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Abstract
Hepatocellular carcinoma (HCC) is the fifth most 
common cancer and is the second leading cause of 
cancer death. Since the diagnosis of HCC is difficult, in 
many cases patients with HCC are diagnosed advanced 
stage of development. Hepatocyte growth factor (HGF)/
c-mesenchymal-epithelial transition receptor (c-Met) axis 
is a key signaling pathway in HCC, either via canonical 
or non-canonical pathways. Available treatments 
against HCC based upon HGF/c-Met inhibition can 
increase patient lifespan, but do not reach the expected 
therapeutic benefits. In HCC, c-Met monomers can 
bind other receptor monomers, activating several 
noncanonical signaling pathways, leading to increased 
cell proliferation, invasion, motility, and drug resistance. 
All of these processes are enhanced by the tumor 
microenvironment, with stromal cells contributing to 
boost tumor progression through oxidative stress, 
angiogenesis, lymphangiogenesis, inflammation, and 
fibrosis. Novel treatments against HCC are being 
explored to modulate other targets such as microRNAs, 
methyltransferases, and acetyltransferases, which are 
all involved in the regulation of gene expression in 
cancer. This review compiles basic knowledge regarding 
signaling pathways in HCC, and compounds already 
used or showing potential to be used in clinical trials.    
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canonical and non-canonical pathways 

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Hepatocellular carcinoma (HCC) is a tumor 
usually arising from previous hepatic diseases as cirrhosis 
and chronic hepatitis B and C infections. Several studies 
have shown that a key factor for HCC oncogenesis is 
chronic inflammation. Inflammation induces changes 
in the gene expression pattern in surrounding cells. 
These changes provide an environment with a high 
level of cytokines, promoting hepatocyte transforma-
tion to tumor cells. New therapies against HCC are 
focused on regulating stromal cells within the tumor 
microenvironment to avoid HCC progression. 
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INTRODUCTION 
Liver is a vital organ responsible for hundreds of 
chemical reactions. Among them, it is involved in 
metabolizing many toxins. These reactions are carried 
out by the hepatocytes, which represent around 80% 
of the hepatic tissue cell population. Since the liver is 
the main detoxifying organ, hepatocytes are exposed 
to many toxins[1] which may cause insults inducing 
several anomalies, such as primary liver cancer. 
There are two types of adult primary liver cancers: 
cholangiocarcinoma and hepatocellular carcinoma 
(HCC), the latter being responsible for 85% to 90%[2] of 
total primary liver cancer instances. HCC is one of the 
deadliest malignancies worldwide[3]. It can be preceded 
by chronic inflammation due to cirrhosis, hepatitis B 
virus or hepatitis C virus infections, all of which increase 
20-fold the risk of liver cancer[4].

Hepatocytes have a high regeneration rate, being 
controlled by multiple growth factors. The first molecule 
discovered with the ability to stimulate hepatocyte 
division was hepatocyte growth factor (HGF). HGF is 
expressed and released by specialized non-parenchymal 
cells called hepatocyte stellate cells. These cells release 
HGF into the extracellular space, where it acts in a 
paracrine manner on its receptor, known as c-Met, 
which is located on the surface of hepatocytes. HGF 
was characterized as a potent mitogen due to its ability 
to induce c-Met dimerization. This activates a canonical 
signal transduction pathway including effector molecules 
such as RAS-ERK and PI3K-AKT, which increase DNA 
synthesis and increase cell cycle progression. 

The first therapies developed to treat HCC were 
focused on inhibiting the HGF/c-Met axis, thus stopping 
hepatocytes in the G1 phase of the cell cycle[5]. Studies 
in mice have shown that HGF or c-Met deletion are 
lethal[6]. Moreover, some tumors overexpress these 
proteins. Therapies targeting HGF or c-Met have 
been used for years. However, patients receiving 
these therapies still presented high rates of mortality, 
as well resistance to chemotherapy, radiotherapy, 
immunotherapy or hormonal therapy[7].

Recently, novel studies have elucidated other 
noncanonical signaling pathways that are modified in 
HCC. It is also now known that the fate of hepatocytes 
is determined by the interaction with nearby stromal 
cells. New therapies are being developed targeting the 
tumor microenvironment, including endothelial cells, 
immune cells, fibroblasts and the extracellular matrix.

Nonetheless, HGF/c-Met levels are currently being 
used to predict tumor aggressiveness and the prognosis 
of HCC patients. 

In this review, we have analyzed HCC literature to 
generate a comprehensive view about the molecular 
processes already known and important discoveries that 
remain to be made.

