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The outbreak of an infectious disease in a human population can lead to

individuals responding with preventive measures in an attempt to avoid

getting infected. This leads to changes in contact patterns. However, as we

show in this paper, rational behaviour at the individual level, such as

social distancing from infectious contacts, may not always be beneficial for

the population as a whole. We use epidemic network models to demonstrate

the potential negative consequences at the population level. We take into

account the social structure of the population through several network

models. As the epidemic evolves, susceptible individuals may distance

themselves from their infectious contacts. Some individuals replace their

lost social connections by seeking new ties. If social distancing occurs at a

high rate at the beginning of an epidemic, then this can prevent an outbreak

from occurring. However, we show that moderate social distancing can

worsen the disease outcome, both in the initial phase of an outbreak and

the final epidemic size. Moreover, the same negative effect can arise in

real-world networks. Our results suggest that one needs to be careful

when targeting behavioural changes as they could potentially worsen the epi-

demic outcome. Furthermore, network structure crucially influences the way

that individual-level measures impact the epidemic at the population level.

These findings highlight the importance of careful analysis of preventive

measures in epidemic models.
1. Introduction
Mathematical models for the spread of infections have been used successfully to

increase understanding of how epidemics may propagate: what are the most

important features to determine the initial epidemic growth, final epidemic

size or endemic level? Mathematical models are also useful to evaluate the poss-

ible effects on epidemic dynamics of preventive measures. This can guide

public health officials to decide what measures could be put in place to

reduce or even stop spreading of a disease [1].

To prevent or control an epidemic, public health authorities may implement

measures by, for example, isolating/treating detected infectious cases or start-

ing a vaccination scheme, either before or during the outbreak [1]. In

addition, individuals may take their own measures to prevent themselves

from getting infected, e.g. by wearing face masks, taking hygienic measures

such as hand washing, or by socially distancing themselves from infectious con-

tacts. Such individual behaviour has been observed in, for example, the recent

Ebola outbreak and the 2009 A/H1N1 epidemic [2–6].

In general, it is hard to predict the effect of preventive measures without using

models to guide us. Epidemic dynamics are highly nonlinear and therefore pre-

ventive measures can lead to counterintuitive effects. Standard epidemic models

assume human behaviour is not influenced by the epidemic and is constant

over time. Although it is often recognized that humans do take preventive

measures in the course of an epidemic, models that incorporate behavioural
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dynamics are generally much harder to analyse. Recently,

such models have started to receive more attention, and

important advances have been made to gain understanding

of the effect of different behavioural changes on epidemic

dynamics [7–10].

A crucial modelling ingredient is the contact pattern in the

population as infection is transmitted through contacts

between susceptible and infectious individuals. Owing to chal-

lenges in their analysis, the majority of models that consider

behavioural responses to epidemic dynamics are relatively

simple in modelling contact patterns [10]. Often the simplest

assumption of homogeneous mixing, or some variant, is

made. This assumption implies that any two individuals

rarely meet more than once in a large population. To overcome

the restriction of the lack of repeated contacts, network epi-

demic models have been proposed to model human contact

patterns. This class of models have received much attention

over the last 20 years or so [11,12]. In these models, individuals

are socially connected in the network and infection is only

possible along connections. Network models are also a natural

way to incorporate heterogeneity in the number of connections

that individuals in the population have. Throughout this

paper, we refer to two individuals that are connected to each

other as ‘neighbours’. Exactly what a neighbour is depends

on the social structure under consideration, e.g. one may

think of the neighbours as ‘colleagues’ in workplaces or

‘sexual partners’ in sexual networks.

In this paper, we study a network SIR (susceptible–

infectious–recovered) epidemic with preventive social

distancing. We consider the setting where susceptible indi-

viduals distance themselves from their neighbours who

they find out are infectious, perhaps sometimes simply drop-

ping such connections and other times, in their wish to

maintain a certain number of social connections, by seeking

new connections (which we refer to as ‘rewiring’). We

study the impact of social distancing on model networks as

well as real-world networks.

