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Personal protection measures, such as bed nets and repellents, are important

tools for the suppression of vector-borne diseases like malaria and Zika, and

the ability of health agencies to distribute protection and encourage its use

plays an important role in the efficacy of community-wide disease manage-

ment strategies. Recent modelling studies have shown that a counterintuitive

diversity-driven amplification in community-wide disease levels can result

from a population’s partial adoption of personal protection measures, poten-

tially to the detriment of disease management efforts. This finding, however,

may overestimate the negative impact of partial personal protection as a

result of implicit restrictive model assumptions regarding host compliance,

access to and longevity of protection measures. We establish a new model-

ling methodology for incorporating community-wide personal protection

distribution programmes in vector-borne disease systems which flexibly

accounts for compliance, access, longevity and control strategies by way of

a flow between protected and unprotected populations. Our methodology

yields large reductions in the severity and occurrence of amplification effects

as compared to existing models.
1. Introduction
The use of epidemiological modelling to study vector-borne diseases has a long

history, dating back over 50 years to the classic Ross–MacDonald model [1–3].

Since then, there have been numerous extensions and adaptations [4,5], includ-

ing spatial dynamics [6], host heterogeneity [7,8], seasonality [9], stochasticity

[10] and control [11,12]. There has also been some degree of debate regarding

model formulation [13], such as the form of the biting rate and, by extension,

disease transmission [14,15]. Unfortunately, different assumptions regarding

biting rates can influence predictions for when and where a disease is capable

of spreading, as well as estimates of disease controllability.

Model assumptions regarding disease management can also strongly impact

estimates of disease controllability. This is particularly true of personal protec-

tion. Recently, Miller et al. [16] used a model with two classes of hosts—a

protected class and an unprotected class—to show that, in contrast to predictions

from simpler models [11,17–21], personal protection use by only sub-portions of

the host population can actually worsen an outbreak of a vector-borne disease.

This is a result of diversity amplification—an effect in vector-borne disease

epidemiology which relates increases in overall disease prevalence to increases

in host diversity [22–26]. Amplification is a potential risk whenever vectors

preferentially concentrate attacks on sub-populations with high infection

susceptibilities [26]. This occurs, for example, when partial personal protection

coverage causes mosquitoes to divert from protected individuals and focus

bites on unprotected individuals [16,27,28]. Diversion can lead to rapid disease

spread within the unprotected sub-population and, consequently, personal

protection models which incorporate vector diversion have the potential to

display counterintuitive increases in disease severity [16,26,28,29].
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Many vector-borne disease models which use multiple

host classes and, by extension, potentially exhibit protection-

induced diversity amplification (e.g. [16,26,28,29]) suffer

from a common shortcoming—assignment of individuals to

protected and unprotected classes is assumed static. Some

models do allow for hosts who only intermittently apply per-

sonal protection (such as hosts who sleep under bed nets only

at night), but even in these cases, assignments to sporadically

protected and completely unprotected classes typically

remain fixed [28,29]. In reality, protection status is dynamic:

people forget to apply repellent, run out of repellent, wear

down their bed nets, or grow weary of protection efforts and

thus falter in compliance [30,31], and non-compliant individ-

uals can potentially re-acquire protection or re-adopt its use.

This is particularly true if rigorous campaign initiatives are

mounted in support of personal protection use. Consequently,

there exists a flux of hosts into and out of the protected class,

and this implies that mosquito focusing on unprotected indi-

viduals is actually more diffuse than indicated by static

protection class models. Furthermore, static protection classes

necessitate that control strategies, for example, the supplying

protection or partaking in public service announcements

by a health agency, be incorporated into models as direct

influences over the proportions of the two host populations.

More realistically, however, distribution constraints and socio-

economic factors which deter compliance [30,31] severely

limit controllability over the actual number of protected indi-

viduals, and control efforts will instead have a direct influence

over the flux between the protected and unprotected classes.

That is, the more health agencies do to make available and

encourage the use of personal protection, the more likely

people are to adopt and re-adopt personal protection.

In this paper, we present a methodology for modelling

personal protection which accounts for flow between the

protected and unprotected classes. Specifically, we build a

model similar to that in Miller et al. [16], but include move-

ment between classes that we assume to be proportional

to control effort. We then study the impact of movement

between the protected and unprotected classes assuming

frequency-dependent (gonotrophic-limited) transmission,

density-dependent (search-limited) transmission and an

intermediate scenario that necessitates a functional response

approach. Interestingly, we find that movement between

classes and indeed, classes in general, do not matter strongly

in the density-dependent limit. However, for the other two

scenarios, there is strong divergence between our model, an

analogous model with static protected and unprotected

classes, and a simpler personal protection model with a

homogeneous host population. Whereas our model predicts

increased disease spread relative to the model with only a

single class of hosts, it predicts decreased disease spread rela-

tive to the model with fixed protected and unprotected

classes. From this model behaviour, we conclude that hosts’