HGF AND c-MET 
The HGF gene is located on chromosome 7q21. It 
contains 20 exons and is expressed by mesenchymal 
cells. Hepatocyte growth factor (HGF) is a member of 
the peptidase S1 family of serine proteases, although 
it lacks peptidase activity. This protein is synthesized 
as an inactive pro-peptide generating an alpha/beta 
heterodimer linked by a disulfide bond. Proteolytic 
conversion of pro-HGF to HGF can be mediated by three 
enzymes present in the tumor environment: matriptase, 
hepsin and HGF activator (HGFA). However, there is 
evidence that urokinase plasminogen activator (uPA), 
transmembrane protease, serine 13 (TMPRSS13)[8] may 
also activate it. Although HGF was originally identified as 
a hepatocyte mitogen, it is now known to be a cytokine 
with pleiotropic effects. It has roles in enhancing 
angiogenesis, immune response, cell motility, and cell 
differentiation. 

The gene for c-Met is located in chromosome 7q21-31 
and contains 24 exons. Its promoter region, however, is 
located in chromosome 1. c-Met is expressed in epithelial 
cells. c-Met is a single pass tyrosine kinase receptor 
made up of an alpha and a beta subunit linked by 
disulfide bonds. The beta subunit is a transmembrane 
monomer that contains 5 catalytic tyrosines in its 
cytoplasmic tail. Y1003 negatively regulates c-Met by 
linking it to the ubiquitin ligase casitas beta-lineage 
lymphoma (c-CBL)[9]. In contrast, Y1234; Y1235; Y1349 
and Y1356 positively regulate c-Met. Furthermore, 
S985 in c-Met can be phosphorylated by protein 
kinase-C, inducing c-Met degradation (ubiquitination 
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and endocytosis) [10]. 
c-Met activation has pleiotropic effects because its 

cytoplasmic domain can interact with multiple proteins 
involved in several cellular signaling pathways. Because 
of this, c-Met is considered an oncogene involved in 
cell proliferation, invasion, motility, angiogenesis and 
apoptosis. 

SIGNALING PATHWAYS IN HCC
The pathophysiology of hepatocellular carcinoma at 
a cellular level is complex and it is very possible that 
there are many unknown c-Met interactions with others 
signaling pathways. Multiple cell pathways are aberrant 
in HCC, but this review just focuses on the signaling 
pathways related to c-Met. The activation of c-Met can 
take place by the canonical pathway, which involves HGF 
binding to c-Met resulting in c-Met homodimerization. 
It can also take place through non-canonical pathways, 
where c-Met dimerizes with different receptors. 

Heterodimers of receptor proteins and c-Met are 
involved in overstimulation and dysregulation of c-Met 
signaling pathways. This occurs during hypoxia, which 
can cause c-Met overexpression, mutations on tyrosine 
kinase domain or HGF gene amplification[11]. However, 
this latter event rarely occurs in HCC[12]. 

c-Met canonical downstream signaling pathways
These signaling pathways involve proteins with SH2 
domains or phosphotyrosine-binding domains that are 
able to interact with phosphorylated tyrosine residues[13] 
that, in turn, interact physically with the cytoplasmic 
domain of c-Met.

Growth factor receptor-bound protein 2 (Grb-2): 
Grb-2 interacts with Y1356 of c-Met to transduce HGF 
signaling to the cytoplasm. Grb-2 is considered a key 
protein in HGF/c-Met axis because it connects to several 
signaling transducers, such as Ras, SOS, and Gab1. 
Grb-2 is involved in cell motility, cycle progression, 
angiogenesis, amongst other.

GRB2-associated binding protein 1 (Gab1): 
Activated c-Met is phosphorylated on Y1349 and Y1356 
residues which specifically interact and phosphorylate 
to Gab1. However, Gab1 can also be phosphorylated 
by Grb-2. Gab1 is involved in many signal transduction 
pathways by binding to effector proteins that have a 
role in cell motility and extracellular matrix invasion, 
such as Shp2, Shc, PLCγ1, p120[14].

Phosphoinositide 3 kinase (PI3K): PI3K is an 
enzyme able to phosphorylate proteins downstream of 
c-Met thereby linking oncogenes and many receptors 
essential for cellular functions. The phospho Y1356 in 
c-Met can phosphorylate PI3K, inducing cell mobility[9] 
by activating focal adhesion kinase (FAK). However, 
PI3K can also be activated by Gab1 where it promotes 

cell survival[11].

Signal transducer and activator of transcription 
3 (STAT3): HGF binds to c-Met inducing the 
phosphorylation on Y1356. This phosphorylated amino 
acid interacts and actives STAT3, as was shown by 
Boccaccio et al[15]. When it is activated, it translocates to 
the nucleus where it binds to DNA and promotes gene 
expression (related with angiogenesis, and long-term 
response)[15].

Shc-transforming protein 1 (Shc): SHC is an 
adaptor protein involved in the mitogenic signal 
transduction from tyrosine receptors. On the other 
hand, experiments carried out in fibroblast showed that 
Shc is highly stimulated by VEGF and that activation 
correlated with the angiogenic response[16].