We show that rational preventive individual-level behav-

iour can have counterintuitive negative population-level

consequences. From the perspective of an individual who

distances him/herself from an infectious individual, this

preventive behaviour is always rational in the sense that it

decreases the risk of him/her getting infected during the

epidemic outbreak (here ‘always’ means for all rewiring

and dropping rates on all networks). If the social distancing

occurs at a high enough rate at the beginning of an epidemic,

then this can prevent an outbreak from occurring. In such

cases, the population-level effect is obviously always positive.

However, we also show that having individuals who rewire

away from infectious neighbours and possibly replace them

with new ties may be harmful for the community as a whole.

Depending on the network structure of the population,

social distancing may in fact increase the epidemic threshold

parameter from below to above its threshold value, making

a large outbreak possible where without social distancing it

was not. We also show that social distancing can increase
the final size of the epidemic. It is important to stress that

these features do not hold for all networks. However, we

show that there are real-world networks as well as model net-

works which exhibit these properties. It is difficult to

characterize completely when such individual preventive

behaviour is harmful, but it tends to happen more easily if:

(i) the epidemic threshold parameter for an epidemic to
take off (for the baseline setting without social distancing)

is large, (ii) the network has many individuals with low

degree and possibly other groups being highly intercon-

nected and (iii) connections are more likely to be rewired

than dropped. The theoretical findings of our study highlight

the importance of taking preventive measures into account in

epidemic models.
2. Model
2.1. SIR epidemic with social distancing on a network
We consider a population in which individuals are socially

connected. Two individuals that are connected to each

other are referred to as neighbours and contacts are only

made between neighbours. The individuals and the connec-

tions between them together make up the network

structure of the population. The stochastic SIR (susceptible-

infectious-recovered) epidemic with social distancing on a

network is as follows. Initially, usually one individual is

infectious, we call this individual the index case, and all

others in the population are susceptible (specific assumptions

concerning the index case are given later). An individual that

gets infected becomes infectious and remains so for an expo-

nentially distributed time with mean 1/g, then it becomes

recovered and immune to further infection. During its infec-

tious period, an individual transmits infection at a constant

rate b independently to each susceptible neighbour. More-

over, a susceptible individual that has an infectious

neighbour distances him/herself from this neighbour. The

susceptible individual then either rewires the connection to

an individual chosen uniformly at random from the popu-

lation or drops the connection completely. We model this

by a social distancing rate v and a probability a to rewire

rather than drop the connection. Whenever a social distan-

cing event happens, the susceptible individual immediately

choses a new neighbour uniformly at random from the

entire population with probability a, and with the remaining

probability 1 2 a the susceptible individual simply drops the

connection (so a susceptible individual rewires from an infec-

tious neighbour at rate av and drops the connection at rate

(1 2 a)v). Dropping and rewiring events happen indepen-

dently between all pairs of susceptible and infectious

individuals. Note that the probability that a susceptible indi-

vidual distances oneself from a given infectious neighbour

before becoming infected or the neighbour recovering is v/

(b þ v þ g). For example, for a mean infectious period of

1/g ¼ 5 days and transmission rate b ¼ 0.1 d21, the prob-

ability v/(b þ v þ g) of social distancing of the susceptible

individual before transmission or recovery of the infectious

neighbour is 0.12 if v ¼ 0.04 d21 and 0.67 for v ¼ 0.60 d21.

The epidemic continues until no infectious individuals remain.

Note that the preventive measure of social distancing is

always beneficial from the individual perspective. Indeed, a

susceptible individual that distances itself from an infectious

neighbour avoids the risk of getting infected by that particu-

lar individual. In the case that it chooses to replace that social

connection (rewiring), and that new neighbour is recovered

(and immune), transmission can no longer occur through

that connection. If the neighbour is susceptible, transmission

through that connection could occur later on in the epidemic.

If the neighbour is infectious, then all that has happened from

an epidemic point of view is that one infectious neighbour is
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replaced by another one, and the risk of becoming infected is

unchanged. Obviously, the most beneficial option from the

point of view of avoiding getting infected is not to replace

the connection (corresponding to a ¼ 0 and v . 0 in the

model). At the population level, this means that there are

fewer connections through which the epidemic can spread.

