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Abstract
Gastric cancer (GC) is one of the most frequently dia-
gnosed malignant diseases. The molecular mechanisms 
of metastasis remain unclear. Recently, studies have 
shown that long non-coding RNAs (lncRNAs) play critical 
roles in metastasis. Therefore, deeper understanding of 
this mechanism could provide potential diagnostic tools 
and therapeutic targets for metastatic GC. This review 
focuses on dysregulated lncRNAs in GC metastases. 
Due to the identification of multiple diverse mechanisms 
involved in GC metastasis, we classified them into seven 
categories, including lncRNAs related to epithelial-
mesenchymal transition, regulation of degradation 
of extracellular matrix, angiopoiesis, vasculogenic 
mimicry, and immunologic escape. As the TNM stage 
is pivotal for evaluating the severity and prognosis 
of GC patients, we summarize the lncRNAs relevant 
to lymphatic metastasis, distant metastasis and TNM 
classification. This review summarizes the lncRNAs 
related to metastasis, which may provide insight into 
the mechanisms, and provide potential markers for 
prognostic prediction and monitoring the relapse of GC. 

Key words: Long noncoding RNAs; Stomach neoplasms; 
Metastasis
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Core tip: This review summarizes the long noncoding 
RNAs (lncRNAs) that influence metastasis of gastric 
cancer. We classified lncRNAs according to their molecular 
mechanism, which included epithelial-mesenchymal 
transition, epigenetic regulation, degradation of the 
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extracellular matrix, angiopoiesis, vasculogenic mimicry, 
and immunologic escape. Finally, we summarized the 
lncRNAs that have stable expression in serum and 
describe their clinical value. A table lists the clinical 
correlation of the lncRNAs in details.
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24(33): 3724-3737  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v24/i33/3724.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i33.3724

INTRODUCTION
Gastric cancer (GC) is a major public health problem 
across the life span of human beings and is one of 
the top two leading causes of cancer-related death 
worldwide. Eastern Asia has the highest incidence 
rates of GC, which is particularly prevalent in China[1]. 
According to statistical analysis, lung cancer is the only 
cancer with higher rates of incidence and mortality 
compared to stomach neoplasms[2]. Approximately 
28000 cases of gastric neoplasms are expected to be 
diagnosed in 2017, and 10960 of them are expected 
to result in death[3]. Patients are usually diagnosed 
with GC after metastasis has occurred or in an 
advanced stage due to limitations in early noninvasive 
detection techniques. Even when diagnosed at an 
early stage and endoscopic mucosal resection (EMR) 
or endoscopic submucosal dissection (ESD) are 
successfully performed, the local recurrence rate is still 
high, ranging from 2.8%-12.5%[4,5]. Despite multiple 
post-operative monitoring tools, including endoscopic 
monitoring, CT, MRI, PET, and serological monitoring 
(CA19-9, CA153, CA125, and CA724), the sensitivity 
has not met expectations yet. Recently, circulating 
tumor DNA (ctDNA) has been studied as GC relapse 
predictive markers[6,7]. Because of the unsatisfactory 
prognosis in advanced stage GC patients who have 
undergone surgery, chemotherapy or radiotherapy, 
measures should be taken to intensively monitor GC 
patients[8]. In recent years, significant advances have 
been made in understanding the molecular mechanisms 
involved in GC metastasis, however, the overall view 
of the mechanism map is limited and ambiguous[9,10]. 
Therefore, clarification of the pathogenesis and 
corresponding molecular alterations in GC is imperative 
in seeking diagnostic biomarkers and therapeutic 
targets.

Noncoding RNAs (ncRNAs) longer than 200 
nucleotides are defined as long noncoding RNAs 
(lncRNAs). ncRNAs are emerging elements that are 
recognized to play critical roles in cancer development 
and progression. lncRNAs do not perform transcriptional 
tasks, but they can affect gene expression at the 
transcriptional or post-transcriptional levels[11-13].

