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Electrostatics-Driven Inflation of Elastic Icosahedral
Shells as a Model for Swelling of Viruses
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ABSTRACT We develop a clear theoretical description of radial swelling in virus-like particles that delineates the importance of
electrostatic contributions to swelling in the absence of any conformational changes. The model couples the elastic parameters
of the capsid—represented as a continuous elastic shell—to the electrostatic pressure acting on it. We show that different
modifications of the electrostatic interactions brought about by, for instance, changes in pH or solution ionic strength are often
sufficient to achieve the experimentally observed swelling (�10% of the capsid radius). Additionally, we derive analytical expres-
sions for the electrostatics-driven radial swelling of virus-like particles that enable one to quickly estimate the magnitudes of
physical quantities involved.
INTRODUCTION
Molecular interactions in viruses regulate their stability
with respect to chemical and physical influences such as
changes in pH, ionic strength, and temperature. The integ-
rity of viruses in a changing environment is important for
their successful propagation from cell to cell and for their
survival in the inactive, compact state between two hosts.
At the same time, the molecular interactions involved in
viral stability and integrity need to be sufficiently ‘‘soft’’
and weak to enable the dynamics of the viral life cycle,
which in most cases includes the disassembly of viruses,
i.e., the disintegration of their protein shell (capsid)
and the release of their genome (either a DNA or RNA
molecule in single- or double-stranded form). These inter-
actions are encoded primarily in the physicochemical prop-
erties of the capsid proteins, in the nature of the packaged
genome, and in some cases in the properties of proteins that
serve to condense the genome and pack it more efficiently
(1–5).

There is not much more to an assembled virus other than
the interactions that keep it together—once outside the host
cell, the virus can be thought of as a macromolecular com-
plex held together by electrostatic- and entropy-derived
forces. And yet, the roles of these different interactions
have yet to be fully elucidated. There have been attempts
to study viruses on a molecular level (6–11), which is a
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daunting task, as viruses contain a huge number of atoms.
For instance, even very small viruses, such as satellite
tobacco mosaic virus (STMV) or southern bean mosaic
virus, contain more than 106 atoms (9,10). Furthermore,
capsid integrity depends on the molecules that surround it,
such as water and dissolved ions, which need to be taken
into account in molecular simulations (7,11). All this
requires the knowledge of a lot of parameters that determine
the different atomic interactions involved.

Other attempts at understanding the contributions of
interactions involved in capsid assembly and stability use
either various coarse-graining methods (4,12–15) or simpli-
fied continuum models (16–20) and are based on some
generalized form of interactions. This is possible because,
even though the nature of capsid proteins influences the
mechanics of the capsids, there exist more generic aspects
of the physics of the capsid shells as well. These overarch
both the chemical specificity of their protein constituents
and the myriad of molecular interactions involved (21).
The generic aspects of capsid mechanics should be
prominent at the spatial scales typical for viruses
(�10–500 nm), and it is important to clearly separate
them from protein- and molecule-specific interactions. In
this way, we can elucidate the background physical princi-
ples that do not depend on the molecular details but only
on a small number of parameters characterizing the elastic
response of a virus shell to changes in the environment.
This should be of help in identifying the wider space of
physical possibilities and potentialities available in the
course of viral evolution.
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FIGURE 1 Effective potential energy (E; y axis) curves in the process of

capsid swelling. In cases in which no conformational transition takes place,

the energy increases continuously with the (relative) increase of capsid

radius,DR/R (x axis). This is depicted by the full line. In cases in which pro-

tein conformational transitions occur, the energy switches from the depen-

dence illustrated by the full line to the one illustrated by the dashed line at

the point of the transition (CT). The conformational change illustrated in

the figure induces a softening of the capsid. In both regimes, before and af-

ter the transition, Hookean elasticity is assumed to describe the swelling of

the protein shell, as can be judged from the indicated parabolic dependence

of energy on DR/R.

Virus Swelling as Shell Inflation
What is more, coarse-grained approaches may at present
be the most reliable way to extract the relevant energy
scales and forces involved in viral life cycles. Such ap-
proaches have led to important results regarding generic as-
pects of both electrostatic interactions in viruses (16,22,23)
as well as their elasticity (13,17,24–28) and have enabled
classifications of viruses according to their electrostatic
(29,30) and elastic (31–33) nature. This study is a step
further in this direction and couples different aspects of
physics of viruses to explain the radial expansion—
swelling—of viruses within a simple generic framework,
connecting together the relevant elastic and electrostatic
energy scales.