Therefore, this extreme case of dropping connections is

always beneficial from both the individual and population

perspective. Consequently, provided infectives can recover

(g . 0), if most of the social distancing is done through drop-

ping connections rather than rewiring them (small a) then

this will also be beneficial for the population.

The epidemic with social distancing is studied on two net-

work models as well as some real-world networks. The

networks are described in §2.2. Our results in §3 involve sev-

eral epidemiological measures for the beginning and the end

of the epidemic, these concepts are introduced in §2.3.
 5:20180296
2.2. The networks
2.2.1. Configuration network
The configuration model is a well-studied network, both

within and without the context of epidemic models

[13–15]. The network is constructed by first defining its

degree distribution fpdgd
1
¼0, where pd is the probability that

an individual has exactly d connections. In a population of

size n, each of the n individuals picks a degree independently

from fpdg and attaches that many half-edges to itself.

Half-edges are then paired completely at random and the

corresponding individuals are connected in the network. By

the way of this construction, some imperfections may arise,

such as self-loops or multiple connections between some

pairs of individuals. However, such imperfections become

sparse in the network as the population size n!1 if the

degree distribution has finite variance (see e.g. [16], theorem

3.1.2) and electronic supplementary material, section S5).

Under such conditions the asymptotic n!1 results in our

paper hold also if the network is conditioned to have no

such imperfections [17]. Those asymptotic results are valid

as approximations only for large populations. What consti-

tute large depends on many factors but simulations indicate

that usually the approximations are good for sizes in the

low hundreds.
2.2.2. Clique network
The clique-network model [18] (also referred to as household-

network model when the cliques are interpreted as

households) has two types of connections: global network

connections and clique connections. The global network struc-

ture is obtained through the configuration network with

prescribed degree distribution fpdg. On top of this, the com-

munity is partitioned into distinct units (cliques) of size

three (see electronic supplementary material, section S2 for a

discussion on allowing for variable clique sizes). The popu-

lation can be partitioned into cliques by labelling all

individuals from 1 to n, and letting the first three individuals

make up clique 1, the next three individuals make up clique 2,

and so on. In the final network, individual 1 is then connected

to all individuals he/she is connected to from the construction

of the configuration model together with individuals 2 and 3

from the clique construction, and similarly for the other

individuals.
2.2.3. Real-world networks
The real-world networks for our studies are taken from the

Stanford large network dataset collection [19] and SocioPat-

terns [20,21], where datasets for several different networks

are freely available. We considered the ‘arXiv General Rela-

tivity collaboration network’ and the ‘Facebook social

circles network’ from [19] and two ‘Infectious SocioPatterns’

networks from [20]. All networks are undirected. The arXiv

General Relativity collaboration network describes scientific

collaborations between authors that submitted papers to the

arXiv in the General Relativity and Quantum Cosmology cat-

egory. Edges between nodes represent two co-authors that

have written a paper together. In the Facebook social circles

network, nodes are survey participants of the social network

website Facebook that were using a specific app. Edges

between nodes represent the ‘circles’ or ‘friends lists’ of

those participants. The Infectious SocioPatterns networks

describe close-contact interactions between visitors of a

Science Gallery exhibition in Dublin, where all contacts are

aggregated over a day. Data were collected over a period of

69 days, we consider two representative networks for that

period that we refer to as SG1 and SG2 [20,21]. The networks

are described in more detail using summary statistics such as

degree mean, median and variance, numbers of nodes and

edges in electronic supplementary material, section S3.1.

Moreover, additional summary statistics such as clustering

coefficients are documented in [19,21].
2.3. Epidemiological quantities: threshold parameters,
the probability of a major outbreak and final size

In general, the social distancing model is challenging to ana-

lyse mathematically (see [22] for analysis of the beginning of

an epidemic on the configuration network). As the network

structure depends on the epidemic dynamics, models very

soon become intractable. Therefore, in the main text we pre-

sent the heuristics of our analytical results and refer to the

electronic supplementary material for the mathematical

details. In §3, the main focus is on our findings from simu-

lation studies. Here, we present the key epidemiological

concepts that are used in §3.