Increasingly, lncRNAs have been found to participate 
in GC metastasis. lncRNAs function by impacting 
embryogenesis, epigenetic regulation, imprinting, 
angiopoiesis, and vasculogenic mimicry[14-18]. This article 
reviews the lncRNAs that regulate certain critical steps 
of GC metastasis, with particular emphasis on epithelial-
mesenchymal transition (EMT), vascularization, and 
vasculogenic mimicry.

LNCRNAS AFFECT EMT
EMT is a vital process involved in embryonic 
development and cancer metastasis[19]. EMT is the 
process by which epithelial cells gain increasing 
migratory potential and mesenchymal characteristics[20]. 
It has been shown to play an important role in GC 
metastasis. There are many lncRNAs that facilitate GC 
metastasis via EMT (Figure 1).

Chen et al[14] showed that metastasis associated 
lung adenocarcinoma 1 (MALAT1) is downregulated in 
GC cells, and that E-cadherin expression is increased 
while vimentin expression is decreased at both the 
mRNA and protein levels. Li et al[21] detected UPF1, a 
key part of the nonsense-mediated mRNA decay (NMD) 
pathway, which alters mRNA transcription, and showed 
that it negatively correlated with MALAT1 expression. 
Subsequent experiments showed that increased UPF1 
expression inhibited migration, invasion and EMT of 
GC cells. Increased MALAT1 expression decreased the 
influence of UPF1 in GC cells, including UPF1’s ability 
to inhibit cell proliferation, EMT and facilitate apoptosis. 
Taken together, Li et al[22] postulated that UPF1 directly 
binds MALAT1 to downregulate MALAT1 (UPF1/
MALAT1), thus, inhibiting GC progression. Lee et al[23] 
further confirmed that MALAT1 regulates mesenchymal 
maker Snail, N-cadherin and ZEB1 to influence EMT. 

Another classic lncRNA, HOX transcript antisense 
intergenic RNA (HOTAIR), has been shown to be 
elevated in GC cells and promote gastric tumor 
metastasis via enhancement of EMT. E-cadherin 
expression was higher in cells with HOTAIR knockdown 
compared to cells with HOTAIR overexpression, while 
expression of N-cadherin and vimentin were decreased. 
The detailed mechanism is believed to involve HOTAIR 
recruitment and binding of PRC2 to epigenetically 
silence miR-34a, which activates the HGF/c-Met/Snail 
pathway, thus facilitating EMT in tumor cells[24]. 

FRLnc1 is also upregulated in GC cell lines. In vitro 
functional analysis and a pulmonary metastasis model 
demonstrated that FRLnc1 enhanced the migration 
capacity of GC cells. Hui et al[25] discovered that FRLnc1 
functions as an EMT promoter to affect the migration 
of GC cells by upregulating the downstream elements 
TGFβ-1 and Twist. 

lncRNA activated by TGF-β (lncRNA-ATB), also 
known as lncRNA-AL (ENST00000493038), was 
overexpressed in TGF-β treated cancer cells, with the 
cells exhibiting a spindle-like morphology. lncRNA-ATB 
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induced ZEB1 expression and inhibited miR-200s in 
tumor cells to affect EMT in stomach neoplasm cells. 
Saito et al[26] uncovered a positive correlation between 
TGF-β, ZEB1 and lncRNA-ATB, while miR-200c inversely 
correlated with lncRNA-ATB expression. Saito et al[26] 
demonstrated that lncRNA-ATB participate in the EMT 
process in GC via the TGF-β/miR-200/ZEB axis. 

It has been reported that the lncRNA X-inactive 
specific transcript (lncRNA XIST) regulates activation of 
tumor cell migration and initiates EMT via upregulation 
of vimentin and fibronectin and downregulation of 
E-cadherin and α-catenin in stomach cancer cells. 
lncRNA XIST negatively correlates with miR-101 
and decreased lncRNA XIST expression led to 
downregulation of EZH2 at both the mRNA and protein 
levels and was reversed with an miR-101 inhibitor. 
Thus, lncRNA XIST functions by sponging miR-101 
and regulating EZH2 in GC cells[27]. The lncRNA small 
nucleolar RNA host gene 6 (SNHG6) is overexpressed 
in GC cell lines and facilitates EMT as a competing 
endogenous (ce) RNA via sponging miR-101-3p, which 
leads to an increase in ZEB1, thus boosting tumor cell 
migration at the post-transcriptional level[28]. 

