

that transforms an input signal (in our case a distribution)

into an output signal. The properties of this filter are

restricted by the biological structure of the tissue. Two limiting

cases are of particular interest:

(i) Focussing on a compartment that is weakly amplifying

(a� 1), such that the number of output cells is approxi-

mately twice the number of input cells, the replicative

age distribution in the progenitor compartment resembles

that of the influx distribution. Only the average age of the

cells is then increasing with the compartment number,

even in tissues with many subsequent downstream

compartments, such as blood [1].

(ii) For intermediate to high self-renewal (large a), the distri-

butions of cell replicative age in a differentiated tissue

with multiple progenitor compartments are virtually indis-

tinguishable from one another, even for influxes with

completely different replicative age distributions. Measur-

ing replicative age distributions in differentiated tissue, for

example via telomere lengths [18,34], may therefore be

more informative about the tissue structure and dynamics

than the dynamics within the long-lasting stem cell level.

Cellular age is explored in many experimental studies

(e.g. [40] gives a nice overview) and in multiple models

[41,42]. Some of these models also take the effect of replica-

tive ageing into account [18,42,43]. Furthermore, some of

these models, for example, show that cellular age might be

a critical parameter for certain diseases such as sickle cell

anaemia and malaria [27,44]. However, replicative ageing in

differentiated tissues is often overlooked, because here the

cell turnover is very high and mutation accumulation as

well as loss of function in these cells might not be as clinically

relevant as in stem cells or early progenitor cells. On the other
hand, we show that understanding the replicative ageing of

differentiated cells and the resulting age distributions in the

cell population can lead to a much better understanding of

tissue dynamics from measurements.

Previous models of replicative ageing in a tissue hierarchy

including stem cells and progenitor cells focussed strongly on

the total replication limit of cells [45,46]. However, in our

model such a total replication limit would most often leave

the largest (and potentially measurable) portion of the replica-

tive age distribution unchanged. However, the question

becomes critical for the accumulation of mutations and the

risk of cancer initiation, which we only peripherally discuss

here. In reality, it is not clear whether or not fully differentiated

cells are close to the end of their replicative life span in vivo, but

it appears likely that they have sufficiently many cell cycles left

and only a significantly increased cell turn over would lead to

an exhaustion of possible cell cycles. We therefore did not

include an upper replication limit explicitly here.

When comparing the distributions of replicative age

between individuals or at different time points (or, for most

practical purposes, their average and variance), changes of

replicative age in the differentiated tissue might not always

point towards changed dynamics on the stem cell level, but

towards abnormal dynamics in the progenitor compart-

ments. Accordingly, we would expect to observe these

differences in replicative age distributions in certain diseases

that change proliferation and differentiation characteristics in

the progenitor compartments. Examples of this include CML,

acute promyelocytic leukaemia and some other forms of

acute myeloid leukaemia where a progenitor cell in the

‘middle’ of the hierarchy acquires enhanced self-renewal

capabilities. For example, increased self-renewal would lead

to an increase of average cellular age [30,37,38,47].

In our model, we focus on a homogeneous population of

cells that have the same proliferation rates, differentiation prob-

abilities and therefore the same fitness across multiple

compartments [48]. However, mutations or epigenetic changes

can change the proliferative properties of cells within the tissue

structure. Interestingly, these changes can also affect the self-

renewal capacities and thus fitnesses of cells across compart-

ments directly causing selection gradients for different

lineages of cells throughout the hierarchy. Examples for both

negative and positive selection are known. For example cells



rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180272

10
might die prematurely, as for example in sickle cell anaemia

[44], or die later or not at all, as is observed in many cancers [49].

An important complication that we have not conside-

red here is that real tissues are often found in dynamical

regimes that change the cellular age distribution over time.

In multicellular organisms, the rates for self-renewal and for

symmetric differentiation or cell death are variable and

tightly regulated by a variety of feedback mechanisms [50].

In this way, a tissue can respond to environmental condi-

tions such as injury or infection. Also, in the context of

tissue reconstitution of the haematopoietic system after

stem cell transplants, the tissue structure is initially far from

the steady state [41]. It was shown previously that replicative

age can give valuable insight into the dynamics of tissue

reconstitution [39] and modelling of replicative ageing can

potentially contribute towards better understanding of

tissue reconstitution. It is important to point out that the

steady state results presented here are not directly applicable

in this situation.