Non-canonical c-Met signaling pathways
c-Met activation by non-canonical pathways takes place 
when this receptor is over-expressed and dimerizes 
with other receptor subunits, or may bind to ligands 
other than HGF. Non-canonical pathways are usually 
associated with c-Met gene amplification, and are 
common in treatment resistant cancers[17,18], tumor 
progression, and metastasis, as shown in in vivo 
experiments using mice[19,20]. It has also been reported 
that c-Met dimerization takes place in the absence of 
ligand binding[21] when it interacts with the following 
proteins: 

Epithelial growth factor receptor (EGFR): Physical 
interaction between EGFR and c-Met was found in 
A431 cells[22]. In HCC, the transactivation between 
these two receptors takes place, inducing the common 
downstream signaling effectors PI3K and Ras[23]. 

Human epidermal growth factor receptor (HER): 
The dimerization between c-Met and HER increases 
activation of PI3K/AKT signaling[18], which is associated 
with resistance to EGFR inhibitors[24] as well as cancer 
progression. 

Integrin α6β4: Trusolino et al[25] determined that 
integrin α6β4 physically interacts with c-Met on the 
membrane surface of carcinoma cells. This protein is 
necessary for cancer invasion because the cytosolic 
domain of β4 induces c-Met activation. In this case, the 
signaling transduction is performed by Shc and PI3K[14]. 

β-catenin (β-CAT): Phosphorylated β-CAT may 
bind to c-Met, activating its downstream signaling. 
Phosphorylation of Y654 in β-CAT actives FAK, which 
induces cyclin D1 (CKD1) expression[26]. At the same 
time, β-catenin is translocated to the nucleus, and 
promotes c-myc gene expression[27]. 

Receptor for hyaluronic acid (CD44): The CD44v3 
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PI3K/AKT/Bad axis to prevent Fas-mediated apoptosis. 

Mucin 1 (MUC1): MUC1 expression is increased 
during transformation from the normal liver to HCC, 
as was described by Bozkaya et al[35] MUC1 silencing 
in HCC cells leads to β-catenin activation and c-Myc 
expression. Under this condition, high levels of HGF 
in the microenvironment increase cellular motility and 
invasiveness[35]. However, there are also contradicting 
studies. For instance, Singh et al[36] reported that 
MUC1-induced c-Met activation by physical interaction 
decreased MMP-1 transcription and cell motility[36]. 

Neuropilin-1 and -2 (Nrp-1, -2): Neuropilins are 
a family of transmembrane glycoproteins involved in 
several processes, including axonal guidance, angio-
genesis, tumorigenesis, and immunologic response. 
Nrp-1 can bind VEGF-A165, VEGF-B, VEGF-E, and 
placental growth factor (PIGF). On the other hand, 
Nrp-2 can bind class III semaphorins and VEGF proteins 
(VEGF-A165, VEGF-A145, and VEGF-C). Nrp-2 binds VEGF 
proteins, and increases the VEGFR-2 phosphorylation 
threshold, promoting migration, and sprouting cells[37]. 
Nrp-2 and VEGFR2 can bind each other enhancing the 
signaling initiated by the HGF/c-Met axis. Moreover, Nrp-1 
and Nrp-2 interact with other receptor tyrosine kinase, 
such as VEGFRs[37]. Neuropilins have a short cytoplasmic 
domain to act as catalytic domain. This evidence 
suggests that the intracellular domain may present a 
binding site involved in kinase signal transduction[37]. 

Focal adhesion kinase (FAK): Studies carried 
out in MEFs and HEK293 cells showed that FAK 
interacts directly with c-Met[38]. FAK is a non-receptor 
tyrosine kinase involved in several cell signaling 
pathways. Notably, it is well characterized for its role 
in formation and disassembly of focal adhesions, 
as well as cell protrusions[26]. However, FAK is also 
intimately involved in the regulation of cell proliferation 
because it is able to phosphorylate PI3K and ERK. 
Experiments in FAK knockout mice revealed suppressed 
hepatocarcinogenesis due to decreased PI3K and ERK 
signaling pathways[26]. 

Collectively, these pathways are responsible for 
promoting initiation and progression of HCC (Figure 1).

The expression of HGF is decreased in HCC, but it is 
increased in the surrounding tissue. On the other hand, 
c-Met is expressed in HCC at higher levels than in the 
surrounding tissue. These observations suggest that 
the overexpression of c-Met, together with additional 
oncogenes, is responsible of HCC aggressiveness[39].  

MICROENVIRONMENT IN HCC
Microenvironment is created by extracellular matrix (ECM) 
and stromal cells. Stromal cells, such as endothelial 
cells, fibroblasts, and immune cells, increase the gene 
expression and release of chemokines, cytokines, 

splice variant is the CD44 isoform with high affinity 
for heparin domains. This v3 may be activated by 
different growth factors with heparin domains, such as 
fibroblast growth factor (FGF) and HGF. CD44 may act 
as a concentrator of HGF to present it to c-Met resulting 
in downstream signaling transduction[28]. On the other 
hand, Olaku et al[29] reported that CD44v6 splice variant 
is necessary for c-Met activation. It is thought that three 
specific amino acid residues (RWH in human) in v6 are 
necessary for complete c-Met activation. 