The lncRNA zinc finger antisense 1 (ZFAS1) 
expression level is elevated in GC tissues, serum 
and exosomes and ZFAS1 also activates ZEB1 to 
affect EMT. Lei et al[29] showed that ZFAS1 promotes 

the transformation from mesenchymal-epithelial 
transition (MET) to EMT by increasing the expression of 
N-cadherin, Slug, Snail, Twist and ZEB1 and decreasing 
the expression of E-cadherin. Exosomes that originate 
from GC cells might promote the GC metastasis by 
producing ZFAS1. 

lncRNA urothelial carcinoma associated 1 (UCA1) 
is induced by TGFβ-1 and expedites EMT. As UCA1 
knockdown partly mitigates the impact of TGFβ-1 on 
EMT, the specific role of TGFβ-1 in accelerating EMT 
requires further investigation[30]. Silencing UCA1 inhibits 
resistance to adriamycin in GC, which suggests that 
UCA1 may be a novel therapeutic target[31]. 

LincRNA00978 is reportedly elevated in GC tissues 
and plasma. It could induce EMT by activating the 
TGFβ/SMAD2/MMP9 pathway. Another potential 
pathway is composed of downregulated LincRNA00978, 
leading to decreased Twist1 and Slug, followed by a 
decrease in downstream molecules, such as N-cadherin 
and vimentin and an increase in E-cadherin[32]. Yes-
associated protein1 (YAP1) also promotes EMT by 
upregulating vimentin and β-catenin and downregulating 
E-cadherin[33]. lncRNAs highly upregulated in liver 
cancer(HULC) and Linc00152 also increase tumor cell’s 
migration through acceleration of EMT in GC[34,35]. 

The lncRNAs mentioned above function by 
promoting EMT in GC cells, but there are also numerous 

3726 September 7, 2018|Volume 24|Issue 33|WJG|www.wjgnet.com

Lin MT et al . Sum-up of GC metastatic related lncRNAs

HOTAIR

PCR2EEDSUZ12
EZH2

EZH2

C-MET

miR34aXIST

miR101

HOXA11-AS
WDR5

MALAT1

UPF1

YAP1

XIST

β-catenin
Vimentin

E-cadherin

MALAT1

Linc00152

HULC

FRLnC1 UCA1

TGFβ1Twist

HGF

SNAIL 1

CDH1 ZEB1

miR200s

ATB

TGF-β

SNHG-6

miR101-3P ZFAS1
Linc00978

TGFβ1

SMAD2

Slug

Twist

MMP9

SNAIL

Slug

Slug Linc00261

Slug

LINC00675

GSK3β

Vimentin

SPRY4-IT1

LEIGC

EMT

Figure 1  Long non-coding RNAs affect epithelial-mesenchymal transition in gastric cancer cells. HOTAIR recruits PRC2 to silence miR-34a, and then 
activates the HGF/c-Met/Snail pathway to promote EMT. TGF-β induces lncATB, which inhibits miR-200s and provokes ZEB1 to promote EMT. SNHG6 binds miR-
101-3P to activate ZEB1 and then promotes EMT. lncRNA ZFAS1 induces EMT by activating SNAIL, Slug, ZEB1 and Twist. Linc00978 induces Twist and TGFβ1, and 
TGFβ1 then activates SMAD2 and MMP9 to facilitate EMT. MALAT1 binds UPF1 to reduce its level and activate EMT. FRLnC1 induces EMT by activating Twist and 
TGFβ1. HUCA1 induces EMT via TGFβ1 activation. YAP1 promotes EMT by increasing vimentin and β-catenin, and decreasing E-cadherin. lncRNA XIST, Linc00152 
and HULC promote EMT. Linc00261 binds Slug resulting in reduced Slug levels and decreased EMT. LINC00675 and SPRY4-IT1 restrain EMT by reducing vimentin. 
LEIGC inhibits EMT. lncRNAs: Long non-coding RNAs; HOTAIR: HOX transcript antisense intergenic RNA; EMT: Epithelial-mesenchymal transition; YAP1: Yes-
associated protein 1; MALAT1: Metastasis associated lung adenocarcinoma 1.
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Sun et al[15] evaluated the genome-wide expression 
profile of lncRNAs and discovered BC041951, 
designating it as gastric cancer-associated lncRNA 1 
(GClnc1). Because mice injected with GClnc1 had an 
increased overall survival time and more metastatic 
lung nodules than control mice, GClnc1 was determined 
to enhance the metastatic capability of tumor cells. 
The mechanism behind GClnc1’s carcinogenesis stems 
from its ability to function as a molecular scaffold for the 
WDR5/KAT2A complex, which leads to trimethylation 
of H3K4 and acetylation of H3K9 in the transcription 
promoter region of mitochondrial superoxide dismutase 
(SOD), which upregulates the transcription of 
mitochondrial superoxide dismutase 2 (SOD2). 