In conclusion, quantitatively describing replicative age

distributions of tissues in multicellular organisms can con-

tribute to our understanding of the complex dynamical

processes within such tissues and allows us to describe devi-

ations from healthy and diseased tissue states due to changed

cell proliferation properties.

Data accessibility. The data for the figures in this manuscript were either
calculated analytically or solved numerically by using the Scipy
library for python. The scripts to create our results figures can be
accessed at https://github.com/marvinboe/DownstreamReplAge.

Authors’ contributions. M.B., B.W., D.D. and A.T. conceived the model
and wrote the paper, M.B., B.W. analysed the model.

Competing interests. We declare we have no competing interests.

Funding. B.W. is supported by the Geoffrey W. Lewis Post-Doctoral
Training Fellowship.
Appendix A. Steady-state distribution
Here, we show the general solution for the steady-state distri-

bution of replicative age inside a downstream compartment

for any input distribution i. The differential equations for

the number of cells in each replicative age class are:

_nj ¼
i0 � rn0 j ¼ 0,
ij � rnj þ (1þ p� d)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼a

rn j�1 j � 1:

8<
:

We then start by setting the equation for n0 to zero, such that

_n0 ¼ i0 � rn0 ¼ 0 ) n�0 ¼
i0

r
:

We use this result to solve for n1 and then continue

recursively until we find the general solution for nj:

_n1 ¼ 0 ¼ i1 � rn1 þ arn0 ) n�1 ¼
1

r
(ai0 þ i1)

_n2 ¼ 0 ¼ i2 � rn2 þ arn1 ) n�2 ¼ an1 þ
i2

r

¼ 1

r
(a2i0 þ ai1 þ i2)

..

. ..
.

) n�j ¼
1

r

(i0a
j þ i1a

j�1 þ 	 	 	 þ i j�1aþ ij),
which can be written in the more compact form

n�j ¼
1

r

Xj

k¼0

ika
j�k:

Appendix B. Total cell number amplification
Here, we start again by writing down the differential

equations for the total number of cells N(c) in each of the com-

partments c with proliferation rates r(c). Additionally, we

have the total influx I into the first compartment (c ¼ 0),

and similarly the total outflux V from the last compartment

(c ¼ C 2 1).

dN(0)

dt
¼ (p� d)r(0)N(0) þ I ¼ (a� 1)r(0)N(0) þ I

dN(c)

dt
¼ (a� 1)r(c)N(c) þ (2� a)r(c�1)N(c�1)

V ¼ (2� a)r(C�1)N(C�1):

As in the calculation above we assume our compartment to

be in the steady state and set the above differential equations

to zero.

0 ¼ dN(0)

dt
¼ (a� 1)r(0)N(0) þ I ) N(0) ¼ I

(1� a)r(0)

0 ¼ (a� 1)r(1)N(1) þ (2� a)r(0)N(0) ) N(1) ¼ (2� a)r(0)

(1� a)r(1)
N(0):

The same calculation can be done for each compartment c:

0 ¼ (a� 1)r(c)N(c) þ (2� a)r(c�1)N(c�1)

) N(c) ¼ (2� a)r(c�1)

(1� a)r(c)
N(c�1) ¼ (2� a)2r(c�1)r(c�2)

(1� a)r(c)r(c�1)
N(c�2)

¼ 	 	 	 ¼ (2� a)cr(0)

(1� a)cr(c)
N(0):

From this follows for the total outflux V

) V ¼ (2� a)r(C�1)N(C�1) ¼ (2� a)r(C�1) (2� a)C�1r(0)

(1� a)C�1r(C�1)
N(0)

¼ (2� a)C

(1� a)C I:

By rearranging this for a we get

a ¼
C
ffiffiffi
V
I

q
� 2

C
ffiffiffi
V
I

q
� 1

:

Appendix C. Mean and variance of replicative
age distribution
To calculate the moments of the replicative age j in the pro-

genitor compartment, we need to normalize the replicative

age distribution n*j in the steady state by the total number of

cells in the progenitor compartment N� ¼
P1

j¼0 n�j . We can

then write down the mth moment of the age j in the progenitor

compartment

hjminw ¼
P1

j¼0 jmn�jP1
j¼0 n�j

¼
P1

j¼0 ( jmaj=r)
Pj

k¼0 (ik=a
k)P1

j¼0 (aj=r)
Pj

k¼0 (ik=ak)