For the beginning of the epidemic, in the configuration net-

work model we use the basic reproduction number R0 that has

the interpretation as the expected number of secondary cases

generated by one typical newly infected individual at the

beginning of the epidemic. The number R0 is a threshold par-

ameter with threshold value one in the sense that, in the limit

as the population size n! 1 there is a positive probability of a

major outbreak (one which infects a strictly positive fraction of

the population as n! 1) if R0 . 1 and no major outbreak

occurs if R0 � 1. Owing to stochastic effects, it is always poss-

ible that an epidemic dies out when introduced into a

population with finite size n, even when R0 . 1. Previous

work ([22]; see electronic supplementary material, section

S1.2) showed that the basic reproduction number R0 for the

epidemic on the configuration network with social distancing

is given by

R0 ¼
b

bþ vþ g
mD þ

s2
D

mD
� 1

� �
, ð2:1Þ

where mD and s2
D are the mean and variance of the degree

distribution fpdg of the configuration network. Note that
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mD þ ðs2
D=mDÞ � 1 is the expected number of susceptible

neighbours of a typical newly infected individual in the

early stages of an epidemic and b/(b þ v þ g) is the

probability of transmitting to such a susceptible individual

before he/she recovers or the neighbour drops the connection

or rewires away.

Related to R0 is the clique reproduction number R* (also

referred to as the household reproduction number when the

cliques under consideration are households), which is more

natural to consider when studying populations with a

clique structure. Rather than considering a newly infected

individual, one considers a newly infected clique as the

unit of interest. The same threshold behaviour holds. The

clique reproduction number R* is derived in §3.2 and

electronic supplementary material, section S2.1.

For an epidemic on both the configuration network and

the clique network, as the population size n tends to infinity,

the final fraction �Zn of individuals that ever get infected con-

verges in distribution to the random variable �Z with two-

point distribution: P(�Z ¼ 0) ¼ 1� P(�Z ¼ z). In the event of a

major outbreak, the limiting final fraction of the population

infected by the epidemic is z. In general, this constant z is

only characterized implicitly, even for the simplest Marko-

vian homogeneously mixing SIR epidemic model. We use

the practical definition in our simulation studies in §3 that

an epidemic outbreak is major if the final number of infected

individuals is more than 10% of the total population size.

We use the fraction of simulations resulting in major out-

breaks according to this definition as an approximation for

the probability of a major outbreak to occur. Furthermore,

we set the mean infectious period 1/g equal to 5 days as

this lies in the typical range for many infectious diseases,

such as rubella and polio. In our results presented below

for the model networks, we investigate a range of v-values

starting at zero and becoming large enough that the threshold

parameter (R0 or R*) is reduced below the critical value of

one. For the real-world networks where the final size

increases through social distancing, the range of v-values is

chosen such that the decrease in the average final size for

large enough v can also be observed, whereas for the other

real-world networks the range of v is chosen so that compari-

son between different networks can be made. More details on

the simulation studies are provided in electronic supplemen-

tary material, section S5. We call the model without social

distancing (v ¼ 0) the baseline model.
3. Results
3.1. The configuration network
Social distancing in the configuration network is always

beneficial at the beginning of an epidemic in the sense

that it lowers R0. This conclusion follows immediately from

expression (2.1). In fact, social distancing can ensure that R0

is reduced below the epidemic threshold value of one; see

figure 1b for an example. At the beginning of an epidemic,

from the point of view of a susceptible individual, social distan-

cing from an infective neighbour ensures with high probability

that he/she avoids infection during the early stages of an epi-

demic. Indeed, there are only few infectives in the population

in that stage of the epidemic. This makes it unlikely for a sus-

ceptible individual who rewires to encounter another infectious

individual at the beginning of the epidemic.
However, social distancing need not be beneficial for the

population as a whole. In fact, even though rewiring

decreases R0, it can still lead to an increase in the final size.