LOC100130476, which is dysregulated in gastric 
cardia adenocarcinoma, is considered to be a tumor 
suppressor due to the tumor specific hypermethylation 
of region 1 near the transcription start site. Methylation 
of region 1 in peripheral white blood cells had a similar 
effect and may play key roles in gene silencing. Advanced 
gastric carcinoma patients with low hypermethylation of 
region 1 preferentially developed metastases, leading to 
poor prognosis[47]. 

Xie et al[43] also determined that lncRNA SPRY4-
IT1 is downregulated in gastric tumor cells and tissues. 
Furthermore, Sun et al[48] identified a canonical CpG 
island in the SPRY4-IT1 loci promoter region. DNMT1 
inhibits expression of SPRY4-IT1 in GC cells by altering 
the DNA methylation level. After treatment with 3.7- 
and 2.8-fold 5-aza-CdR, the expression of SPRY4-IT1 
was significantly higher than in controls. Therefore, 
SPRY4-IT1 could be a potential therapeutic target[43]. 

LNCRNAS INVOLVED IN REGULATION OF 
DEGRADATION OF THE EXTRACELLULAR 
MATRIX 
Tumor cells are exposed to a multitude of abnormal 
situations due to changes in the ECM that significantly 
impact cancer cell behavior. Dysregulated ECM cross-
linking and repressed stiffness jointly contribute to 
cancer metastasis and progression[49,50]. Metalloproteases 
(MMPs) typically participate in adjusting the ECM and 
vascularization[51].

The lncRNA UCA1 facilitates GC cell migration both 
in vitro and in vivo via the UCA1/GRK2/ERK/MMP9 axis. 
Meanwhile, the lncRNA UCA1 increases the degradation 
of GRK2 via Cbl-c-mediated ubiquitination following 
the activation of the ERK-MMP9 pathway, which may 
be involved in vascularization[52]. Xu et al[16] found that 
FENDRR negatively correlated with FN1 mRNA and that 
the induction of FENDRR strongly inhibits the activity 
of MMP2/MMP9, which corroborates FENDRR’s role 
in preventing GC cell metastasis. Then, Park et al[53] 
determined that overexpression of BM742401 decreased 
the B95kDa band, which corresponds to MMP9, via a 
zymography assay. The reduced concentration of MMP9 

lncRNAs that function by repressing EMT progression.
Linc00261, which is repressed in GC cells, suppresses 

E-cadherin and promotes N-cadherin, FN1 and vimentin 
expression, reverses EMT in gastric tumor cells, and 
increases the malignant phenotype[36]. Yu et al[37] 
deduced that Linc00261 reverses EMT by binding Slug. 
As mass experiments indicated that GSK3β affects the 
ubiquitin-proteasome pathway to degrade Slug in breast 
cancer cells[38,39], additional experiments demonstrated 
that Linc00261 attenuates the stability of Slug proteins 
through strengthening the interaction between GSK3β 
and Slug. 