¼
P1

j¼0 jmajPj
k¼0 (ik=a

k)P1
j¼0 a

j
Pj

k¼0 (ik=ak)
:

https://github.com/marvinboe/DownstreamReplAge
https://github.com/marvinboe/DownstreamReplAge
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By changing the order of summation in the denominator,

we get

X1
j¼0

aj
Xj

k¼0

ik

ak ¼ a0 i0

a0
þa1 i0

a0
þ i1

a1

� �
þa2 i0

a0
þ i1

a1
þ i2

a2

� �
þ 		 	

¼ i0(1þa1þa2þ 		 	 )þ i1(1þa1þa2þ 	 	 	 )þ		 	

¼
X1
k¼0

ik
X1
j¼0

a j

0
@

1
A¼X1

k¼0

ik
1

1�a

� �
:

Similarly, we change the order of summation in the nominator

to

X1
j¼0

jmaj
Xj

k¼0

ik

ak ¼ 0ma0 i0

a0
þ 1ma1 i0

a0
þ i1

a1

� �

þ 2ma2 i0

a0
þ i1

a1
þ i2

a2

� �
þ 	 	 	

¼ i0(0m þ 1ma1 þ 2ma2 þ 	 	 	 )

þ i1(1m þ 2ma1 þ 3ma2 þ 	 	 	 )þ 	 	 	

¼
X1
k¼0

ik
X1
j¼0

(jþ k)ma j

0
@

1
A:

We then rewrite the above binomial to (jþ k)m ¼
Pm

i¼0
m
i

� 	
kijm�i

and rearrange the sums to

X1
k¼0

ik
X1
j¼0

(jþ k)ma j

0
@

1
A ¼X1

k¼0

ik
X1
j¼0

Xm

i¼0

m
i

� �
kijm�i

" #
a j

0
@

1
A

¼
X1
k¼0

ik
Xm

i¼0

m
i

� �
ki

X1
j¼0

jm�ia j

0
@

1
A

2
4

3
5

¼
Xm

i¼0

m
i

� � X1
k¼0

kiik

 ! X1
j¼0

jm�ia j

0
@

1
A

¼
Xm

i¼0

m
i

� � X1
k¼0

kiik

 !
S(m�i),

where in the last step we defined the sum which is independent

of the influx

Sm ¼
X1
j¼0

jmaj:

The next step is to put together the nominator and

denominator and to insert the moments of the replicative

age distribution of the influx kjmli:

hjminw ¼
Pm

i¼0
m
i

� 	
S(m�i)

P1
k¼0 kiik

� 	
(1=(1� a))

P1
k¼0 ik

¼ (1� a)
Xm

i¼0

m
i

� �
Sm�ihjiii,

ðC 1Þ

which is the general solution for any moment of the replicative

age distribution.
To get an expression for the mean and variance, we have

to solve Sm for m ¼ 0, 1, 2:

S0 ¼
X1
j¼0

aj ¼ 1

1� a

S1 ¼
X1
j¼0

jaj ¼ a
@

@a

X1
j¼0

aj

¼ a
@

@a

1

1� a
¼ a

(1� a)2

S2 ¼
X1
j¼0

j2aj ¼
X1
j¼0

a2 @
2aj

@a2
þ jaj

� �

¼ a2 @2

@a2

X1
j¼0

aj þ a
@

@a

X1
j¼0

aj

¼ 2a2

(1� a)3
þ a

(1� a)2
:

Generally, for m . 0 the sum Sm is by definition the poly-

logarithm Li2m(a) [51] with negative order m and can be

written as

Li�m(a) ¼ 1

(1� a)mþ1

Xm�1

k¼0

E(m,k)am�k,

with the Eulerian numbers E(n, k) ¼
Pkþ1

j¼0 (� 1)j

nþ1
j (k þ 1� j)n.