propensity to move between protected and unprotected classes

can severely hamper a mosquito’s ability to focus bites on any

one group of individuals, thus mitigating the potential for

diversity amplification effects. Consequently, our results indi-

cate that, relative to our model, models with static protection

classes generally overestimate parameter ranges over which

protection-induced disease amplification will be a practical

concern. Our work provides not only a strong theoretical

foundation for modelling methodology, but also a partial

explanation for the disparity between theoretical prediction
of protection-induced diversity amplification and, to the best

of our knowledge, its apparent lack of observation in the field.
2. Methods
Here, we outline the basic components of our modelling method-

ology and the biological facts on which they are based. These

details will be used in §§3 and 4 to discern the effects of our

methodology on protection-induced amplification and disease

controllability in a simple SIR epidemic model, and will also

serve as a general schematic for incorporating personal protec-

tion control strategies into more complicated vector-borne

disease models in future work.

2.1. The biology of mosquito biting rates and personal
protection

2.1.1. Mosquito – host interaction
Female mosquitoes require vertebrate blood in order to produce

viable eggs. The human disease vectors Aedes aegypti and

Anopheles gambiae exhibit a strong preference for human blood

[32], and the process of acquiring and handling blood meals can

be described in terms of three basic phases of mosquito behaviour.

The average amount of time required to complete each phase

determines the average rate at which mosquitoes can bite. In

Ae. aegypti, for example, the initial phase is a long-range search

mode which begins with a mosquito taking flight after detecting

a CO2 plume [33,34]. During this phase, Ae. aegypti mosquitoes

investigate visual features and drift through the plume towards

its source by surging upwind and casting crosswind [33,34]. The

second phase is a short-range identification and landing mode

which begins once a mosquito approaches a plume source. In

this second phase, Ae. aegypti determine whether and where to

land by integrating heat, moisture and olfactory sensory cues

[33,34], while gustatory and heat sensory cues govern precisely

when and where a mosquito will bite to take a blood meal [32].

Taking a sufficiently large blood meal initiates the third behaviour

phase—the typically 3-day-long gonotrophic cycle over which a

mosquito processes the blood, finds a nesting site, lays eggs and

becomes hungry for the next blood-meal [35]. Although some

mosquito species can take multiple blood meals during a single

gonotrophic cycle [35], for simplicity, we will consider models

which assume one blood meal per gonotrophic cycle.

2.1.2. Mosquito response to bed nets
One method for reducing mosquito contacts with humans is to

disrupt the mosquito–host interaction with the use of bed nets.

Because CO2, volatile skin chemicals, heat and moisture plumes

readily pass through net meshing, bed nets interfere with neither

the initial long-range search phase nor the identification and

approach portion of the second short-range phase (spatial repel-

lency effects of insecticide-treated nets are observed to be weak

or non-existent) [36,37]. Bed nets do, however, interfere with the

landing portion of short-range phase by physically blocking mos-

quitoes from reaching landing sites, thus preventing biting and

the transition to the final gonotrophic phase. Mosquito enter/

exit rates at net-occupied dwellings [37] suggest that there is a

limit to the amount of time that mosquitoes will attempt to gain

access to net-protected human hosts, after which they will abandon

the effort and leave to find blood elsewhere.

2.1.3. Mosquito response to personal repellents
A second method for disrupting the mosquito–host interaction is

the use of mosquito repellents, most notably DEET. DEET is a

broadly effective chemical repellent with volatile and non-

volatile odorant [38] and tastant [39] properties, although the
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precise biological modes of action are still a subject of debate [40].

DEET applied to the skin provides effective protection for many

hours, so its efficacy likely results from a low volatile compound,

implicating a contact repellent or anti-feedant which cannot

interfere with the long-range search phase of the host-seeking

process. Both contact repellents and anti-feedants act by inducing

taste avoidance mechanisms in mosquitoes [39]; experiments

show that mosquitoes do not bite and are repelled within tens

of milliseconds after contact with a DEET-treated section of

human skin [38]. Thus, like bed nets, DEET interferes with the

second short-range phase of host-seeking by preventing biting

after a host has been located and identified.
 J.R.Soc.Interface
15:20180166
2.2. Biting rate model
Ignoring personal protection for a moment, consider a popu-

lation of humans of density Nh homogeneously distributed

throughout a unit area, V. We denote by f the average rate at

which the human population is bitten by a single mosquito,

also located within V. Following Miller et al. [16], Yakob [41]

and Antonovics et al. [42], we assume a Holling type-II functional

response [43–45] for f :

f ¼ bbANh

1þ tHANh
, ð2:1Þ

where

tH ¼ t0 þ bbt: ð2:2Þ

In the above two formulae, A denotes the random search rate,

where 1/A is defined as the average time taken per unit area by

an actively searching mosquito to locate a single human, and bb

denotes the probability for a mosquito to deliver a successful

bite to a host once the target has been located and identified.