ICAM-1: This protein can substitute for the role of 
CD44v6 in c-Met activation, as shown in hepatocytes 
from Cd44 null mice[29]. 

Plexin B1: Receptor with high similarity to c-Met, 
which is also expressed in the same tissues as c-Met. 
After mutation and expression of exogenous c-Met 
in cells, Giordano et al[30] shown that plexin B1 links 
to c-Met when it is activated by semaphorin 4D. This 
interaction was reported in invasive cancer cells growing 
in response to semaphorin 4D. 

Vascular endothelial growth factor A (VEGF-A): 
HGF can induce VEGF expression[31] by phosphorylation 
of a key transcription factor called Sp1. This characteristic 
of HGF increases the expression of Bcl-2[32], which acts 
as an antiapoptotic protein. 

Insulin receptor (INSR) tyrosine kinase: This 
receptor has an extracellular α-chain and a tran-
smembrane β-chain. This protein has a very similar 
structure compared to c-Met. Furthermore, it has been 
reported that insulin and HGF can phosphorylate INSR 
in its Y1146 and Y1150 or Y1151 residues. In HCC cells, 
Y1322 is also phosphorylated, thus activating PI3K. 
HGF-stimulated hepatocytes have shown to form a 
INSR-c-Met complex. There is evidence that c-Met can 
also phosphorylate insulin receptor substrates (IRS) on 
Y895. Likewise, INSR phosphorylates IRS on Y612[33]. 
In summary, both c-Met and IRS increase downstream 
signaling through PI3K-AKT, promoting cell growth, cell 
survival and cell motility. 

Fas: This protein is one of the surface death receptors 
and triggers apoptosis signaling when binds its ligand 
(FasL). Wang et al[34] showed that Fas and c-Met 
associate with each other using coimmunoprecipitation 
experiments in Hep G2 cells. These authors proposed 
that c-Met promotes cell survival by two different 
pathways. (1) When there are low levels of FasL in 
the microenvironment, Fas binds to c-Met avoiding to 
trigger its intracellular signaling pathway. (2) However, 
in the presence of high levels of HGF, c-Met releases 
Fas activating death receptor-mediated apoptosis. 
Nevertheless, the c-Met/Fas signaling pathway ratio is 
so high that cells activate antiapoptotic signals through 
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proteases and growth factors, such as HGF[40]. HGF 
released from stromal cells interacts with hepato-
cytes enhancing HGF/c-Met signaling transduction. 
Subsequently, hepatocytes intensify cell survival and cell 
proliferation. HGF may also modify cell-cell interaction, 
and cell-extracellular matrix interactions through 
activating proteolytic networks[41,42]. Furthermore, stromal 
cells increase the gene expression of HGF. Furthermore, 
HGF promotes angiogenesis from endothelial cells around 
the chronic liver disease. 

Angiogenesis and lymphangiogenesis
The initial stages of liver tumor are characterized by 
hypoxia, a condition leading to the release of VEGF to 
increase tumor vascularization. In parallel, immune 
cells contribute to the activation of the vascularization 
process by releasing inflammatory mediators, including 
interleukin-1α (IL-1α), IL-1β, tumor necrosis factor-α, 
and prostaglandin E2. HCC is a highly vascularized 
tumor. However, the new blood vessels formed to 
irrigate the tumor mass present abnormalities, such 

as tortuous vessels and sinusoidal capillarization. 
Tumor blood vessels have incomplete basal membrane 
and incomplete pericyte coverage. Simultaneously, 
lymphangiogenesis, proliferation and sprouting of new 
lymphatic vessels from preexisting ones, also takes 
places. Lymphangiogenesis is tightly regulated by 
lymphoangiogenic growth factors, such as VEGF-C and 
VEGF-D, released from tumor and stromal cells. VEGF-C 
and VEGF-D interact with VEGFR-2 and VEGFR-3, 
respectively, in lymphatic cells. VEGFR-2 is responsible 
for vessel enlargement, whereas VEGFR-3 is critical for 
lymphangiogenic sprouting[43]. However, VEGF-A may 
interact with VEGFR-3. Further, venous and lymphatic 
endothelial cells express neuropilin-2 (Nrp-2), a protein 
that it has recently been associated to lymphatic cell 
survival and migration[37]. On the other hand, Nrp-2 is 
not involved in venous or lymphatic cell proliferation[44]. 
Tumor-associated lymphatic vessels express stromal 
cell-derived factor 1 (CXCL12), and tumor cells express 
the receptor for CXCL12, called C-X-C chemokine 
receptor 4 (CXCR4). Tumor cells have upregulated 
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Figure 1  Representation of hepatocyte growth factor/c-Met canonical and non-canonical pathways in hepatocytes. Canonical pathway is activated by HGF 
release from stromal cells, and subsequent binding to the c-Met receptor inducing c-Met dimerization. Activated c-Met binds Gab-1, Grb-2, Shc, and STAT3. These 
proteins are involved in signal transduction regulating cell proliferation, migration, differentiation, or invasion, depending on the activated downstream proteins. The 
scheme represents the proteins described in the canonical pathway, but not all of the proteins involved in executing their cell activity. Non-canonical pathways are 
activated when a c-Met monomer binds to a monomer of another kind of receptor, or when a c-Met homodimer binds FAK or β-catenin on its cytoplasmic domain. The 
arrows represent different proteins performing different cell activities. HGF: Hepatocyte growth factor. 
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CXCR4 under hypoxia conditions. However, hypoxia 
promotes migration of metastatic cells into the tumor-
draining lymph node. Endothelial and lymphatic cell 
survival and cell proliferation promote tumor metastasis. 
In fact, high densities of vascular and lymphatic vessels 
are correlated with high patient lethality[44]. 