By using the general solution equation (C 1) and the

above solutions for Sn for n ¼ 0, 1, 2 we can calculate the

mean m and variance s2 of the replicative age distribution:

m ¼ hjin� ¼
a

1� a
þ hjii ¼

a

1� a
þ mi

s2 ¼ hj2in� � hji
2
n� ¼ hj2ii � hji

2
i þ

a

(1� a)2
¼ s2

i þ
a

(1� a)2
,

where we used the mean mi and the variance s2
i of the influx

distribution.
Appendix D. Replicative age distributions for
specific influx

D.1. Geometric influx
Here, we calculate the distribution of replicative age in the

steady-state resulting from geometrically distributed age of

the influx ik ¼ lk(1 2 l) by solving equation (2.2):

n�j ¼
Xj

k¼0

lk(1� l)a j�k:

Now, we factor out all factors independent of k and sub-

stitute x: ¼ l/a:

n�j ¼ (1� l)a j
Xj

k¼0

xk:

By using the results for the geometric sumPj
k¼0 xk ¼ (x(jþ1) � 1)=(x� 1) for x = 1, we get

n�j ¼
(1� l) l

jþ1�a jþ1

l�a for a = l,
(1� l)aj(jþ 1) for a ¼ l:
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Figure 8. Time to the steady state for different parameters. (a) The number of cells nj for various age classes j increases until the steady state is reached, earlier
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different self-renewal parameters a. The influx age is Poisson distributed with l ¼ 10 (see §3.1.3.1). (Online version in colour.)
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D.2. Poisson influx
To find the replicative age distribution in the progenitor com-

partment for Poisson distributed influx, we have to solve the

following sum:

n�j ¼
Xj

k¼0

e�llk

k!
a j�k:

By factoring out all factors independent of k, we arrive at

n�j ¼ e�la j
Xj

k¼0

lk

ak

1

k!
:

Now, we substitute x ¼ l/a and note that for the upper

incomplete gamma function G(a,x) ¼
Ð1

x ta�1 e�t dt and

integer values of j the following equality holds [33]:

G(jþ 1,x) ¼ j! e�x
Xj

k¼0

xk

k!
:

Using this, we get

n�j ¼
aj e(l=a�l)

j!
G jþ 1,

l

a

� �
:

as the desired result.
Appendix E. Time to steady state
Equation (2.1) can be solved analytically to get an estimate

for the time until steady state is reached. In the following,

we solve the equations for an initially empty progenitor com-

partment, which gives us an estimate to the relaxation time

until steady state is reached. For this, we start by solving

the equation for the first replicative age class j ¼ 0 and then

subsequently for all others:

dn0

dt
¼ i0 � rn0 ) n(h)

0 (t) ¼ C e�rt

variation of parameter C! C(t)

) @C
@t

e�rt � Cr e�rt þ rC e�rt ¼ i0 ) C ¼ i0

r
(ert � 1)

) n0(t) ¼ i0

r
(1� e�rt):
This we plug into the differential equation for the next age

class

dn1

dt
¼ i1 þ arn0 � rn1 ¼ i1 þ ai0(1� e�rt)� rn1,

which can be solved in the same way

n1(t) ¼ (i1 þ i0a)

r
(1� e�rt)þ ai0t e�rt:

Now, we use the steady-state values of the main text

(equation (2.2)), n�j ¼
P j

k¼0 (ika
j�k=r), which allows us to

rewrite the above equation to

n1(t) ¼ n�1(1� e�rt)þ arn�0t e�rt:

For the third age class, we get

n2(t) ¼ n�2(1� e�rt)þ a2r2 t2

2!
n�1 e�rt þ arn�0

t
1!

e�rt:

From this, we can infer the general solution

nj(t) ¼ n�j (1� e�rt)þ
Xj�1

m¼0

(art)(j�m)

(j�m)!
n�m e�rt,

which as expected goes towards the equilibrium solutions n*j
for the limit of time t to infinity. Figure 8a shows the time

evolution of of nj for different age classes j. Approach to

steady state for this specific value of a is relatively fast. To

compare the time until steady state is reached for different

values of a, we numerically calculated the time until nj

reached 99% of the equilibrium value n*j and the results are

shown in figure 8b. As expected, for large a the time to

reach steady state increases drastically, as many more down-

stream compartments have to be filled due to the long tail

towards old ages in the distribution of replicative age. Also

for higher age classes, in this case j ¼ 20 for example, time

to steady state is much longer as all changes have to go

through the previous age classes first. However, as the

steady-state value in this case is close to zero and the influx

into this compartment is even smaller, our assumption of a

quasi-static process is still valid.
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39. Brümmendorf TH et al. 2003 Normalization of
previously shortened telomere length under
treatment with imatinib argues against a
preexisting telomere length deficit in normal
hematopoietic stem cells from patients with chronic
myeloid leukemia. Ann. NY Acad. Sci. 996, 26 – 38.
(doi:10.1111/j.1749-6632.2003.tb03229.x)