Note that bb generally differs from unity due to the human ability

to spot and avoid approaching mosquitoes, a mosquito’s capacity

to make mistakes and misidentify targets, and disruption from

random environmental factors. The quantity tH denotes the hand-

ling time and is defined as the average time taken by a mosquito

to identify, engage and process the blood meal from a single

human after the human has been located. The handling time is

written in terms of a pre- and post-bite handling time, denoted

by t0 and t, respectively, in equation (2.2).

The parameters A, t0 and t are each associated with a specific

phase of mosquito host-seeking and blood processing. The

random search rate, A, is associated with the long-range first

phase, and 1/A is therefore the average time per unit area a

mosquito spends exploring the CO2 landscape and investigating

non-human visual features while attempting to locate a unit den-

sity of humans. This term depends on the size of the unit area V,

the details of the carbon dioxide landscape as determined by

both human and non-human sources, and a range of species-

specific and environmental factors. The pre-bite handling time,

t0, is the average time required to complete the short-ranged

second phase of the host seeking process. Owing to the short-

ranged nature of this interaction mode, we expect t0 to be of

the order of minutes or, at most, hours. The post-bite handling

time, t, is the gonotrophic cycle time corresponding to the

third phase, and is thus of the order of days [35].

The type-II functional response’s capacity to account for

gonotrophic, density and behavioural limitations on biting

rates allows a spectrum of disease transmission assumptions to

be modelled [16,41,42]. We will be especially interested in the

limits ANhtH� 1 and ANhtH� 1, corresponding to the so-

called frequency-dependent and density-dependent limits,

respectively [14,15,42]:

f �
bb

tH
, ANhtH � 1

bbANh, ANhtH � 1:

8<
: ð2:3Þ
In the frequency-dependent limit, host density is so large that the

time spent by mosquitoes in the long-range search phase is

negligible compared to the handling time. Mosquitoes bite at a

constant rate determined primarily by the gonotrophic cycle

time, ultimately resulting in disease transmission assumptions

equivalent to those of the Ross–MacDonald model [1–3],

which was the first and is arguably the most common framework

for modelling vector-borne diseases. In the density-dependent

limit, host density is so low that mosquitoes spend the majority

of their time in the long-range search phase, and the gonotrophic

cycle time is negligible by comparison. Density dependence

ultimately leads to mass-action disease transmission, which is

another a common framework for vector-borne disease

modelling [13,14].

2.3. Personal protection model
2.3.1. Existing personal protection models
Many existing vector-borne disease models that incorporate

personal protection can be classified into two categories. The

first considers separate protected and unprotected classes (e.g.

[16,26,28,46]). We will refer to these types of model as ‘static

two-class models’. In these models, differing control strategies

correspond to differing fractions of protected and unprotected

humans, but there is no notion of control strength and no poten-

tial for dynamic control strategies. These models do not allow

for movement between protected and unprotected classes, so a

person who is protected is always protected and a person who

is unprotected is always unprotected. Although one might

assume that this distinction is inconsequential, particularly

under equilibrium population conditions, we will show (see §3)

that, relative to our personal protection model, static two-class

models tend to underestimate the beneficial effects of personal

protection and overestimate the potential for protection-induced

diversity amplification.

Models of the second type assume a single, well-mixed

human population as opposed to distinct protected and unpro-

tected classes, and will hereafter be referred to as ‘one-class’

models (e.g. [11,17–21]). In these models, personal protection is

usually considered to be control variable which is incorporated

as an overall reduction in the mosquito biting rate, with the con-

trol strength corresponding to the per cent reduction in biting rate.

The virtue of one-class models is their simplicity and compatibil-

ity with dynamic and optimal control techniques. However, as

we will argue below, the interpretation of control strength as a

reduction in f is ecologically unfounded. Indeed, we will show

(see §3) doing so results in models that overestimate the beneficial

effects of personal protection, and thus the controllability of the

disease outbreak, relative to our personal protection model.

2.3.2. Incorporating personal protection into biting rates
We model personal protection’s influence on biting rates through

modified values of the parameters appearing in equations (2.1)

and (2.2). Because bed nets and DEET influence neither

the long-range search phase nor the gonotrophic cycle phase,

the search rate A and post-bite handling time t will be unaffected

by personal protection use; personal protection’s disruption of

the short-range, second host-seeking phase affects only the pre-

bite handling time t0 and the bite probability bb. Protection

measures may extend or shorten the pre-bite handling time

depending on if they confuse or induce aversion, respectively.

The repellent properties of insecticide-treated nets are uncertain

[36], and it is currently unknown whether DEET confuses or

induces aversion [40]. Regardless of the protective measure

in use, we expect the pre-bite handling time to remain of the

order of minutes to at most hours, so personal protection’s influ-

ence on t0 will correspond to relatively small changes in the

numerical value for f. Personal protection causes relatively
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large reductions in f through its effect on the bite probability bb:

mosquitoes are almost instantly repelled and do not bite after

making contact with DEET-coated skin, and mosquitoes can

only penetrate bed nets and bite when rips or tears are present,

so proper bed net and/or DEET use will reduce bb and, by

extension, f, possibly to very small or nearly zero values.

