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Abstract

Recently there have been explosive discoveries of new long noncoding RNAs (lncRNAs) obtained 

by progress in the technology of second-generation sequencing. Genome scale analysis of 

transcriptome, in conjunction with studies on chromatin modifications at the epigenetic level, 

identified lncRNAs as a novel type of non-coding transcripts whose length is longer than 200 

nucleotides. These transcripts are later found as major participants in various physiological 

processes and diseases, especially in human cancers. LncRNAs have been found to function as 

novel types of oncogenes and tumor suppressors during cancer progression through various 

mechanisms, which endow them with the potential of serving as reliable biomarkers and novel 

therapeutic targets for cancers.
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Introduction

In recent years, there has been an explosive growth in the identification of long noncoding 

RNAs (lncRNAs). Identification of new lncRNAs has been facilitated by progress in the 

technology of second-generation sequencing. This has allowed genome-wide analyses of the 

transcriptome and chromatin modifications at the epigenetic level. Previous research has 

shown the majority of the human genome produces a great number of transcripts without 

protein coding potential [1, 2]. LncRNAs are one such class of non-coding transcripts. They 

are operationally defined as RNA molecules longer than 200 nucleotides that do not appear 

to have canonical protein-coding potential, i.e. they contain no classic open reading frame 

(ORF) [3–8]. Considering that nearly 70% of the human genome is transcribed to RNA 

products, among which only a minority encodes proteins [2], the number of lncRNA genes 

appears very large. Following the initial cloning of lncRNAs such as XIST [9] and H19 [10, 

11] from cDNA libraries, two independent groups reported that the number of lncRNA 

genes is no less than that of protein-coding genes by using the tiling array technology [12, 

13]. Progress in tiling arrays [12–15], analysis of chromatin epigenetic modification [16], 

computational analysis of cDNA libraries [17, 18], and RNA sequencing [1, 19–21], have 

demonstrated that thousands of lncRNAs are widely expressed in human with noticeable 

specificity in tissue distribution. Recently, the GENCODE consortium (version 27) has 

reported 27,908 manually annotated and evidence-supported human lncRNAs originating 

from 15,778 gene loci [1, 2].

Many studies have revealed universal features of lncRNAs to help better understand this new 

class of transcripts. First, lncRNAs are independent transcriptional units. Many of the first 

identified lncRNAs were located in genomic regions that did not contain any previously 

known genes, for example, lncRNAs HOTAIR and H19 [14, 22]. Now it is widely 

recognized that lncRNAs are unlikely to exist as “transcriptional noise” or “gene trash” as 

perceived before. Second, lncRNA transcripts contain fewer exons than mRNAs and utilize 

canonical splicing sites. Third, lncRNA transcripts are under weaker selection pressures than 

protein-coding ones during evolution, and many are primate-specific. It is reasonable to 

conclude that lncRNAs bear more possibility in nucleic acid variations during evolution 

because they have no need to preserve sequences critical for coding conserved amino acids 

of functional protein domains. Under such weaker selection constraints, primates might have 

flexibly evolved a set of specific lncRNAs to help accommodate unique physiological 

functions of the species. Fourth, lncRNA transcription is under the control of epigenetic 

modifications of chromatin similar to that for protein-coding mRNAs. Many lncRNAs were 

initially identified by large-scale sequencing of cDNA libraries, and subsequently 

characterized by transcriptional signatures from RNA pol II binding and epigenetic 

modifications of chromatin [3, 14]. The transcription of lncRNAs is regulated by DNA 

modifications and histone codes similar to that for protein-coding mRNAs. Fifth, lncRNAs 

and protein-coding mRNAs also utilize the same transcriptional machinery. Transcription of 

the majority of lncRNAs is RNA pol II-dependent. LncRNA transcripts usually have a 5’ 

terminal methylguanosine cap and are polyadenylated. There is also evidence showing 

certain lncRNAs deficient in 3’ poly(A) tails, which are probably produced from RNA pol 

III promoters [23, 24]. Additionally, the splicing of nucleolar RNAs generates a subset of 
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lncRNAs lacking in 5’ caps and 3’ poly(A) tails [25]. This suggests that lncRNAs share the 

same molecular machinery for biogenesis with protein-coding mRNAs. Crosstalk and 

reciprocal regulation in the transcription of lncRNAs and protein-coding mRNAs may exist. 