Swelling is a quite common phenomenon in viruses
(34–36), often observed also as a side effect of the proced-
ures applied to study the stability and (dis)assembly of
viruses (37). It has been studied in detail, particularly
in the case of cowpea chlorotic mottle virus (CCMV)
(38–42), as well as other plant viruses such as brome mosaic
virus (43), STMV (44), and southern bean mosaic virus
(45–47). Swelling is often triggered by the changes in the
environment that modify the electrostatic interactions in
the system, known to be of key importance for the fixation
of the capsid shape and structure (48). Swelling can thus
arise due to changes in the pH or the ionic strength of the
solution, release of bound ions (such as Ca2þ), or different
modifications of charge on the capsids.

The main aim of our work will be to elucidate the more
universal physical principles that can drive capsid swelling
when the latter is sufficiently small and no conformational
changes occur. Depending on the stiffness of the capsid
and on the magnitude of perturbation from the equilibrium
state, such changes may be observable or not, so the effect
could be more prominent in some virus species than in
others (33). In this way, we will provide a complementary
view of radial swelling in capsids, and we shall explain
and quantify the effects within a simple theoretical
framework.
METHODS

Swelling as expansion of an elastic icosahedral
shell under pressure

As a capsid can be viewed, at least approximately, as an elastic shell (24), it

should elastically deform in response to (small) forces acting on it. A suf-

ficiently small swelling could thus be viewed as an elastic response of the

capsid to the extra forces acting on it, a description that we will use in our

work. This excludes situations in which swelling involves a significant

conformational change of the proteins. Such situations cannot be explained

as deviations from the (elastic) equilibrium state but rather as transitions

involving at least two effective potential energy curves (Fig. 1). In general,

one could thus imagine that conformational changes either soften or harden

the capsids, effectively modifying the capsid elastic constants and making

them easier or harder to stretch upon further application of pressure. (For

instance, during the swelling of CCMV, a softening of the shell can be

observed (42).)
Conformational changes and essential modifications of the network

of protein interactions during swelling transition strongly depend on the

precise nature of the capsid proteins. Consequently, to provide a generic

framework, we will neglect any conformational changes that occur during

swelling. Capsids before and after a conformational change could, however,

still be described within our framework if the change in the elastic param-

eters is known, as this simply causes a switch from one effective energy

curve to another, as depicted in Fig. 1. In a similar fashion, one could

include the dependence of capsid elastic constants on external, electrostatic

parameters (49).

Whatever the source of swelling may be, it can be represented in the

lowest order as an effective internal pressure p. This neglects the forces

that may occur tangentially to the shell (13) and that can induce tangential

displacements of the proteins and their parts—these would not be regis-

tered in the change of mean radius of the capsid, i.e., swelling. In this

approximation, we view the capsid as a continuous elastic infinitely thin

shell with two elastic moduli—two-dimensional Young’s modulus Y

and bending rigidity k (with Poisson ratio n ¼ 1/3; see below)

(17,24,26,33)—and the swelling as a radial inflation of this elastic shell.

Our model nonetheless retains the essential geometric features of virus

capsids, as it possesses icosahedral symmetry and the pentagonal coordi-

nation of the points on the icosahedron vertices in an otherwise hexagonal-

ly coordinated lattice of points (24).

Such an elastic shell, in the absence of external forcing, can be spherical

to a greater or lesser degree. It has been shown that the degree of its aspher-

icity depends on the dimensionless quantity called the Föppl-von Kármán

(FvK) number, ghYR
2
=k, where R is the mean radius of the shell in the

absence of pressure (24). For g(200, the shells are quite spherical. The

icosahedron vertices pop out (buckle outwards) when 200 < g < 10,000,

and the shapes in this interval look like rounded icosahedra with
Biophysical Journal 115, 822–829, September 4, 2018 823



FIGURE 2 Mean shell radius (full line; left y axis) and asphericity (long-

dashed line; right y axis) as a function of the internal pressure acting on a

shell obtained from the numerical minimization of Eq. 1 with pressure (26)

T ¼ 400). The scaled units of pressure ðε=RÞ are shown on the bottom

x axis. The short-dashed line is the theoretical prediction of Eq. 2. The pres-
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approximately conical regions surrounding the vertices (50). For even

larger g, the edges of the rounded icosahedra sharpen and the shapes

asymptotically approach the icosahedron (51).