Linc00675, also found to be significantly down-
regulated in GC tissues, suppresses the migration of 
GC both in vitro and in vivo (pulmonary and hepatic 
metastases). Mechanistic studies showed that 
Linc00675 directly interacts with vimentin, resulting in 
increased phosphorylation of vimentin on Ser83 rather 
than on Ser39, thereby causing the degradation of 
vimentin filaments[40,41]. Since vimentin is considered to 
be a master regulator of EMT, Linc00675 was deduced 
to be a tumor repressor that inhibits metastasis via 
reversing EMT[42]. 

lncRNA SPRY4 intronic transcript 1 (lncRNA SPRY4-
IT1), prevents cancer cell migration partly through its 
role in the regulation of EMT. Xie et al[43] found that 
SPRY4-IT1 increases the expression of E-cadherin and 
decreases the expression of vimentin, resulting in EMT 
inhibition. 

After observing significantly decreased lncRNA:
chr2:118381039-118383698 levels in GC tissue, Han 
et al[44] named this lncRNA LEIGC and assessed its 
role in regulating tumor cell migration. In monolayer 
cultures, cells with downregulated LEIGC showed a 
dramatic change in morphology and transitioned from 
a cobblestone-like-shape to a spindle-like fibroblastic 
status, whereas LEIGC-overexpressing cells maintained 
a cobblestone-like morphology. In addition, mRNA and 
protein levels illustrated that LEIGC could reverse EMT 
by lowering the expression of vimentin, Snail, Slug, Zeb, 
and Twist and increasing the expression of E-cadherin. 
Furthermore, LEIGC overexpression enhances the GC 
cells sensitivity to 5-fluorouracil, and this characteristic 
enables LEIGC to be a potential therapeutic target.

LNCRNAS AFFECT EPIGENETIC 
REGULATION IN GC
Epigenetic processes include the recruitment of histone-
modifying enzymes and DNA methyltransferases, 
and chromatin remodeling. It has been reported that 
lncRNAs interact with DNA to control gene expression[45]. 
Given that promoter CpG island hypermethylation, 
an abnormal DNA modification, is involved in pivotal 
cellular pathways and is characteristically a hallmark 
of cancer cells[46], several lncRNAs have been found to 
play roles in controlling the DNA modification system in 
GC cells.

Lin MT et al . Sum-up of GC metastatic related lncRNAs
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in BM74240-induced cells further verified these findings. 
However, BM742401 did not alter the expression level of 
intracellular MMP9. Therfore, BM742401 may diminish 
MMP9 secretion to inhibit cancer metastasis. 

lncRNA olfactory receptor, family 3, subfamily A, 
member 4 (OR3A4), contributes to GC metastasis as 
it was found to be overexpressed in primary tumor 
tissue, metastatic tissue and in the peripheral blood. 
Upregulated OR3A4 induced MMP9, which is involved 
in the breakdown of the ECM[54]. LINC00052 plays 
an oncogenous role in GC cells. It promotes GC cell 
migration and invasion through promoting the SMYD2 
related β-catenin methylation to stabilize its expression 
and activating the Wnt/β-catenin pathway. When 
upregulating LINC00052 level in GC cells, MMP2, 
MMP9, and Cyclin D1 expression were upregulated 
while E-cadherin and P21 were downregulated. The 
downstream MMP2 and MMP9 are related to the 
breakdown of the ECM.

Degradation of the extracellular matrix is one way 
to modulate the tumor microenvironment. Hypoxia is 
another key change in the tumor microenvironment that 
promotes tumor metastasis[55]. AK058003, a lncRNA 
that is induced by hypoxia, is positively associated with 
γ-synuclein (SNCG) in GC cells. AK058003 and SNCG 
are both upregulated in hypoxic environments, and 
SNCG facilitates hypoxia-induced GC cell metastasis, 
which is regulated by AK058003. Thus, a novel hypoxia/
lncRNA-AK058003/SNCG pathway that is related to 
metastasis was identified[56]. Wang et al[56] found that 
lncRNA AK058003 is increased in hypoxia-induced GC 
cells, where it facilitates GC cell migration and invasion 
in vivo and in vitro. AK058003 positively altered SNCG, 
a member of the synuclein family, by decreasing 
methylation of the SNCG gene CpG island. Elevated 
SNCG expression can also be induced by hypoxia, which 
in turn induces GC cell metastasis in primary tumor 
tissue. lncRNA BC005927 is induced by hypoxia and 
hypoxia inducible factor-1α (HIF-1α), which is a factor 
involved in hypoxia induced GC metastasis through 
directly binding the HIF-1 response element to promote 
GC metastasis and invasion. This hypoxia-induced auxo-
action is partially regulated by BPHB4[57].