Last, lncRNA expression is comparatively low and highly tissue-specific. Comprehensive 

analysis of human lncRNAs revealed that lncRNAs are generally expressed at lower levels 

than protein-coding genes, and they manifest more tissue-specific expression patterns. For 

example, a large number of lncRNAs are expressed specifically in the brain [1].

Molecular mechanisms of lncRNAs

Despite the numerous functions lncRNAs possess, they utilize some common working 

mechanisms. These common mechanisms involve control of epigenetic modifications of 

chromatin, gene transcription, and mRNA stability, as well as protein translation [16, 19, 

26–30]. First, lncRNAs usually regulate gene expression by modulating epigenetic 

modifications of chromatin. LncRNA transcripts can form scaffold structures and mediate 

the interaction between chromatin and epigenetic modification factors. For example, 

lncRNA HOTAIR recruits the silencing complexes PRC2 and LSD1/CoREST/REST to 

targeted DNA regions for H3K27 methylation and H3K4 demethylation [27], and 

consequently represses the expression of a large amount of HOTAIR target genes, such as 

HOXD cluster genes.

Second, lncRNAs promote or repress gene expression at the transcriptional level through 

various mechanisms. A specific group of lncRNAs termed enhancer RNAs (eRNAs) have 

been suggested to upregulate gene expression by acting as transcriptional enhancers [19, 28]. 

On the other hand, lncRNAs can effect on transcription factors to control gene expression. 

The lncRNA NRON (non-coding repressor of NFAT) suppresses nucleocytoplasmic 

shuttling of the transcription factor NFAT, leading to repression on downstream gene 

transcription [30]. In some cases, lncRNAs function as decoys for transcription factors or 

compete for DNA binding sites with transcription factors. For example, the lncRNA PANDA 

can sequester NF-YA protein away from its target genes involved in apoptosis [31]. 

Interestingly, lncRNAs also regulate gene expression by directly affecting the organization 

of the nuclear compartment. Examples are MALAT1 and TUG1, who reside in distinct 

nuclear structures of interchromatin granules and Polycomb bodies respectively, can 

cooperatively control relocation of growth-control genes between the two nuclear 

compartments, and mediate the assembly of coactivators or corepressors to regulate gene 

expression in response to growth signals [32].

Third, in addition to the functions in epigenetic and transcriptional control on gene 

expression, lncRNAs also have proven activities in post-transcriptional regulation, affecting 

the processing, stability and translational efficiency of mRNAs. MALAT1 was reported to 

modulate the nuclear localization and levels of phosphorylated Ser/Arg splicing factors, 

which directly affects the alternative splicing pattern of target gene pre-mRNAs [33]. Like 

protein-coding genes, some lncRNAs and transcripts from pseudogenes act as miRNA 

sponges to sequester miRNAs away from target transcripts and promote the stabilization of 

mRNA molecules [29, 34, 35]. LncRNAs also exert their functions in translational control. 

The association of lincRNA-p21 and the general translation repressor Rck was shown to 
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repress the translational efficiency of β-Catenin and JUNB mRNAs [26]. Similarly, a 

translational regulatory lncRNA (treRNA) was also reported to inhibit the translation of E-

Cadherin mRNA [36].

Meanwhile, in addition to the non-coding functions supported by a vast amount of evidence 

as mentioned, recent studies implied that lncRNAs may also perform their functions by 

translation into proteins. Using ribosome profiling or ribosome footprinting methods, these 

studies showed that lncRNAs are physiologically associated with ribosomes, and the pattern 

of ribosome protection suggested the possibility of lncRNA transcripts in translating into 

short peptides [37–40]. Furthermore, Schier et al. identified a 58-amino acid peptide 

encoded by a previously annotated non-coding RNA Toddler in zebrafish, and established its 

essential role in embryonic signaling [41]. Nevertheless, whether lncRNAs play their 

biological roles through encoding short peptides still remains a controversial question [42]. 

It will be an attractive field to help fully elucidate the working mechanism of lncRNAs.