To show analytically that the expected final size can increase

with v, we consider a very specific degree distribution, where

individuals have either degree 0 or degree k, where k . 2, i.e.

p0 ¼ 1 2 pk (proving things for more general degree distri-

butions seems very hard). We analyse a related model that

allows us to derive an asymptotic lower bound for the

model of interest with strictly positive rewiring probability

a . 0. In the related model, we consider an SI infection,

i.e. set g ¼ 0. Then continuity arguments ensure that our

results also hold for an SIR infection with g . 0 small

enough. Individuals act differently depending on their

degree. A susceptible individual that tries to rewire to a ran-

domly chosen individual v in the population will not do so

(and simply drop the edge) if v is of degree k. If v is of

degree 0, then rewiring takes place as usual, but v is prohib-

ited from transmitting to other individuals. Therefore, the

number of infections in the modified model is always less

than in the original model (and is equal in the baseline

model when there is no social distancing). For this modified

model, we can derive an asymptotic (as n!1) lower bound

for the final size that is increasing in v for small v . 0. It fol-

lows that, provided a . 0, for sufficiently small g . 0, the

final size of the model with social distancing is greater

than that without social distancing for sufficiently small

v . 0. The details of the analysis are found in electronic

supplementary material, section S1.3.

Rather than providing details for the analytical results for

the final size here, we demonstrate the negative population

level effects through simulation studies. We consider the

social distancing model on a configuration network with het-

erogeneous degree distribution in figure 1. Parameter values

are such that the basic reproduction number R0 is large in the

baseline setting and the majority of the social distancing is

done through rewiring rather than dropping. The epidemic

is started with 10 index cases (chosen uniformly at random

from the population) in order to have most of the simulations

resulting in major outbreaks. The number of index cases,

unless sufficiently large, does not affect the final size of a

major outbreak. We illustrate this fact by considering the

scenario with one index case in electronic supplementary

material, figure S1. Then the final size given a major out-

break increases as a function of social distancing as in

figure 1, but the fraction of simulations resulting in a major

outbreak is much smaller and consequently the average

final size is decreasing. Additional results showing that

social distancing can increase the final size for several

other configuration network models are presented in elec-

tronic supplementary material, section S4. In particular,

we consider different settings with a smaller rewiring

probability a . 0.

Note that the fraction of epidemics that result in major

outbreaks decreases with increasing social distancing rates

(figure 1b). Despite this, the average final size of all outbreaks

can still increase. Once the social distancing rate v increases

to a level such that the basic reproduction number drops

below the epidemic threshold value of one (figure 1b),

mostly minor outbreaks will occur. Finally, we note that devi-

ations from the average final size are generally small (also

compared to the total population size of 5000), especially

when conditioning on the occurrence of a major outbreak.
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Figure 1. Social distancing can lead to an increase in the final size for the
configuration network model. (a) Average final size (with 95% confidence
intervals (CI) whenever large enough to be visible on the scales used in the
plots) over all outbreaks (solid line) and restricted to major outbreaks
(dashed line); the dotted horizontal line is at the final size when v ¼ 0,
for reference. (b) R0 as a function of social distancing rate v (dashed black
line at R0 ¼ 1 indicates the threshold value) and fraction of all outbreaks
resulting in major outbreaks (with 95% CI). Model parameters are as follows.
An individual in the population has degree d with d ¼ 0,. . ., 10 with
probability pd ¼ c/(d þ 1), d ¼ 0,. . ., 10 with c ¼ 0.331 the normalization
constant. Other parameter values are a ¼ 0.9, b ¼ 20 d21 and 1/g ¼ 5
days, total population size 5000, and each epidemic starts with 10 randomly
chosen index cases. For each value of v, 500 epidemics are simulated.
(Online version in colour.)
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3.2. The clique network
In the clique network, individual preventive social distancing