In most real disease control scenarios, even when personal

protection is made readily available, complete coverage over an

entire population is difficult to achieve. Consequently, blood-

seeking mosquitoes will likely encounter and attempt to acquire

blood from both protected and unprotected humans. As dis-

cussed in Miller et al. [16], this is analogous to a predator–prey

system consisting of two distinct prey species whose interactions

with the predator species warrant distinct models. Following

Miller et al. [16], we define Nu and Np as distinct unprotected

and protected host population densities with associated

functional responses

fu ¼
bbuANu

1þ t0u þ bbutð ÞANu þ t0p þ bbpt
� �

ANp

ð2:4Þ

and

fp ¼
bbpANp

1þ t0u þ bbutð ÞANu þ t0p þ bbpt
� �

ANp

, ð2:5Þ

where the subscripts ‘u’ and ‘p’ denote quantities associated with

the unprotected and protected groups, respectively.

Throughout this paper, disease models will be constructed

under the assumptions that protection strategies have no effect

on mosquito health, so they will be unable to account for the

killing ability of insecticide treated bed nets. These effects can

be modelled by modifying the mosquito death rate to make it

an increasing function of fp [16]. Because we will be primarily

interested in the basic behaviour comparisons between simple

models, we only consider untreated nets and assume that protec-

tion measures have no influence over the mosquito death rate.
2.3.3. Incorporating personal protection into control models
We now turn to modelling personal protection as a disease

control strategy operated and implemented by some health

agency. Our goal is to construct a model which will allow us to

assess the effectiveness of various, possibly time-dependent,

control strategies in terms of the ‘control strength’ or ‘control

effort’ exerted by the implementing agency. In the case of per-

sonal protection, ‘control strength’ corresponds to the number

of bed nets or DEET bottles made available and effectively distrib-

uted to the public, as well as any public service announcements

that encourage their use. Here, we face an immediate obstacle

in that there is nowhere in our biting rate expressions (see

equations (2.4) and (2.5)) for such a term to appear. Indeed, the

search rates, handling times and bite probabilities appearing in

fu and fp are determined solely by the ecology of the mosquito–

human interaction and the biology of personal protection’s

action on mosquitoes. Consequently, these parameters are unre-

lated to the amount of personal protection made available to a

population or the degree of effort spent encouraging its use.

What control strength does do is to make more protection

available or encourage its continued use and thus, at least in

theory, allows for a larger protected class relative to the unpro-

tected population. Naively, it might seem that such an effect

could be introduced into the functional responses, fu and fp,

through changes in Nu and Np. Such a formulation, however,

would be unwise, because personal protection use is, ultimately,

a dynamical phenomenon; DEET bottles run dry, bed nets wear

down, and compliance waivers. Thus, individuals continually

lose protection. However, the more DEET and bed nets are

made available and the more their use is encouraged, the more
people will re-acquire access to personal protection and interest

in its use. Incorporation of personal protection control in

vector-borne disease modelling thus necessitates a flow between

protected and unprotected classes. This observation is central to

our work—control strength has a direct influence over the

average amount of time individuals remain unprotected while

either failing to comply with government suggestions, or else

waiting to acquire personal protection that has run out. Said dif-

ferently, control strength should enter dynamic models as a

direct influence over the average flow rates between the pro-

tected and unprotected class. Thus, from a control perspective,

personal protection acts similar to control schemes used for

vaccination [47], albeit with a much faster timescale for return

to the unprotected class.

We employ the following minimal ODE system as a personal

protection control model:

_Nu ¼ gNp � kNu

and _Np ¼ kNu � gNp:

)
ð2:6Þ

Here, 1/k is the average time an unprotected individual remains

unprotected before acquiring personal protection, and 1/g is the

average time a protected individual remains protected before

running out of DEET, having their bed-net fail, or wavering in

compliance. Increased control effort may increase k by making

additional resources available to unprotected individuals, or

may decrease g by encouraging continued compliance among

protected individuals. For simplicity, we will consider control

over resource distribution only and will hereafter refer to k as

the ‘control strength’. For time-independent k and g, we find

the following equilibrium unprotected and protected population

density levels, denoted Ne
u and Ne

p, respectively:

Ne
u ¼

g
gþk Nh

and Ne
p ¼ k

gþk Nh,

�
ð2:7Þ

where Nh is the total density of both protected and unprotected

humans. For the remainder of the paper, we will refer to the

model in equation (2.6) as the ‘dynamic two-class model’. This

simple ODE model implicitly assumes the waiting times within

the two classes to be exponentially distributed. Although not

entirely realistic, this assumption is consistent with the simple

classes of SIR models to be studied in §2.4, and the model’s sim-

plicity facilitates derivation of the associated analytic formulae.