LncRNAs in human cancers

Although the biological functions of lncRNAs have not been fully explored, more and more 

studies indicate that a most prominent function of lncRNAs is their regulatory roles in the 

development of human cancers. LncRNAs are active participants in tumor development by 

widely modulating cancer cell proliferation, apoptosis, migration, metabolism, and 

differentiation [6–8, 15, 31, 43–45]. The lncRNA HOTAIR promotes metastasis of cancers 

through PRC2-mediated epigenetic modification on target genes [15]. Correspondingly, 

increased expression of HOTAIR correlates with poor prognosis of many types of cancers 

[46, 47]. ANRIL represents another typical example of oncogenic lncRNA. ANRIL 

expression is upregulated in prostate cancer. Its association with both CBX7/PRC1 [48] and 

SUZ12/PRC2 [49] leads to repression of the tumor suppressor INK4A/INK4B. The lncRNA 

FAL1 with amplification in gene copy number showed increased expression levels in several 

types of cancers. FAL1 enhances the growth rate of cancer cells by interacting with BMI1/

PRC1 to suppress p21 expression [50]. Similarly, the lncRNA DANCR, which is widely 

overexpressed in many types of human cancers, was found to promote cancer progression 

partly by modulating p21 expression [51]. A TP53-regulated lncRNA, LINP1, enhances 

double-strand DNA break repair through the non-homologous end joining pathway, and 

desensitizes triple-negative breast cancer cells to radiotherapy [52]. The lncRNA 

ceruloplasmin (NRCP) modulates cancer metabolism and promotes cancer growth by 

increasing the expression of genes related to glycolysis [45]. In addition, a large number of 

lncRNAs were also found to be associated with tumorigenesis, such as PCAT-1 [20], 

PANDA [31], MALAT-1 [53], lincRNA-p21 [44], and LINC00673 [54], etc.

It is worth noticing that genomic alterations and transcriptional deregulation of lncRNA 

genes are widely present in cancer cells. The somatic copy number alterations (SCNAs) of 

lncRNA genes across 5860 tumor samples from 13 tumor types from the Cancer Genome 

Atlas project were extensively analyzed. It was found that a high frequency of copy number 

gain and loss existed in an average of 13.16% and 13.53% of lncRNA genes, respectively 

[55]. In line with the genome-wide landscape of SCNAs, individual lncRNAs with copy 

number variation were identified. For example, the oncogenic lncRNA FAL1 with 
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amplification in gene copy number shows increased expression levels in many types of 

cancers [50]. Focal amplifications containing both the lncRNA SAMMSON and the 

melanoma-specific oncogene MITF were located to chromosome 3p13 and 3p14. 

SAMMSON was characterized as a critical player in promoting melanoma cell growth and 

survival [56]. In addition to SCNAs, single nucleotide polymorphism (SNP) is another 

common genomic alteration in lncRNA genes associated with cancer risk and clinical 

outcomes. Genome-wide studies have indicated frequent overlap between lncRNAs and 

cancer-related SNPs [55, 57]. The tumor suppressor lncRNA LINC00673 antagonizes 

pancreatic cancer cell proliferation by promoting degradation of the oncogene PTPN11. A 

germline variant of LINC00673 has impaired activity and sensitizes cells to malignant 

transformation [54]. NBAT-1 is an lncRNA that controls neuroblastoma cell proliferation 

and invasion. Interestingly, an SNP in the intron of NBAT-1 indicates high risk and poor 

clinical outcome of neuroblastoma [58]. Besides genomic alterations, transcriptional 

deregulation of lncRNA genes is another mechanism responsible for their differential 

expression patterns in cancers. A study showed that DNA methylation patterns in the 

promoter regions of lncRNA genes are intrinsically distinct in cancerous and normal tissues 

[55]. Furthermore, lncRNA transcription is under control of important oncogenes or tumor 

suppressors. A subset of lncRNA genes is either suppressed (such as CONCR and LINP1) or 

promoted (such as lincRNA-p21 and DINO) by TP53 [44, 52, 59, 60]. The oncogenes RAS 

and MYC are also involved in transcriptional regulation of lncRNAs such as Orilnc1 and 

DANCR [51, 61].

LncRNAs may serve as biomarkers and therapeutic targets for human 

cancers

The explosion in lncRNA research has evoked great enthusiasm for the possibility of 

lncRNAs serving as diagnostic markers and therapeutic targets for human cancer. Hopefully, 

the unique features of lncRNAs, i.e. their differential expression patterns in cancer, temporal 

and tissue specificity, and diverse biological functions, will be advantages taken in clinical 

applications. The first inspiring case of lncRNA as a diagnostic marker is the Food and Drug 

Administration-approved testing of PCA3 for detection of prostate cancer [62]. Together 

with the traditional serum prostate specific antigen (PSA) testing, PCA3 testing has made 

diagnosis of this disease more accurate and specific. Potential lncRNA diagnostic markers 

for other types of cancers have been reported, including hepatocellular carcinoma and gastric 

cancer [63, 64]. In addition, lncRNA have been widely investigated as prognostic markers 

for cancer patients. Previous studies have revealed a correlation between lncRNA HOTAIR 

expression and colorectal cancer recurrence, lymph node metastasis, and poor prognosis [46, 