LNCRNAS INVOLVED IN ANGIOPOIESIS 
AND VASCULOGENIC MIMICRY
Ample evidence has shown that the development of 
endothelial vessels (EVs) and vasculogenic mimicry (VM) 
supply nutrition to tumors and sustain tumor growth. 
Highly vascular tumors show an increased ability to 
develop metastases compared to tumors that lack 
adequate vascularization[58,59]. VM involves the formation 
of de novo channels by pluripotent embryonic-like and 
highly invasive tumor cells, mimicking tumor feeding[60]. 
VM has already been reported in melanoma, soft tissue 
sarcomas, GIST and hepatocellular carcinoma[61-64].

MALAT1, an oncogenic lncRNA, can increase 
tumorigenicity and metastasis in GC by facilitating VM 
and angiogenesis. MALAT1 induces the expression of 
β-catenin and E-cadherin and increases the p-ERK, 
p-FAK, and p-paxillin levels. MT1-MMP and MMP2 
and MMP9, which are downstream of p-ERK, are 
consequently altered. MALAT1 functions as an active 
regulator of VM and EV through the E-cadherin/β-catenin 
complex and via the ERK/MMP and FAK/paxillin 
signaling pathways[17]. Another mechanism involving 
MALAT1 was discovered by which MLAT1 regulates the 
acetylation level of H3 histone in the EGFL7 promoter 
region to boost the EGFL7 expression level[65]. An intron 
of the EGFL7 gene, miR-126, is pivotal in alterations 
of H3 histone acetylation but not methylation in the 
EGFL7 promoter in colorectal cancer and non-small cell 
lung cancer cells and cooperates with MALAT1 to alter 
angiogenesis[66,67]. 

Another lncRNA, C21orF96, which is upregulated 
in gastric tumor tissues, was found to be significantly 
higher in metastatic tissues compared to histologically 
normal lymph node tissues. Yang et al[68] determined 
that ectopic expression of C21orF96 promotes 
lymphangiogenesis of stomach neoplasms. With respect 
to VM, C21orF96 increases the number of tubulars, 
intersecting nodes, and the length of the tubes in 
human umbilical vein endothelial cells (HUVECs). 

Likewise, OR3A4, an oncogenic lncRNA, was 
found to facilitate the formation of tubules in HUVECs. 
Upregulated OR3A4 induces vascular endothelial growth 
factor C (VEGF-C), which is a known promoter of 
angiogenesis and vascular permeability[69]. Furthermore, 
the chicken embryo chorioallantoic membrane (CAM) 
assay demonstrated that OR3A4 promotes angiogenesis. 
OR3A4 may exert its effects by inhibiting PDLIM2, 
promoting MACC1 and GNB2L1, and directly targeting 
NTN4 to enhance metastasis and tumorigenesis in GC[54]. 

LNCRNAS RELATED TO IMMUNE ESCAPE 
OF GC CELLS 
Immune escape, the third step of cancer immunoediting[70], 
reduces the immunogenicity of tumor cells, creating an 
immunosuppressive tumor microenvironment in which 
cancer cells can survive and grow[71]. Evading immune 
destruction has been deemed as a hallmark of cancer[72].

The classical lncRNA, HOTAIR, has been reported 
to promote GC progression and metastasis[73-76]. 
Song et al[18] determined that upregulated HOTAIR in 
GC cells positively correlates with human leukocyte 
antigen (HLA)-G levels both in tissue and peripheral 
blood samples. Furthermore, HOTAIR was also found 
to induce the expression of HLA-G at both the mRNA 
and protein secretion levels. HOTAIR directly interacts 
with miR-152 and decreases miR-152 expression level, 
which reverses the miR-152 induced dysregulated 
activity of HLA-G 30UTR, while, Mut-HOTAIR fails 
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invasion and lymphatic metastasis. Thus, AA174084 
could serve as a potential biomarker to predict a patient’s 
prognosis[80]. 