can have a negative population-level effect already at the

beginning of an epidemic. To demonstrate this, we consider

R* for the clique-network model. The clique reproduction

number R* is derived by differentiating between two types

of newly infected cliques. A newly infected clique at first con-

sists of one newly infected individual while the remaining

clique members are susceptible. The two types are deter-

mined by the way the newly infected individual u* was

infected: (i) u* was infected by a global neighbour (i.e. outside

his/her own clique) that it had already before the start of the

epidemic or (ii) u* was infected by a global neighbour that

it acquired through a social distancing event during the

epidemic. The clique reproduction number is the dominant

eigenvalue of the 2 � 2 matrix (Kij)i,j ¼ 1,2, where Kij is the

expected number of cliques of type j generated by one

newly infected clique of type i. Details of the derivation of

the Kij are found in electronic supplementary material,

section S2.1. We find an explicit expression for R* that we

can analyse as a function of social distancing v and rewiring

probability a for different degree distributions (see electronic

supplementary material, section S2.2). We illustrate these

analytical results with numerical examples in figure 2 for

fixed rewiring probability a ¼ 0.9 (but note that there is

generally a range for a for which negative population-level
effects can occur, depending on the network under consider-

ation and other model parameter values; see electronic

supplementary material, section S4).

As can be seen in figure 2a, R* can increase as a function of

the social distancing rate v. In particular, social distancing

can move the epidemic threshold R* from below to above

its threshold value of one. In other words, individual preven-

tive measures that are beneficial at the individual level can

cause a major outbreak to become possible while without

the preventive measures this is not possible. However, this

depends heavily on the precise network structure. In

figure 2b, the degree distribution is chosen such that R*

decreases for all social distancing rates. See electronic sup-

plementary material, section S2 for more details and

examples of the dependence of R* on social distancing.

Note that R* will eventually decrease for large enough

social distancing rates as can be seen in figure 2a.

In settings where social distancing pushes R* from below

to above the threshold for an epidemic to occur, the effect of

social distancing on the final size is large (figure 2c). More-

over, even in settings where social distancing reduces R*,

the final size can initially increase when social distancing is

introduced into the model (figure 2d ).
3.3. Application to real-world networks
We consider four real-world networks: the arXiv General

Relativity collaboration network and Facebook social circles

network, taken from [19], and two Science Gallery networks

that we call SG1 and SG2, taken from [20,21]. We simulate

SIR epidemics with social distancing on these real-world net-

works (see electronic supplementary material, section S3.1

for details). In figures 3 and 4, we demonstrate that social dis-

tancing can have a negative effect at the population level by

increasing the final size in the collaboration network and

the SG1 network.

Next, we consider the Facebook social circles network and

the SG2 network in figures 5 and 6. These two networks serve

to demonstrate that the precise network structure plays a cru-

cial role for the effect that social distancing can have on the

final size. For the Facebook social circles in figure 5, we find

that if we restrict to only the major outbreaks, then a modest

increase in the final size can be observed when compared to

the baseline setting. On the other hand, the average final size

is more or less unaffected by social distancing for sufficiently

small social distancing rates. This can be explained by the net-

work structure of the underlying population. As all individuals

are part of the same connected component that contains many

connections, i.e. all individuals are (indirectly) connected to

each other, modest social distancing rates will not change

the network structure in a way that significantly alters trans-

mission patterns. Furthermore, for the SG2 network in

figure 6, we find a slight increase in the final size for small

social distancing rates but in general social distancing

decreases the average final size compared with the baseline

setting. Although also this network consists of one connected

component, the relative number of connections is much smal-

ler when compared with the Facebook social circles network

(see electronic supplementary material, section S3.1 for

network summary statistics).

In electronic supplementary material, section S4 additional

scenarios for smaller probabilitiesa for the real-world networks

are considered. We find that negative population-level effects
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Figure 2. The effect of social distancing on the epidemic threshold parameter R* and the final size. The fraction of epidemics resulting in major outbreaks (with 95%
CI whenever large enough to be visible on the scales used in the plots) and R* for (a) mean infectious period 1/g ¼ 5 days, b ¼ 20 d21 and two-point degree
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can occur for arXiv General Relativity collaboration network

and SG1 for a wider range of a-values while a has minor effects

on the final size on the Facebook social circles network, and

decreasing a leads to smaller final sizes on the SG2 network.
4. Conclusion and discussion
In the event of an epidemic outbreak in a population, individ-