Deviations from the exponential assumption generally yield

intractable delay differential equations [15]. Our mathematical

analysis will be focused solely on equilibrium conditions, and

we expect the effects of delay dynamics to be most important

when systems are driven out of equilibrium, so non-exponential

waiting times will not be considered in this paper.

2.4. SIR epidemic model basic reproduction numbers
To assess the impact of host flow on model behaviour, we com-

pare our dynamic two-class model to analogous static two-class

and one-class models in a simple SIR epidemic setting. Model

predictions for outbreak severity, controllability and protection-

induced amplification will be compared by means of the basic

reproduction number—an outbreak threshold quantity which

quantifies per generation disease growth rates [15]. Basic repro-

duction numbers are calculated using the next-generation

matrix method [48,49].

2.4.1. One-class model
The one-class model does not differentiate between protected

and unprotected humans, but instead considers them together

as one well-mixed population. For such a model, we cannot

use the unprotected and protected biting rate formulas given in

equations (2.4) and (2.5), but instead must use the biting rate



rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180166

5
f given in equation (2.1). For the sake of model comparison, we

assume that the host-seeking parameters A, t0, t and bb appear-

ing in f are numerically equivalent to the corresponding

parameters appearing in the unprotected biting rate fu. We

consider the following one-class SIR model:

_Sh ¼ �(1� 1)bhf
Sh

Nh
Iv,

_Ih ¼ �rIh þ (1� 1)bhf
Sh

Nh
Iv,

_Rh ¼ rIh,

_Sv ¼ L� mSv � (1� 1)bvf
Ih

Nh
Sv

and _Iv ¼ �mIv þ (1� 1)bvf
Ih

Nh
Sv,

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð2:8Þ

where Sh, Ih and Rh denote the susceptible, infectious and recov-

ered host densities, respectively, while Sv and Iv denote the

susceptible and infectious vector densities, respectively. L is

the mosquito recruitment rate, 1/m is the average mosquito life-

span, r is the rate of host recovery, bh is the vector to human

transmission probability, bv is the human to vector transmission

probability, and 1 is the control efficacy, which can vary between

zero and one. Following [17–19], we interpret 1 in terms of pro-

tection efficacy and the fraction of the population with access to

personal protection:

1 ¼ 1�
bbp

bbu

� �
Np

Nh
, ð2:9Þ

where bbu and bbp are taken from the biting rate formulae

equations (2.4) and (2.5) and are defined as the probability for

a mosquito to bite an unprotected or protected host, respectively,

after locating and identifying the target. The protected human

population level, Np, is a parameter, so for the sake of model

comparison, we will assume that Np ¼ Ne
p, and thus can be writ-

ten in terms of k and g as in equation (2.7). Our model

assumptions yield the following basic reproduction number:

R01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1�

bbp

bbu

� �
k

kþ g

� 	2 f2

r

s
: ð2:10Þ
2.4.2. Static two-class model
In the static two-class model, we divide the total host population

into protected and unprotected classes. The fraction in each class

enters as a fixed parameter, with the two classes summing to Nh.

The classes appear both directly in the model and also implicitly

through fp and fu. The static two-class equivalent to equation (2.8)

is as follows:

_Su ¼ �bhfu
Su

Nu
Iv,

_Sp ¼ �bhfp
Sp

Np
Iv,

_Iu ¼ �rIu þ bhfu
Su

Nu
Iv,

_Ip ¼ �rIp þ bhfp
Sp

Np
Iv,

_Ru ¼ rIu,

_Rp ¼ rIp,

_Sv ¼ L� mSv � bv fu
Iu

Nu
þ fp

Ip

Np

� �
Sv

and _Iv ¼ �mIv þ bv fu
Iu

Nu
þ fp

Ip

Np

� �
Sv,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:11Þ
where Sp, Ip and Rp denote densities of protected susceptible,

infected and recovered humans, while Su, Iu and Ru are the

equivalent densities of unprotected humans, and all other par-

ameters and state variables are as defined previously. Again,

for the sake of model comparison, we assume that Np ¼ Ne
p

and Nu ¼ Ne
u so that the protected and unprotected host densities

can be written in terms of the parameters k and g as in

equation (2.7). This ensures that both the static and dynamic

two-class models yield the same protected and unprotected

population values at equilibrium. The resultant basic reproduction

number for the static two-class model is

R02s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ g

r

f2
p

k
þ f2

u

g

" #vuut : ð2:12Þ

2.4.3. Dynamic two-class model
Using the minimal control model in equation (2.6), we consider

the following dynamic two-class SIR model:

_Su ¼ �kSu þ gSp � bhfu
Su

Nu
Iv,

_Sp ¼ kSu � gSp � bhfp
Sp

Np
Iv,

_Iu ¼ �kIu þ gIp � rIu þ bhfu
Su

Nu
Iv,

_Ip ¼ kIu � gIp � rIp þ bhfp
Sp

Np
Iv,

_Ru ¼ �kRu þ gRp þ rIu,

_Rp ¼ kRu � gRp þ rIp,

_Sv ¼ L� mSv � bv fu
Iu

Nu
þ fp

Ip

Np

� �
Sv

and _Iv ¼ �mIv þ bv fu
Iu

Nu
þ fp

Ip

Np

� �
Sv:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:13Þ

For a constant control strength k and equilibrium protected

and unprotected human population values as given in

equation (2.7), the basic reproduction number for the dynamic

two-class model is

R02d
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ g

rþ kþ g

f2
p

k
þ f2

u

g
þ

fp þ fu

 �2

r

" #vuut , ð2:14Þ

where fp and fu are evaluated at the equilibrium protected and

unprotected population values.

Note that in the limit of no personal protection, that is g! 1

with k finite, all three basic reproduction numbers R01,R02s
and

R02d
reduce to the following expression, which we denote R00:

R00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffi
f2

r

r
: ð2:15Þ

This expression follows by noting that, in the absence of per-

sonal protection, Np and fp vanish, while Nu goes to Nh and f
thus goes to fu, provided that the parameters in f are taken to

be equivalent to those in fu. Estimated values for R00 have

ranged, for example, between 2 and 103 for dengue outbreaks

in Brazil and between 1.8 and 14.8 for recent Zika outbreaks

throughout the world, although it should be cautioned that

numerical estimates for R00 calculated from mathematical

models depend sensitively on model structure and method of

calculation [50].
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Figure 1. Dependencies of R0 on DEET (1/g ¼ 15 days) control strength for the dynamic two-class model (blue), static two-class model (red) and one-class model
(green). Corresponding equilibrium proportions of protected hosts are given by the dashed black curve. Two-host models display diversity amplification at control
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3. Results
We now present numerical results for the reproduction

numbers given in §2.4 as functions of the control strength,

k. Because we are interested in basic model behaviour, we

focus on the simplest case of bbu ¼ 1 and bbp ¼ 0, meaning

that once found and identified, unprotected humans are

always bitten while protected humans are never bitten.

Although we are uncertain as to whether DEET or bed net

use will increase or decrease the pre-bite handling time, we

expect this parameter to remain small compared to gono-

trophic timescales, so we simply set the protected and

unprotected pre-bite handling times to be equal. Based on

wind tunnel experiments showing that the source location

and landing process take mosquitoes of the order of minutes

to complete in laboratory settings (e.g. [33]), as well as the

authors’ own anecdotal experiences of being bitten after

standing outdoors for only a few minutes, we estimate the

pre-bite handling time to be 15 min. From Foster & Eischen

[35], we estimate the post-bite handling time to be 3 days.

We examine a variety of protection measures by considering

the cases 1/g ¼ 15 days, 9 months and 5 years. The 5-year

lifetime corresponds to bed net durability estimated from

Briet et al. [51], while the 15-day lifetime is an estimate for

how long it takes the average person to exhaust a bottle of

DEET, assuming frequent use. The nine-month lifetime is

simply an intermediate case, though it is likely that, in the

absence of a rigorous anti-disease campaign, compliance fails

on a months-long timescale. Likewise, to test a variety of com-

monly modelled infection scenarios, we consider the cases

ANh ¼ 10.0, ANh ¼ 0.1 and ANh ¼ 1.0 in units of inverse

days. These correspond to limits that are commensurate
with frequency-dependent, density-dependent and inter-

mediate infection rates [14,15,42], respectively. With ANh

held fixed, the terms bh, bv, Nv, Nh and m are free parameters

which appear only together as an overall multiplicative

factor. Because we are interested in relative differences in

model predictions within each protection scenario, we

adjust this multiplicative factor such that R00 scales to unity

for each parameter setting, and the resulting basic reproduc-

tion numbers will be referred to as ‘scaled R0’. The only

remaining free parameter is the average human recovery

time 1/r, which we set to two weeks—somewhere between

the long infectious periods of diseases like malaria, and the

shorter infectious periods of most viral vector-borne diseases.

Human infectious periods of one week and six months yield

plots qualitatively similar to those displayed in figures 1–3

and are given as electronic supplementary material.
4. Discussion
4.1. Model comparison
Figures 1–3 all show that relative to both two-class models,

the one-class model overestimates disease controllability.