65]. On the other hand, lncRNAs are considered ideal biomarkers due to their presence in 

body fluids, such as in the form of exosome-containing RNA [66–68], which enables 

noninvasive diagnosis of cancers. Although numerous studies have shown differential 

expression of lncRNAs in tumors compared to normal tissues, extensive research and 

clinical data are needed to confirm the consistency of lncRNA expression in tumor tissue 

and body fluids for diagnostic accuracy and specificity. Despite limited progress in the 

development of lncRNA biomarkers so far, the diversity in biological functions of lncRNAs 

endows them with great potential in serving as therapeutic targets for human cancers. A 
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supportive case is lncRNA MALAT1, an oncogene first discovered in metastatic lung 

adenocarcinoma patients [53] and later found highly expressed in lung, breast and prostate 

cancers [69]. It plays critical roles in promoting proliferation and metastasis of cancer cells. 

Animal studies indicated that silencing MALAT1 expression by antisense oligonucleotide 

(ASO) efficiently impaired the tumor growth and metastatic ability of breast and lung cancer 

cells, respectively [70, 71], implying a potential therapy for cancers by manipulating 

oncogenic lncRNA expression.

Strategies for developing targeted therapy for cancers with lncRNAs

As critical players in tumor development, lncRNAs represent promising therapeutic targets 

for treating cancers. However, targeting lncRNA molecules is different from targeting 

protein-coding transcripts (Figure 1). First, the lack of protein products encoded by lncRNAs 

means that targeting methods are restricted to RNA molecules only. However, methods 

targeting RNA are currently limited. Second, unlike proteins with conserved domains and 

specific conformations, which serve as good targeting sites by small-molecule drugs, the 

three-dimensional structures of lncRNAs have been poorly explored. Furthermore, it has 

been speculated that lncRNA functions are independent on conserved three-dimensional 

structures, as they show relatively low evolutionary conservation of sequence compared to 

protein-coding genes. This makes structure-based drug design and screening difficult for 

lncRNA targets. Third, the working mechanism and regulation network of most lncRNAs 

have not been fully understood. This increases difficulties in developing specific targeting 

strategies for lncRNAs.

Despite the mentioned problems, diverse targeting methods for lncRNAs are under 

investigation (Table 1). Using small interfering RNA (siRNA) and antisense oligonucleotide 

(ASO) to induce loss-of-function effect on lncRNAs represents the most common strategy. 

Similar strategies for targeting protein-coding genes have proven successful, and the 

systemic delivery methods have been widely explored [72–74]. It has been well proved that 

both siRNA and ASO function by base pairing with mRNA to form double-stranded RNAs 

or RNA-DNA hybrids, resulting in degradation of target mRNA by the RNA interference 

(RNAi) mechanism or by RNase H activity. This method has been adapted for knocking 

down lncRNAs with as potent effect as for mRNA silencing. For example, MALAT1 

expression was suppressed by ASO to impair the tumor growth and metastatic ability of 

breast and lung cancer cells [70, 71]. Furthermore, siRNA and ASO are usually subjected to 

certain modifications in order to enhance their stability, meanwhile retaining targeting 

specificity and alleviating the interferon induction effect. Such modifications include adding 

2-nt 3’overhangs to siRNA, 2′-O-methyl to siRNA and ASO, and locked nucleic acid (LNA) 

to ASO. To overcome poor stability and increase intracellular uptake of siRNA and ASO, 

delivery methods such as lipid-based carriers, polymersomes, and biocompatible 

nanoparticles can be employed. Last, the subcellular localization of lncRNAs should be 

considered when adapting the siRNA/ASO strategy. For lncRNAs located in the cytoplasm, 

both siRNA and ASO have satisfactory silencing effects. But for those located in the 

nucleus, ASO would be a better choice than siRNA due to the lack of RNAi machinery in 

the nuclear compartment. Meanwhile, considering that some lncRNAs function as sponges 

for microRNAs (miRNAs) to alleviate the suppressive effects of miRNAs on endogenous 
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target mRNAs [34, 54], targeting lncRNAs by miRNAs would also be a promising strategy. 

The prominent advantages of using miRNAs include their compatibility with the 

endogenous regulatory machinery for lncRNAs, and the well-established delivery methods 

[74, 75].