Inflammation
The role of immune cells in cancer is controversial, 
because they can eliminate tumor cells in their initial 
stages, but, due to their generation of oxidative stress 
and DNA damage, they may also promote cancer 
development. 

A study carried out in a small cohort showed that 
patients with viral hepatitis presented high neutrophil 
levels and low lymphocyte levels. This has been 
proposed as a substitute parameter to determine initial 
development HCC stages, because neutrophils are the 
first kind of immune cells to interact with tumor cells[45]. 
Neutrophils located in the tumor mass are responsible 
for promoting inflammation and facilitating tumor 
progression. From the same study, the authors detected 
high platelet levels in circulation. This association 
might be caused because platelets are responsible for 
activating neutrophils, enabling neutrophils to migrate 
through blood vessels. A lower risk of HCC was shown 
with anti-platelet therapy from another independent 
study[46]. Additionally, platelets are key effectors to 
enhance the accumulation of CD8+ T lymphocytes 
and mediate immune injury, intensifying the micro-
inflammation. 

Tumor-infiltrating T cells are regulated by VEGF-A 
and VEGF-C, as well as their release into the tumor 
microenvironment, cell proliferation phenotype, and 
activity[47]. 

Macrophages are responsible for digesting all 
damaged cells in the tissues including cancer cells. 
However, macrophages activated by inflammatory 
cytokines from the tumor microenvironment, express the 
PD-L1 protein. This results in them adopting a suppressive 
macrophage phenotype, avoiding tumor-specific T cell 
immunity and increasing HCC progression[48]. These 
macrophages activated by the tumor microenvironment 
express tumor necrosis factor α (TNF-α), which induces 
c-Met-expression on their surface. These macrophages 
also express MMP-9, which increases the remodeling of 
the tumor microenvironment of HCC[49]. 

Fibroblasts and hepatic progenitor stem cells 
Fibroblasts are an important cell population in the 
microenvironment, and have a prominent role in tumor 
cell progression and metastasis. Fibroblasts have key 
functions in the tumor microenvironment: (1) synthesis 
and remodeling of the ECM; and (2) release of multiple 
cytokines and chemokines to promote inflammation, 
angiogenesis and epithelial differentiation. Tumor-
associated fibroblasts acquire a modified phenotype 
induced by transforming growth factor-β (TGFβ), and 

become hepatic progenitor cancer cells (HPCs)[50].
HPCs have the ability to differentiate to several 

kinds of cells depending on the stimulus from their 
microenvironment. Under the influence of a tumor 
microenvironment, HPCs acquire genetic and epigenetic 
mutations, inducing their transformation from HPCs to 
cancer stem cells (CSCs)[51]. CSCs are able to perpetuate 
themselves through self-renewal, and generate mature 
cells of a particular tissue through differentiation, 
supporting tumor cell proliferation[52]. Likewise, CSCs 
have been proposed to be the clonogenic core of HCC, 
sustain the primary tumor, confer drug resistance, 
promote metastasis, and promote angiogenesis. 

Fibrosis
All of the stages described above in the present section, 
cell transvasation, cell-cell interaction, oxidative stress, 
cytokines and proteases released into the tumor 
microenvironment, provoke changes and deregulation 
in the ECM. The deregulation of ECM is characterized 
by increasing deposition of fibronectin, fibrillar collagen 
types I and II into the liver. This ECM deregulation 
decreases liver plasticity, increasing ECM stiffness, cell 
survival and cell proliferation of tumor cells. These 
processes are mediated by integrin signaling pathways, 
such as α1β1 and α2β1. Moreover, the ECM increases 
immune cell activation and differentiation, promotes 
angiogenesis, and activates tissue invasion[42]. 