40. Dykstra B, de Haan G. 2008 Hematopoietic stem cell
aging and self-renewal. Cell Tissue Res. 331,
91 – 101. (doi:10.1007/s00441-007-0529-9)

41. Ashcroft P, Manz MG, Bonhoeffer S. 2017 Clonal
dominance and transplantation dynamics in
hematopoietic stem cell compartments. PLOS
Comput. Biol. 13, e1005803. (doi:10.1371/journal.
pcbi.1005803)

42. Johnston MD, Edwards CM, Bodmer WF, Maini PK,
Chapman SJ. 2009 Mathematical modeling of cell
population dynamics in the colonic crypt and in
colorectal cancer. Proc. Natl Acad. Sci. USA 104,
4008 – 4013. (doi:10.1073/pnas.0611179104)

43. Glauche I, Moore K, Thielecke L, Horn K, Loeffler M,
Roeder I. 2016 Stem cell proliferation and
quiescence—two sides of the same coin. PLoS Comput.
Biol. 5, 3 – 12. (doi:10.1371/journal.pcbi.1000447)

44. Altrock PM, Brendel C, Renella R, Orkin SH, Williams
DA, Michor F. 2009 Mathematical modeling of
erythrocyte chimerism informs genetic intervention
strategies for sickle cell disease. Am. J. Hematol. 91,
931 – 937. (doi:10.1002/ajh.24449)

http://dx.doi.org/10.1371/journal.pone.0000345
http://dx.doi.org/10.1371/journal.pone.0000345
http://dx.doi.org/10.1126/science.1092436
http://dx.doi.org/10.1126/science.1092436
http://dx.doi.org/10.1038/nrm2636
http://dx.doi.org/10.1038/nature14242
http://dx.doi.org/10.1098/rspb.2003.2483
http://dx.doi.org/10.1098/rspb.2003.2483
http://dx.doi.org/10.1073/pnas.2535419100
http://dx.doi.org/10.1073/pnas.2535419100
http://dx.doi.org/10.1016/S0022-5193(03)00267-4
http://dx.doi.org/10.1016/S0022-5193(03)00267-4
http://dx.doi.org/10.1371/journal.pcbi.1002290
http://dx.doi.org/10.1098/rsif.2013.0349
http://dx.doi.org/10.1098/rsif.2013.0349
http://dx.doi.org/10.1038/ncomms14545
http://dx.doi.org/10.1038/nature21703
http://dx.doi.org/10.1038/nature21703
http://dx.doi.org/10.1038/ng.3489
http://dx.doi.org/10.1126/science.1260825
http://dx.doi.org/10.1126/science.1260825
http://dx.doi.org/10.1016/j.stem.2015.05.002
http://dx.doi.org/10.1016/j.stem.2015.05.002
http://dx.doi.org/10.1098/rstb.2015.0104
http://dx.doi.org/10.1038/nature04958
http://dx.doi.org/10.1038/nature04958
http://dx.doi.org/10.1016/j.cell.2008.01.036
http://dx.doi.org/10.7554/eLife.08687
http://dx.doi.org/10.7554/eLife.08687
http://dx.doi.org/10.1038/nmeth.2043
http://dx.doi.org/10.1038/nmeth.2043
http://dx.doi.org/10.1038/345458a0
http://dx.doi.org/10.1038/350569a0
http://dx.doi.org/10.1038/350569a0
http://dx.doi.org/10.1073/pnas.0914502107
http://dx.doi.org/10.1016/j.cell.2007.07.003
http://dx.doi.org/10.1038/nchembio.2007.38
http://dx.doi.org/10.1038/nchembio.2007.38
http://dx.doi.org/10.1111/2041-210X.12161
http://dx.doi.org/10.1111/2041-210X.12161
http://dx.doi.org/10.1038/nprot.2006.263
http://dx.doi.org/10.1016/j.mbs.2015.08.020
http://dx.doi.org/10.1016/j.mbs.2015.08.020
http://dx.doi.org/10.1016/j.cell.2008.02.007
http://dx.doi.org/10.1016/j.cell.2008.02.007
http://dx.doi.org/10.3324/haematol.2009.015271
http://dx.doi.org/10.3324/haematol.2009.015271
http://dx.doi.org/10.1038/nature03669
http://dx.doi.org/10.1089/scd.2008.0143
http://dx.doi.org/10.1089/scd.2008.0143
http://dx.doi.org/10.1634/stemcells.2006-0136
http://dx.doi.org/10.7554/eLife.08687
http://dx.doi.org/10.1172/JCI103749
http://dx.doi.org/10.1172/JCI103749
http://dx.doi.org/10.1182/blood-2016-07-730325
http://dx.doi.org/10.1182/blood-2016-07-730325
http://dx.doi.org/10.3816/CLK.2008.n.017
http://dx.doi.org/10.1111/j.1749-6632.2003.tb03229.x
http://dx.doi.org/10.1007/s00441-007-0529-9
http://dx.doi.org/10.1371/journal.pcbi.1005803
http://dx.doi.org/10.1371/journal.pcbi.1005803
http://dx.doi.org/10.1073/pnas.0611179104
http://dx.doi.org/10.1371/journal.pcbi.1000447
http://dx.doi.org/10.1002/ajh.24449