Besides traditional methods using siRNA, ASO and miRNA, the recently characterized 

CRISPR (clustered regularly interspaced short palindromic repeats)-associated 

deoxyribonuclease Cas9 gene editing system may be employed to achieve loss-of-function 

effects on lncRNAs. In this system, the Cas9 endonuclease is targeted to specific DNA 

sequences with a protospacer adjacent motif (PAM) by single-guide RNAs (sgRNAs) that 

are artificially designed [76–79]. This system has been widely applied for targeted DNA 

cleavage. For oncogenic lncRNA genes with well-characterized genomic localization, Cas9 

can be directed by a pair of specifically designed sgRNAs targeting the 5’ and 3’ ends of the 

genes to generate knockout loci. In this way, successful knockouts of lncRNA-21A, UCA1 

and AK023948 in various human cell lines have been accomplished [80]. Similarly, utilizing 

a paired-guide RNA library, CRISPR-Cas9-mediated genome-scale deletion of lncRNAs 

was achieved [81]. The Cas9 system is emerging as a powerful tool for targeting lncRNAs in 

cancer. Major advantages of the Cas9 system include, but not limited to, programmable 

targeting effects (e.g. gene knockout, as well as gene mutation and transcriptional activation) 

and convenience for high-throughput screening of lncRNA knockout phenotypes. 

Furthermore, a recent development of the Cas9 system was reported by Liu group, which 

enables conversion of cytidine to uridine, thereby leading to a C -> T (or G -> A) 

substitution, by fusing the Cas9 protein with a cytidine deaminase enzyme. This DNA base 

editing system can mediate base conversion in a programmable manner, without requiring 

double-strand DNA cleavage or DNA repairing templates [82]. Thus this modified Cas9 

system bears great potential especially in correcting tumorigenic SNPs on lncRNA genes 

with higher efficiency and accuracy. In addition, currently the in vivo delivery methods of 

the Cas9 system are developing very fast. These include viral vectors of lentivirus (LV) and 

adeno-associated viruses (AAV) for delivering DNAs encoding Cas9 and sgRNA [83–86]; 

nonviral vectors of lipid-based carriers and polymers for delivering the DNA, mRNA and 

proteins of the Cas9 system [87–89]; and physical approaches, such as microinjection, 

electroporation and hydrodynamic injection, for delivering DNA, mRNA and proteins of the 

Cas9 system [88, 90]. These versatile approaches enable efficient in vivo delivery of the 

Cas9 system for lncRNA targeting in cancer treatment in the future. However, the Cas9 

strategy for lncRNA knockout is genomic context dependent. It is well known that numerous 

lncRNAs are transcribed from bidirectional promoters, or overlap with promoters or bodies 

of sense or antisense genes. This unique feature of lncRNAs may expose their neighboring 

genes to the risk of inadvertent deregulation when using the Cas9 system for lncRNA gene 

knockout purposes. A study showed that only one third of 15,929 lncRNA loci may be 

safely targeted for gene knockout via the Cas9 system without perturbation of neighboring 

genes[91]. Thus, careful study is needed before adopting the Cas9 system for targeting of 

any lncRNA gene.

In addition to the Cas9 system, novel CRISPR-Cas systems capable of directly targeting 

RNA, rather than working through DNA recognition, have been established. The class 2 type 

VI CRISPR-Cas effectors, Cas13a and Cas13b, were recently identified by Zhang group as 
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single-component programmable RNA-guided RNA-targeting RNases that have both RNA 

processing and RNA cleavage activities [92, 93]. Cas13b from Prevotella sp. P5–125 
(PspCas13b) is an RNA-targeted RNase which does not require a PAMmer for target RNA 

recognition. PspCas13b displays consistent, robust, and specific knockdown of a reporter 

mRNA in mammalian cells. Thus, it holds great promise as a powerful tool for knocking 

down lncRNA transcripts in cancer therapy, especially for oncogenic lncRNAs with higher 

expression levels in cancer cells than in normal tissues and which are unsuitable for 

knockout by the traditional Cas9 system. Furthermore, the PspCas13b system was modified 

to an RNA-editing system by fusing the catalytically inactive PspCas13b (dCas13b) with the 

catalytic domain of adenosine (A) to inosine (I) deaminase 2 (ADAR2), namely RNA 

Editing for Programmable A to I Replacement (REPAIR) [92, 93]. The REPAIR system can 

convert A to I in mRNA molecules without disturbing genomic sequences, which avoids 

unexpected effects such as frameshift and nonsense mutations of the genome. Furthermore, 

this system is theoretically capable of transformation to other types of base editing 

platforms, e.g. C-to-U editing, if dCas13b is fused with other RNA base editors. 