Dapito et al[53] showed that translocation of 
components of intestinal bacterial, and Toll-like receptor 4 
(TLR4), can reach the liver by the portal circulation. Both 
components promote liver inflammation, increasing the 
secretion of growth factor, such as epiregulin from hepatic 
stellate cells, and promoting the synthesis of ECM. This 
scenario enhances fibrosis and HCC development.

The microenvironment not only creates favorable 
conditions to develop the unregulated cell proliferation 
characteristic of cancer cells, but also influences their 
sensitivity to drugs and promotes metastasis. HGF 
delivered by stromal cells has been described as a 
key factor to confer resistance to molecular targeted 
drugs[54]. 

EPIGENETICS IN HCC
Only 2% of the human genome encodes proteins, and 
the majority of the transcriptome contains non-coding 
RNAs (ncRNAs). ncRNAs have regulatory functions and 
may be classified by their sequence length, in micro 
RNAs (miRNAs), small nucleolar RNAs (snoRNAs), 
small interfering RNAS (siRNAs), long non-coding 
RNAs (lncRNAs), and very long intergenic ncRNAs 
(vlincRNAs)[55,56]. However, there are other classifications 
based on association with annotated protein-coding 
genes, association with other DNA elements of known 
function, protein-coding RNA resemblance, association 
with repeats, with a biochemical pathway or stability, 
sequence and structure conservation, expression in 
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different biological states, subcellular structures, and 
based on function[56]. Independently of the classification 
criteria, the ncRNAs have physiological relevance in 
genetic and epigenetic regulation, such as control of 
chromatin remodeling, gene transcription, protein 
transport and metabolism[57].

Dysregulation of miRNAs has been associated with 
alterations in cell signaling pathways playing important 
roles in the control of cell invasion, proliferation, and 
metastasis, among many other pathophysiologic 
processes. For instance, miR-26a. behaves as a tumor 
suppressor in hepatocellular carcinoma (HCC), but 
it shows oncogenic properties in lung cancer. These 
observations suggest that microenvironment also 
determines the roles of miRNAs in cancer (Table 1). A 
RNA-sequencing study performed in 23 liver biopsies, 
between tumor and adjacent non-tumor tissue, showed 
57 lncRNA with differential expression[58].

Histones acetylation, methylation, phosphorylation, 
sumoylation, and ubiquitylation, are post-translational 
modifications (PTMs) intimately related to epigenetic 
processes. These PTMs are responsible for the induction 
or repression of genes through modification in the level 
of DNA compaction or the recruitment of transcriptional 
machinery. Histones deacetylases (HDACs) are a 
family of proteins that remove acetyl groups from 
histone tail amino acids, decreasing gene expression. 
This family of proteins is overexpressed in HCC[59]. In 
fact, human HCC hallmarks are the loss of acetylation 
in H4K16[60], and increased methylation in H3K27 by 
EZH2 methylase[61]. Furthermore, EZH2 can inhibit the 
expression of miR-622, thus increasing the severity of 
HCC[62]. SET8 is a specific H4K20 methylase required 
for S phase progression by coupling to PCNA[63]. SET8 

dysregulation has been described in human HCC[55]. 
Histone hypermethylation has also been related with 
decreased gene expression. 

On the other hand, histones acetyltransferases 
(HAT) are a family of proteins that add acetyl groups 
to histone amino acids, inducing the relaxation of 
DNA strains, and subsequently up-regulating gene 
expression. 

In the liver, xenobiotics such as alcohol can alter the 
epigenetic state by generating reactive oxygen species 
(ROS) and depleting S-adenosylmethionine (SAM) 
levels. This promotes H3K9 acetylation and alters 
the expression of several miRNAs[64]. Changes in the 
microbiota and viral liver infections can also modify DNA 
methylation, altering gene expression[65,66].   

THERAPIES
HCC is difficult to diagnose by current methods with 
biopsy being the most validated method. However, it 
is difficult to obtain a representative biopsy sample 
because open tumor biopsies of HCC are not allowed[67]. 
This scenario makes difficult to perform an accurate 
diagnostic. 

Chronic liver diseases caused by hepatitis virus B 
and/or C virus are the most prevalent causes of HCC. 
However, other factors have been related to increase 
the prevalence of HCC such alcohol-related liver 
diseases, obesity, and type 2 diabetes mellitus-related 
non-alcoholic fatty liver[45]. 