rsif.royalsocietypublishing

14
45. Marciniak-Czochra A, Stiehl T, Wagner W. 2013 Modeling
of replicative senescence in hematopoietic development.
Aging 1, 723 – 732. (doi:10.18632/aging.100072)

46. Holbek S, Bendtsen KM, Juul J. 2013 Moderate
stem-cell telomere shortening rate postpones cancer
onset in a stochastic model. Phys. Rev. E 88,
042706. (doi:10.1103/PhysRevE.88.042706)

47. Werner B et al. 2014 Dynamics of leukemia stem-
like cell extinction in acute promyelocytic leukemia.
Cancer Res. 74, 5386 – 5396. (doi:10.1158/0008-
5472.CAN-14-1210)

48. Traulsen A, Pacheco JM, Dingli D. 2010 Reproductive
fitness advantage of BCR – ABL expressing leukemia
cells. Cancer Lett. 294, 43 – 48. (doi:10.1016/j.
canlet.2010.01.020)

49. Hanahan D, Weinberg RA. 2011 Hallmarks of
cancer: the next generation. Cell 144, 646 – 674.
(doi:10.1016/j.cell.2011.02.013)
50. Morrison SJ, Spradling AC. 2008 Stem cells
and niches: mechanisms that promote
stem cell maintenance throughout life.
Cell 132, 598 – 611. (doi:10.1016/j.cell.2008.01.
038)

51. Wood D. 1992 The computation of polylogarithms
Tech. rep. Canterbury, UK: University of Kent,
Computing Laboratory, pp. 182 – 196. See http://
www.cs.kent.ac.uk/pubs/1992/110.
 .o
rg
J.R.Soc.Interface
15:20180272

http://dx.doi.org/10.18632/aging.100072
http://dx.doi.org/10.1103/PhysRevE.88.042706
http://dx.doi.org/10.1158/0008-5472.CAN-14-1210
http://dx.doi.org/10.1158/0008-5472.CAN-14-1210
http://dx.doi.org/10.1016/j.canlet.2010.01.020
http://dx.doi.org/10.1016/j.canlet.2010.01.020
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1016/j.cell.2008.01.038
http://dx.doi.org/10.1016/j.cell.2008.01.038
http://www.cs.kent.ac.uk/pubs/1992/110
http://www.cs.kent.ac.uk/pubs/1992/110
http://www.cs.kent.ac.uk/pubs/1992/110

	Replicative cellular age distributions in compartmentalized tissues
	Introduction
	Model
	Multiple compartments
	Total cell outflux

	Properties of the replicative age distribution
	Mean and variance
	Limiting behaviour


	Results
	A single progenitor compartment
	Identical replicative cellular age influx
	Geometrically distributed replicative cellular age influx
	Influx from stem cell pool with random stem cell divisions
	Asymmetric stem cell divisions
	Symmetric stem cell divisions


	Multiple compartments
	Impact of the number of compartments
	Mean and variance through multiple compartments
	Telomere length data
	Change of replicative age distribution in chronic myeloid leukaemia


	Discussion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Appendix A. Steady-state distribution
	Appendix B. Total cell number amplification
	Appendix C. Mean and variance of replicative age distribution
	Appendix D. Replicative age distributions for specific influx
	Geometric influx
	Poisson influx

	Appendix E. Time to steady state
	References