Collectively, the REPAIR system offers advantages in the programmable editing of a specific 

nucleotide without sequence constraints (no PAM requirement), and independence from 

endogenous DNA repair pathways, which are usually needed for the Cas9 system. 

Hopefully, the REPAIR system will function as an accurate tool for editing lncRNAs in 

cancer. For example, the REPAIR system may reduce cancer risk by altering a single 

nucleotide in tumorigenic SNPs of lncRNAs [54, 58]. It might also be used to regulate the 

association of lncRNAs and onco-protein partners by changing specific nucleotides critical 

for the interaction.

Previous studies have found that small molecules represent a huge source for drugging 

proteins. It has always been an interesting question as to whether RNAs can also directly 

bind to small molecule compounds. Previously, scientists have been pessimistic about the 

answer until a recent breakthrough in the field [94]. A small molecule LMI070 was found to 

bind to the pre-mRNA of spinal muscular atrophy-related gene SMN2 which encodes SMN 

(survival motor neuron). The association boosts the processing of exons and translation of 

the protein product to antagonize the disease [95]. Later, by screening a library of non-

coding RNAs against a library of small molecules to find strong interactions, another small 

molecule, targaprimir-96, was identified as a binding partner of primary miRNA-96 at a key 

processing site. This interaction blocks the maturation of mir-96 and induces apoptosis in 

cancer cells [96]. Using the same strategy, authors also found a small molecule, 

targaprimir-210, which binds primary miRNA-210 [97]. These inspiring results demonstrate 

that both coding and non-coding RNAs are druggable just like proteins. Although no 

relevant studies on drugging lncRNAs have been reported, these studies provide one more 

prospective strategy for targeting lncRNAs for cancer therapy.
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Figure 1. Strategies for development of lncRNA-targeted therapy for cancer treatment
A. LncRNA genes are transcribed by RNA pol II/pol III to give rise to lncRNA transcripts 

(top). The Cas9 system can be applied to target and cleave DNA fragments from lncRNA 

genes (middle). And the Cas9 DNA editor system is capable of editing specific DNA bases 

(e.g. C to T) of lncRNA genes to correct tumorigenic SNP (bottom). B. lncRNA transcripts 

can be targeted by multiple ways. Antisense oligonucleotides (ASO), small interference 

RNA (siRNA), and microRNA (miRNA) represent the most popular methods to knockdown 

the expression level of lncRNA (top). The mechanism of ASO, siRNA and miRNA involves 

base pairing with lncRNA which leads to the degradation of lncRNA. Alternatively, lncRNA 

expression level can also be modulated by the PspCas13b system by its ability in RNA-
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guided recognition of RNA targets and its RNase activity (bottom). A modified Cas13 

system with nucleotide editing activity (e.g. A to I), named REPAIR, can be further used to 

edit specific nucleotides in lncRNA, hence change the biological functions of lncRNA rather 

than cleave lncRNA molecules (left). Small molecules that can potentially bind to lncRNA 

transcripts may also be a prospective way to regulate the structural conformation and 

biological activities of lncRNAs (right).
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Table 1.
Strategies for targeting lncRNA in cancer therapy

Strategies Effects Advantage Limitation

siRNA, ASO,
miRNA

RNA
degradation

Specific,
potent effect

Stability, delivery

Cas9 Gene
knockout,
DNA editing,
gene
mutation, etc.

Versatile and
long-term
effect

Genomic context
dependent, PAM
requirement,
targeting
efficiency, in vivo
delivery

PspCas13b RNA
cleavage

Programmable
targeting, less
sequence
constraint

Targeting
efficiency, in vivo
delivery

REPAIR
(dCas13-ADAR)

RNA editing Programmable
editing

Targeting
efficiency, in vivo
delivery

Small molecules RNA binding Convenient in
vivo delivery

Non-specificity,
non-programmable
targeting

siRNA: small interfering RNA; ASO: antisense oligonucleotide; miRNA: microRNA; Cas9: CRISPR-associated 9; PspCas13b: CRISPR-associated 
13 from Prevotella sp. P5-125; REPAIR: RNA Editing for Programmable A to I Replacement; dCas13: catalytically inactive PspCas13b; ADAR: 
adenosine deaminase acting on RNA
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