The HGF/c-Met axis has been proposed as a key 
target for clinical intervention. This is due to its relevance 
in cellular processes such as 3D morphogenesis, cell 
survival and metastasis. Due to their key role in HCC, 

Table 1  MicroRNA involved in hepatocellular carcinoma and their function in the hepatocyte growth factor/c-Met axis

miRNA Functions Effect of miR in HGF/c-Met axis Levels in HCC Ref.

miR-34 Cell invasion, proliferation Inhibits c-Met Downregulated [83]
miR-199 Proliferation, cell motility, Tumor-suppressor Downregulated [84]

cell invasion
miR-340 Cell invasion, cell migration Inhibits c-Met Downregulated [85]
miR-126 Cell proliferation, Inhibits c-Met Downregulated [86]

cell invasion, inhibits angiogenesis
miR181-a Cell motility and invasion Inhibits c-Met Upregulated [87]
let-7 family Represses cell proliferation, invasion, 

metastasis and resistance therapy
Inhibits c-Met signaling downstream Downregulated [88,89]

miR-148 Promotes apoptosis, suppress cell 
invasion

Tumor-suppressor Downregulated [90]

miR-1 Cell migration, cell proliferation Tumor-suppressor Downregulated [91]
miR-26a Cell proliferation, invasion, and 

migration
Inhibits c-Met signaling downstream Downregulated [92]

miR-122 Induces apoptosis Inhibition of c-Met Downregulated [93]
miR-145 Cell viability, cell migration Inhibits c-Met signaling downstream Downregulated [94]
miR-449 Promotes apoptosis, reduces 

proliferation
Decreases c-Met levels Downregulated [95]

miR-200 Cell migration and invasion Decreases HGF-synthesis in fibroblasts Upregulated [96]
miR-101 Cell proliferation, migration and 

invasion
Inhibits c-Met signaling downstream Downregulated [97]

HCC: Hepatocellular carcinoma; HGF: Hepatocyte growth factor.
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HGF and c-Met have been proposed as essential 
therapeutic targets (Table 2). A recent review on the 
therapeutic targeting of the HGF/c-Met signaling in HCC 
has focused on small c-Met kinase inhibitors[68]. This 
same review also comments problems as resistance to 
c-Met targeting drugs and side effects of c-Met targeting.

Although some improvements have been obtained 
in HCC therapy, this cancer still remains largely 
incurable. Nowadays, there is palliative therapy using 
a multikinase inhibitor, such as sorafenib, which limits 
cell proliferation, and tumor angiogenesis[69]. Many 
clinical trials have shown that sorafenib improves overall 
survival of patients with advanced HCC. However, 
there is no effective treatment for HCC based on 
conventional monotherapies using tyrosine kinase 
inhibitors. For example, a monotherapy with Tivantinib, 
a small molecule tyrosine kinase inhibitor exhibiting 
a high selectivity against c-Met, was clinically tested. 
Unfortunately, in a phase III clinical trial, this compound 
failed to meet the primary endpoint.

HCC develops resistance to the conventional 
chemotherapy and radiotherapy treatments[7]. Moreover, 
the tumor microenvironment blocks drug effects[70]. 
HGF confers resistance of HCC to inhibitors of EGFR. 
On the other hand, HGF decreases the expression of 
E-cadherin[71] and increases the expression of Snail 1, to 
protect cancer cells from apoptosis[72]. 
 
Novel strategies against HCC 
Another difficulty in detecting HCC is the lack of 
a clinically relevant circulating biomarker. Current 
investigations are focused on discovering circulating 

biomarkers[45]. Sitia et al[73] showed that the CD8+ T 
cell/platelet ratio could be a sign of HCC progression. 
Moreover, Sitia et al[73] verified that aspirin or 
clopidogrel, two anti-platelet drugs, decreased the 
number of CD8+ T cells in liver infected with hepatitis 
B virus. After treatment with anti-platelet drugs, they 
observed a decrease in inflammation, fibrosis severity, 
and progression to HCC in a transgenic mouse model[73]. 
The effect was enhanced when mice were treated with 
aspirin and clopidogrel. The authors concluded that 
anti-platelet drugs diminished the amount of CD8+ T 
cells into the liver, avoiding hepatocellular necrosis, 
hepatocyte regeneration, and inflammation. These 
events prevent or delay HCC in the mouse model used. 
On the other hand, this treatment does not eradicate 
the viral infection.  

Preclinical studies in animals have shown that anti-
lymphangiogenic strategies, sequestering VEGF-C and 
VEGF-D, or blocking VEGFR-3 with antibodies, are feasible 
therapies against HCC tumors[74]. Experimental therapy 
against Nrp-2 reduced tumor lymphangiogenesis, 
apparently delaying the departure of cells from the 
primary tumor[44]. Lymphatic cells release CXCL12, 
which can be blocked with antibodies and may provide 
therapeutics benefits[75]. Inhibiting the expression of Nrp-
1revealed that Nrp-1 is required to activate VEGFR-2 
signaling-dependent mitogenic[76]. 

Novel anticancer strategies are emerging based 
on ncRNA expression, because they have a myriad of 
cell functions, such as chromatin remodeling, protein 
transport, genes transcription and metabolism[57,77]. 
MicroRNAs (miRs) are being studied in cancer for their 

Table 2  Compounds used in clinical trials to treat hepatocellular carcinoma patients

Agent Targets Phase Activity HCC stage Ref.