Note, however, that the one-class model does not always

give a poor approximation to the two-class models; indeed,

all curves are fairly similar in the density-dependent limit

in figures 1a, 2a and 3a. It is possible that, by defining the con-

trol efficacy, 1, in the one-class model as equal to the fraction

of protected humans in the two-class models, we have made

an unfair comparison, giving an unrealistic overestimate of

control efficacy. If this is true, then 1 would be more properly
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defined as proportional to the fraction of protected humans,

with the proportionality constant less than unity. In this

case, the curves for the dynamic two-class model and the
one-class model in figures 1a, 2a and 3a would be in even

closer agreement. Outside of the density-dependent limit,

however, the one-class model tends to severely overestimate
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controllability relative to either two-class model, and no

amount of re-scaling of 1 can bring the reproduction

number curves into agreement. Specifically, the one-class

model always predicts a monotonic decrease in the scaled

R0 as a function of k, whereas both two-class models

become non-monotonic outside of the density-dependent

limit. The difference in model behaviour is due to the homo-

geneous population assumption implicit in the one-class

model’s formulation—this simplifying assumption prohibits

the one-class model from accounting for increases in disease

transmission which stem from focused mosquito attacks on

unprotected sub-populations [16].

Figures 1–3 also indicate that, relative to our dynamic

two-class model, the static two-class model generally
underestimates disease controllability and overestimates

diversity amplification. More specifically, diversity amplifica-

tion is indicated whenever scaled R0 curves exceed unity.

Whereas strong amplification is apparent in the static two-

class model, particularly under the frequency-dependent

limit in figures 1d, 2d and 3d, it is much less severe in the

dynamic two-class model, and indeed, even disappears in

figure 1b. In addition to reduced amplification strength, the

dynamic two-class model also predicts large reductions in

the parameter ranges over which amplification can occur, par-

ticularly under the frequency-dependent limit in figures 1d and

2d. Figure 4 illustrates the reductions in amplification severity

and parameter range as explicit functions of ANh. The decrease

in minimum control strength required for amplification
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suppression in the dynamic two-class model relative to the

static two-class model indicates reduction in amplification

range, and the decrease in maximum scaled R0 in the dynamic

two-class model relative to the static two-class model indicates

reduction in amplification severity.

Diversity amplification ultimately results from mosqui-

toes’ propensity to focus bites on preferred hosts [16,26],

and so our results in figures 1–4 indicate that the movement

of people between protected and unprotected classes can

severely hinder mosquitoes’ tendencies to focus attacks on

unprotected human sub-populations, even when host popu-

lation levels are in equilibrium and the flux between classes

is rather small. This observation together with the one-class

model’s inability to account for diversity amplification

indicates that dynamic protection status will generally

result in outbreak characteristics lying somewhere between

the one-class and static two-class model behaviour.
 5:20180166
4.1.1. Density- and frequency-dependent limits
None of the one-class, static two-class or dynamic two-class

models exhibit diversity amplification in the density-depen-

dent limit (figures 1a, 2a and 3a), while both two-class

models are strongly influenced by diversity amplification effects

in the frequency-dependent limit (figures 1d, 2d and 3d). In the

density-dependent limit, mosquitoes spend the majority of

their time searching for and tracking individual humans

through their CO2 plumes, so the time wasted hunting

unbiteable protected targets can significantly reduce the

total amount of time a mosquito has to find and attack bite-

able targets. The resulting overall reduction in bites delivered

more than compensates for the extra attacks diverted from

the protected to the unprotected class, meaning that diversity

amplification effects are suppressed and overall disease levels

are reduced. In fact, any mechanism which forces mosquitoes

to waste large amounts of time hunting or handling protected

hosts has the potential to mitigate diversity amplification.

For example, Miller et al. [16] showed that assigning very

large pre-bite handling times to protected hosts can comple-

tely suppress diversity amplification in the static two-class

model. Because diversity amplification is irrelevant in the

density-dependent limit, it is less important how protected

and unprotected sub-populations are modelled. It should

not be surprising then that the differences between the

three models are reduced in this limit.

In the frequency-dependent limit, mosquitoes spend very

little time searching for and locating any one target, and so

the time wasted hunting unbiteable targets is negligible

(unless nearly all of the human population is protected).

Very nearly all bites which would have originally landed

on protected hosts are consequently diverted to the unpro-

tected population, and the result is a strong amplification

effect. Because diversity amplification is highly relevant in

the frequency-dependent limit, this is where the precise

details of how host sub-populations are modelled matters

most. Again, then, it should not be surprising that differences

between the three models are greatest in this limit.

Between the density-dependent and frequency-dependent

limits, the role of diversity amplification is intermediate.

Thus, depending on the magnitude of host densities and

mosquito attack rates, there will be more or less divergence

between the one-class, static two-class and dynamic

two-class models.
4.1.2. Slow and rapid transition limits
Figures 1–3 differ in their values of 1/g—that is, the average

amount of time that an individual who transitions into the

protected class will remain in the protected class. When

1/g is small (figure 1), our dynamic two-class model is

more similar to the one-class model and less similar to the

static two-class model. By contrast, when 1/g is large

(figure 3), our dynamic two-class model is more similar to

the static two-class model and less similar to the one-class

model. Again, the explanation is relatively straightforward.