The lncRNA RNA component of mitochondrial RNA 
processing endoribonuclease (RMRP) has been reported 
to be decreased in GC tissues, but increased in the 
plasma and gastric acid of GC patients. After subtotal 
gastrectomy, this aberrant expression dramatically 
declines. Importantly, the RMRP level in gastric acid or 
in plasma is not only sufficient for clinical detection but 
that method for RMRP detection are also more sensitive 
and specific than that for carcinoembryonic antigen 
(CEA) and carbohydrate antigen19-9 (CA199). These 
results could provide a new method for GC detection, 
and the postoperative decline of RMRP implies that this 
lncRNA has appropriate characteristics for prognostic 
prediction[81]. 

Five novel plasma lncRNAs (TINCR, CCAT2, AOC4P, 
BANCR and LINC00857) demonstrate excellent stability 
and show little to no change in hostile environments. 
The diagnostic significance of lncRNA-based Index 
I, established by logistic regression, is better than 
that of the CEA-based Index II. Because the lncRNA 
based index declined dramatically two weeks post-
operation, this index is highly effective in monitoring 
tumor recurrence. The lncRNA based index significantly 
correlates with tumor size, depth of invasion, lymphatic 
metastasis and TNM stages[82]. 

Currently, the majority of GC research focuses on 
the expression level of lncRNAs in GC tissue, while 
many of them are stably expressed in plasma. Though 
systematic evaluation of the lncRNAs mentioned above 
is lacking, those that are stable in circulation could be 
useful for predicting metastasis of primary tumors, but 
this hypothesis must be confirmed. Individual markers, 
such as a single lncRNA, may not be adequate for 
determining prognosis in GC, but interested readers 
could refer to the analysis by Zhang et al[82] and Shao 
et al[80]. The combination of several lncRNAs known 
to participate in GC progression may overcome these 
existing issues.

LNCRNAS AND CLINICAL CORRELATION
Recently, the seventh edition of tumor, node, metastasis 
(TNM) classification has been widely accepted[83]. 
Gu et al[84] identified patients diagnosed with GC in 
the first hospital of the China Medical University and 
the Liaoning Cancer Hospital from January 1980 to 
December 2009 and systematically reviewed the data. 
These authors found that according to the 7th edition of 
the TNM classification, classification of stage T4b and 
N0 as stage IIIA had statistical significance in regard 
to the survival outcome and in predicting prognoses 
in Chinese GC patients. Given that lymph node and 
distant metastasis were found to be key factors in the 
prognosis of GC patients, we identified the lncRNAs 
that correlated with lymph node, distant metastasis 

and the TNM stage, as shown in Table 1[14-17,23,25-30,32,33,35,36,

40,43,44,53,57,58,69,74-78,80-132]. 

CONCLUSION
Utilizing a variety of techniques, including RT-PCR, 
computer-assisted microscopic image analysis, bioinfor-
matics methods, ChIP assays, etc., a myriad of lncRNAs 
have been found to participate in the proliferation, 
growth, invasion, metastasis, motility, and phenotype 
of GC cells, with dozens of them correlating with the 
invasion depth, size, lymph node metastasis, TNM stage, 
OS and DFS of GC tumors. In this review, we emphasized 
epithelial-mesenchymal transition, epigenetic regulation, 
and degradation of the extracellular matrix, angiopoiesis, 
vasculogenic mimicry, and immune escape in examining 
the ectopic expression of lncRNAs. lncRNAs involved in 
specific mechanisms of GC progression could be helpful 
in GC treatment. Those lncRNAs that are considered 
as independent prognostic factors by survival analysis 
such as MALAT1[17], Sox2ot[85], OTUB1-isoform 2[86], 
PANDAR[87], etc., and those lncRNAs dramatically altered 
in postoperative GC patients such as FERI4[88], may be 
utilized as prognosis evaluation markers. Some lncRNAs 
increased in metastatic tissue compared to primary focus 
may be beneficial in predicting metastasis. 
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