Sorafenib Raf, MAPK, VEGFR, PDGFRβ III Anti-tumor Advanced [98]
Anti-angiogenesis

Cabozanitinib VEGFR2, KIT, RET, AXL III Anti-tumor Advanced [99]
Brivanib FGFR, VEGFR II Anti-angiogenesis Advanced [100]
Foretinib FLT1, PDGFRβ, c-Met, VEGFR-2, Tie-2 II Anti-tumor Advanced [101]

FLT4, RON, FLT3, KIT Anti-angiogenesis
Everolimus mTOR III Anti-tumor Advanced [102]
Cobazitinib c-Met, VEGFR-2, RET II Anti-tumor Advanced [103]

Anti-angiogenesis
Ramucirumab VEGFR-2 III Anti-angiogenesis Advanced [104]
MSC2156119J c-Met Ib/II Anti-tumor, anti-mestastasis Advanced [105]
Gefitinib EGFR, c-Met, HGF, II Anti-tumor Advanced [106]
Bevacizumab VEGFRs II Anti-angiogenesis Advanced [107]
AZD6244 MEK1/2 Ib Anti-tumor Advanced [108]
AZD4547 p-FGFR-1, p-FGFR-2 I Anti-tumor, anti-angiogenesis Advanced [109]

p-c-Met,
p-AKT,
p-ERK

MK2461 c-Met, Ftl-1 I Anti-tumor Advanced [110]
Crizotinib p-c-Met Ib Anti-angiogenesis Advanced [111]

ALK
Bortezomib Proteasome inhibitor II Anti-tumor Advanced [102]
Docetaxel EGFR II Anti-tumor Advanced
INC280 p-c-Met II Anti-tumor Advanced [111]

HCC: Hepatocellular carcinoma.
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key role as post-transcriptional regulators of gene 
expression, and for their potential to be used to classify 
tumors[78]. Recently studies are revealing that some 
miRNAs could be useful as prognostic biomarkers based 
on their presence in serum. They could be promising 
therapeutic targets as well. 

Combinations of current drugs used for clinical 
treatments, such as sorafenib, tivantinib, 5-fluorouracil 
(5-FU), and potential miRs inhibitors, such as miR-93 
inhibitor, are proposed as promising anti-HCC therapies[79]. 
Other studies demonstrated that miR26[80], miR-499, miR-
30a, miR-122, and miR-148, among others, play a role in 
the development of normal physiological function in liver. 

Some anti-cancer therapies against HCC are focused 
on HDACs as key targets. HDAC inhibitors (either 
miRNAs or small molecule HDAC inhibitors) have 
been shown to increase apoptosis and decrease cell 
proliferation. HCC treated with trichostatin A (TSA), a 
compound described as HDAC inhibitor, as well as with 
siRNA against HDACs (-1, -2, and -3) have increased 
apoptosis and decreased cell proliferation[60]. Sirtuins, 
vorinostat, romidepsin, belinostat, panobinastat, 
valproate and ITF2357 are HDAC inhibitors that have 
shown promising anti-cancer effects in clinical trials[55]. 

Histone methyltransferases, such as SET8, SUV39H1 
and EZH2, are also promising targets for HCC therapy. 
Experiments performed in HCC cells showed that the 
silencing of EZH2 decreased the expression of CDKN2A, 
FOXO3, E2F1 and NOTCH2[81]. The silencing of EZH2 
also repressed the expression of miR-622, increasing 
CXCR4 levels[61]. Small molecule inhibitors against 
EZH2, such as EPZ011989, may be potentially useful 
for the treatment of HCC patients[82]. 

The discovery of novel molecules related with HGF/
c-Met axis signaling pathways presents a promising 
clinically avenue for predicting individual susceptibility 
and designing better specific personal therapies (Table 3).   

CONCLUSION
HCC is a complex pathology with interconnected 
regulatory networks involved. This cancer is difficult 

to diagnose and the current treatments only produce 
modest therapeutic benefits. Moreover, the lack of 
biomarkers for early diagnosis contributes to making 
HCC one of the cancer types with the poorest prognosis. 
Novel approaches to elucidate the molecular etiology 
of HCC have shown that, in addition to the HGF/
c-Met axis signaling, there are other receptors and 
ligands involved. Dysregulation in protein interactions, 
lncRNAs, post-translational modifications in histones, 
and DNA methylation levels can be responsible for cell 
proliferation, migration, invasion, and mestastasis. 
Novel treatments are being developed against HDACs, 
methyltransferases, and miRs, among other molecular 
targets. Therapies combining HGF/c-Met signaling 
pathway inhibitors with epigenetic inhibitors, such as 
histone methyltransferase or HDAC inhibitors, seem 
to be the most promising therapies to date. Additional 
experimental efforts will be needed to identify useful 
predictive biomarkers and to suggest new personal 
therapies.
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