In the limit of rapid transitions between classes, that is, the

limit g, k! 1 with the ratio of unprotected to protected

hosts g/k held finite, the distinction between protected and

unprotected classes disappears, as people ‘instantaneously’

transition from one class to the other, with no dwell time in

either class. In this case, our model behaves very much like

the one-class model, where mosquitoes see an average level

of protection for any given person, rather than two separate

classes of people. At the opposite extreme, in the limit of

slow class transitions g, k! 0 with g/k finite, the flux

between classes becomes insignificant. In this case, an aver-

age person remains protected or unprotected for such a

long time that, at least on the timescale of disease dynamics,

there are, in essence, two distinct host sub-populations,

which is the assumption of the static two-class model. To

the extent that g and k are finite and non-zero, our model

is important in providing estimates for disease spread and

controllability at intermediate scenarios between the one-

and static two-class models. These results indicate that

diversity amplification may play a larger role in communities

employing only bed nets than in communities employing

only DEET. The slow transitions associated with the long

life times of bed nets make the class assignments more

static than would the fast transitions associated with the

short life time of DEET, and amplification is strongest when

slow transitions allow mosquitoes to better focus on fixed

groups, as occurs in the static two-class model.

The rapid and slow transition limits provide some insight

into the suspected overestimate in controllability assumed

by the one-class model. If the one-class model and static

two-class models are consistent approximations of the

dynamic two-class model, then we should be able to recover

the expressions for R02s
and R01 from R02d

by taking appro-

priate limits. As expected, equations (2.14) and (2.12) show

that R02d
reduces to R02s

in the slow class transition limit.

Equations (2.14) and (2.10), however, show that R02d
reduces

to R01 in the rapid transition limit only if 1 is defined as

1 ¼ 1�
fu þ fp

f
: ð4:1Þ

This expression is always less than or equal to the expression

for 1 in equation (2.9), with equality holding only in the

density-dependent limit ANhtH� 1. Thus, the one-class

model defined as in §2.4.1 is a consistent rapid transition

approximation of the dynamic two-class model in the den-

sity-dependent limit only. Outside of the density-dependent

limit, equation (2.9) overestimates the rapid transition level

of controllability implied by equation (4.1). These findings

suggest that equation (4.1) provides a more biologically

sound, albeit more complicated, expression for control effi-

cacy in one-class models than does the more commonly

used expression in equation (2.9). Furthermore, these results
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indicate that a common set-up for one-class control models,

one which uses constant density-independent biting rates

and a control strength in the form of equation (2.9), makes

two implicit mutually inconsistent biological assumptions:

the form of control strength assumes density-dependent

biting rates, while the constant biting rate is equivalent to

assuming frequency-dependent biting rates.

4.2. Diversity amplification in the field
Based on our modelling results, we posit that the mitigation

of diversity amplification by class flow is a general feature of

vector-borne disease systems. This implies that any model

featuring static protected and unprotected classes will overes-

timate the impact of diversity amplification relative to its

dynamic two-class analogue, although the amount of overesti-

mation may be small in certain parameter ranges. No matter

how complicated and detailed a static two-class model may

be, allowing movement between protection classes will

always hamper a vector’s ability to focus bites on and amplify

disease spread within any one vulnerable host group. Not only

can class flow reduce the strength of amplification but, more

importantly, it can also restrict the range of parameters

where amplification can occur. This observation may at least

partially explain the disparity between the theoretically

predicted protection-induced amplification effect and its lack

of observation in the field. Although there is some field evi-

dence suggesting that mosquitoes divert from individuals

using repellent to those that do not [27], protection-induced

amplification, to the best of our knowledge, has never actually

been observed at the community level. This could be a result of

poor compliance, which is hard to assess, or insecticide-treated

net use, which is expected to suppress amplification by killing

rather than diverting mosquitoes [16,28,29]. Alternatively,

given that humans naturally waver in protection status over

time, it could be that amplification is simply less important

and less likely to occur than suggested by static two-class

models. Our dynamic two-class model provides a robust

mechanism for the suppression of diversity amplification and
thus addresses the contradiction between theoretical predic-

tion and experimental observation.
5. Summary and conclusion
We have introduced a dynamic two-class model to describe

vector-borne disease systems incorporating hosts who use

personal protection measures. The effects of personal protec-

tion usage at the level of individual hosts are captured by

functional response biting rates, and the effects of large-

scale personal protection campaigns at the community level

are captured through flows between protected and unpro-

tected classes. Class flow can severely reduce amplification

in both severity and range of occurrence, relative to predic-

tions from existing static two-class models. This, along with

the natural propensity of humans to discontinue and

re-adopt protection use, offers potential explanation for

the lack of observed protection-induced amplification in the

field, despite predictions implied by existing models. Static

two-class models can fail because they do not acknowledge

the fundamental difference between genuinely distinct host

species and protected versus unprotected individuals: species

type is fixed, while protection status is not. Our dynamic

two-class model combines the desirable features of one-

class models (dynamic control) and static two-class models

(host variability) to provide an ecologically sound method-

ology for modelling personal protection distribution as a

community-wide dynamic control strategy in vector-borne

disease systems.
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