uals may take preventive measures by changing their contact

patterns. Individuals may try to avoid infection by social

distancing from infectious contacts. If this is done at a suffi-

ciently high social distancing rate, then it can have a

positive population level effect by bringing the reproduction

number for an epidemic to take off below the threshold value

of one. On the other hand, while preventive social distancing

at moderate rates is always rational at the individual level, it

may be harmful at the population level. In particular, preven-

tive social distancing can increase the final epidemic size at

the population level and thus have negative effects for the

community at large. We demonstrated this counterintuitive

result by means of different epidemic network models, as

well as simulating epidemics with social distancing on exist-

ing real-world networks. Similar conclusions in terms of

behavioural changes at the individual level and its popu-

lation-level consequences have been drawn in [23,24] for

different behavioural change models. Both [23,24] considered

changes in human mobility patterns in the event of an epi-

demic and its consequences for the geographical spread.

Using a metapopulation model, they illustrated that individ-

ual preventive measures in mobility patterns can lead to

epidemic spread in new locations, although their invasion

thresholds are always increasing [23] or even independent

[24] of the behavioural changes, which is quite different

from the dependence on social distancing of the threshold

parameters R0 and R* in our models.

Whether or not social distancing of susceptible individuals

from their infectious contacts will actually have negative
epidemic outcomes depends strongly on the social network

structure of the population. We demonstrated that social dis-

tancing can have different effects in the initial stages of the

epidemic compared to the overall epidemic outbreak size.

We considered the spread of an SIR epidemic on the clique-

network model and the configuration network model. We

showed that social distancing can have negative effects for

the community by (i) increasing the epidemic threshold par-

ameter R* from below to above the threshold value of one in

clique-networks with high clustering and (ii) by increasing

the final size. Point (ii) for the final size was shown in (a) con-

figuration networks with heterogeneous degree distribution,

(b) clique-networks and (c) two real-world networks.

In general, in the baseline setting that an epidemic out-

break may occur when no preventive measures are taken,

social distancing can always have beneficial effects provided

that the rate of social distancing is sufficiently large (e.g.

figure 3a). Indeed, sufficiently large social distancing rates

can prevent an epidemic from taking off by reducing the epi-

demic threshold parameter from above to below its threshold

value. In such cases, social distancing ensures that only a

small number of individuals get infected by the epidemic,

while in the baseline setting a significant fraction of the

population may be infected.

Whereas social distancing never increases ones own risk

of getting infected in our model, through rewiring, it can

increase the risk for other individuals, e.g. by connecting to

individuals that were previously not (so heavily) exposed

to the epidemic. How and whether or not social distancing

affects the population-level epidemic outcome depend on a

variety of factors. Most notably, the network structure plays

an important role (e.g. Figure 2). While it was not our aim

to investigate models for specific diseases, we have chosen

parameter values (e.g. 1/g ¼ 5 days and R0 ¼ 4.5 in the base-

line model for figure 1) which are relevant for many

infectious diseases. For example mumps, rubella and polio

have estimated basic reproduction numbers around five

and infectious periods are typically in the range of a few
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days to weeks. Note that we consider an infectious period

that is exponentially distributed. The memoryless property

of the exponential distribution ensures that social distancing

is always beneficial at the individual level. Relaxing this

assumption could potentially lead to different effects for the

individual and/or the population level. This is an interesting

extension to investigate in future work for which the current

framework provides an excellent starting point. Furthermore,

social distancing with larger values of a can more easily lead

to negative effects at the population level. Exactly what con-

stitutes sufficiently large a to realize this effect depends on

the precise setting that one considers (e.g. for the clique net-

work model with a Poisson degree distribution having mean

1 this occurs with R* for all 1=2 , a � 1, while for the same

model with degree distribution p0 ¼ 1=2 ¼ p1 the range of a

is larger at 1=3 , a � 1; see also electronic supplementary

material, sections S1.3, S2.2 and S4). These negative popu-

lation-level effects also seem to arise more easily when the

threshold parameter (R0 or R*) is high and the community

has many individuals with low degrees and/or the commu-

nity has highly connected cliques. In such cases, rewiring

may introduce or increase connections to otherwise relatively

isolated individuals. In this way, the smaller chance of the

individual who takes preventive measures getting infected

is outweighed by the increased risk of transmission to a

larger part of the population in the event of infection.

The main point of the paper is to show, mathematically

in the electronic supplementary material and by means of
simulations in the main text, that social distancing may for

some networks actually increase the total number of infected

individuals at the end of the outbreak. Social distancing could

also affect other features of an outbreak, such as the size and

time of the peak and the duration of the outbreak. To show

any mathematical results for such finer details of the outbreak

appears to be very hard but can of course be addressed

by means of simulations. A thorough study, preferably

accompanied by some mathematical results, remains to be done.

Although it is generally recognized that individual

preventive measures are often taken once awareness of an

epidemic is in place, it is not well understood how to

model changes in individual behaviour. Here, we considered

the effect of social distancing on an epidemic. We modelled

this on a contact network by assuming that susceptible indi-

viduals distance themselves from infectious contacts,

allowing for both dropping of connections and replacement

with new contacts in the desire to sustain a certain number

of social contacts. Social behaviour is far more complex

than our social distancing model, and many behavioural

changes will depend on the epidemic and population under

consideration. For example, an important factor is risk per-

ception. In the case of severe diseases, one can imagine that

susceptible individuals will more likely drop connections

rather than rewire them to other individuals in the popu-

lation. There might be heterogeneity in preventive measures

taken; some individuals might be willing to take more risks

than others or have a stronger inclination to maintain a cer-

tain number of connections, e.g. for sexually transmitted

infections (STIs) one can often distinguish between groups

with distinctively different levels of sexual activity. How
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such structures influence epidemic outcomes is likely to

depend strongly on assumptions made on, e.g. mixing

between risk groups (how assortative mixing is and whether

individuals have the same assortative behaviour when

rewiring to other individuals).

In terms of different types of connections, another interest-

ing extension is to distinguish between behavioural changes

within and between cliques. If cliques represent, e.g. house-

holds, then one can imagine that susceptible individuals may

drop connections to infectious individuals outside the house-

hold and intensify connections within the household instead.

While the current study focuses on preventive behavioural

changes of susceptible individuals, one could also consider be-

havioural changes of infectious individuals, e.g. isolation,

either self-imposed or implemented by public health auth-

orities. Such measures regarding infectious individuals

would generally not have the negative population effects as

seen with social distancing of susceptible individuals,

though see [25] which shows that replacing individuals with

essential societal roles, such as health workers, when they are

detected as being infectious, by susceptible individuals can

accelerate disease transmission.

Note that we assume that the network structure of the

population is static in the absence of disease. Depending on

the disease of interest it would be interesting to consider a

network that is dynamic also in the absence of infection, as

would be appropriate for STIs such as HIV to incorporate

partner separation and formation over time. Superimposed

on the dynamic network are then the dynamics that follow

from social distancing (or other preventive measures). These
are just a few important ways to modify and extend the

social distancing model that we consider. As we find counter-

intuitive results already in the current model with relatively

simple social distancing rules, it is difficult to understand

how such extensions impact the epidemic, and certainly it

would be interesting to investigate that in future work.

Such extensions could then help to gain insights into real-

world transmission dynamics in specific populations that

might display some form of preventive measures that is in

line with the simple social distancing model of this study.

In order to relate preventive measures to real-world epi-

demics one would preferably be guided by disease-specific

network and behavioural data (see e.g. [10] for references to

studies considering behavioural changes during the course

of an epidemic for specific diseases and populations).

However, the aim of our paper is to show, in a theoretical

context, that rational individual-level preventive measures

can have counterintuitive consequences for the population-

level. Public health interventions that aim at changing

individual behaviour through social distancing could have

adverse consequences, for example, school closures could

reduce social contacts between children in the school classes

but may (partly) be replaced by social contacts outside of

school. But similarly, these measures could be beneficial for

the population. As our results show, it is not necessarily

straightforward what effects such behaviour may have at

the population level, where much may depend on the disease

and population under consideration. These findings highlight

the importance of understanding the properties of disease-

specific contact networks and modelling individual-level
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behavioural changes in response to an epidemic to understand

infectious disease dynamics.
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