These results can be interpreted in the framework of a continuum theory,

although microscopic models of the shell elasticity can also be constructed,

such as the one used in (24):

E ¼ ε

2

X
i;j

ðjri � rjj�aÞ2 þ ~k

2

X
I;J

ðnI � nJÞ2; (1)

where E is the elastic energy of the polyhedral shell. The indices i and j run

over the vertices of the shell (these may represent, e.g., capsomeres—clus-

ters of five or six proteins (26)), positioned at ri, and the indices I and J run

over its triangular faces (plaquettes), whose normal unit vectors are denoted

by nI. The equilibrium edge length is denoted by a, and the stretching

and bending energy constants by E and ~k, respectively. The microscopic

model reproduces the continuum results and elastic moduli, Y ¼ 2ε=
ffiffiffi
3

p
and k ¼ ffiffiffi

3
p

~k=2, once the number of triangular plaquettes in the shell

surface becomes large enough (24,26). The shapes of virus capsids have

been compared to the results of the continuum theory (24,33), and it was

found that viruses have typically g < 104 (33). A lot of viruses are very

spherical, with g < 200, but viruses with 200 < g < 104 are also quite

numerous, and these are distinctively aspherical, with visible icosahedral

geometry. The model in Eq. 1 has also been investigated with a pressure

term pV (where V is the shell volume) added to it (26), and this is the model

we adopt in this study.

The only way to produce swelling from our Hamiltonian (Eq. 1) without

any pressure is to increase the equilibrium length a and thus obtain a less

dense structure. Although it is possible that the elastic parameters—the

bending and stretching constants—change because of external parameters,

these changes would not produce swelling but only a change in shape

asphericity (due to a change in g). Thus, we perform a first-order, decoupled

approximation that keeps the elastic parameters fixed during swelling

and includes only pressure as its driving force. Note also that our model

in Eq. 1 assumes a zero spontaneous curvature of the shell. However, an

increase in equilibrium length a, which we do not consider here, could be

interpreted as a decrease in spontaneous curvature. Such an approach has

been elaborated in (49).

When the shell is inflated and its radius increased, its elastic energy

grows because of the stretching of the shell material. For perfectly spher-

ical thin membranes, the radial force resisting the internal pressure can be

obtained from the normal biaxial stresses in the material

DR

R
¼ p

2Y
R ð1� nÞ ¼ 0:289 ~p; (2)

where DR is the increase of the shell radius under pressure and ~p ¼ pR=ε.
In deriving Eq. 2, we have used n ¼ 1/3 and assumed that DR=R � 1.

Although viruses are not perfectly spherical and their mean asphericity

depends on g, the estimate in Eq. 2 will nonetheless prove to be useful

even for quite aspherical shapes, as we shall show later on. The relative

increase of the shell radius is, according to Eq. 2, directly proportional to

effective pressure, but the scale of proportionality depends on the stretching

elasticity of the shell (Y). The analytic expression of Eq. 2 can also be

derived for large swelling, i.e., when DR/R is not small—assuming that

the Hookean model describes the large protein displacements (see Fig. 1)

and that the conformational transition does not take place. This is, however,

not really required, neither by the relative simplicity of our model nor by

experiments, which measure small swellings (34,40,43,44).

sures recalculated in standard atmosphere (atm) units are shown on the top

x axis. These were obtained by taking Y ¼ 1 kBT/nm
2, k ¼ 10 kBT, and

R ¼ 16 nm, yielding g ¼ 26, which is the FvK number at which the calcu-

lations were performed. The results of a numerical minimization of energy

of a shell with T ¼ 3 and same g are indicated by circles. To see this figure

in color, go online.
Elastic moduli of viruses

To relate the swelling of viruses to changes in their surroundings, one needs

to know the Young’s moduli of their capsids. In our previous study, we have
824 Biophysical Journal 115, 822–829, September 4, 2018
found that the ratio of elastic constants Y/k of different viral capsids varies

over four orders of magnitude, from 10�2 to 102, with most viruses falling

into the range Y/k� 0.1–2 nm�2 (33), consistent with previous propositions

(Y/k� 1 nm�2 (24)). To extract the Young’s modulus from this analysis, we

need an estimate of the bending rigidity. The value obtained from the anal-

ysis of aberrant assembly of empty hepatitis B capsids puts it in the range of

tens of kBT (17), consistent with the value for bending rigidity used in (25).

This gives Y � 1–20 kBT/nm
�2. The bulk Young’s modulus of the capsid

material, obtained by dividing Y with the mean capsid thickness, would

be thus in the range �0.5–10 MPa for most viruses, two to three orders

of magnitude smaller than the value obtained for bacteriophage f29 (52)

from the analysis of atomic force microscopy pressing experiments. On

the other hand, our estimate is quite close to the one obtained in (13)

(5 MPa) in a theoretical discrete elastic study of CCMV capsids, assuming

effectively only a capsomere-capsomere interaction of 15 kBT.
RESULTS

FvK number and fixation of pressure scale

As mentioned in the previous section, the outcome of elastic
calculations in the continuum limit depends only on
the combined quantity of the FvK number g. However,
at a fixed ratio of elastic constants Y/k, a given FvK number
also implies a fixed shell radius. Fig. 2 shows the character-
istics of shell shape—its mean radius and asphericity (26)—
under internal pressure for g ¼ 26 (in the nonpressurized
state). The internal pressure is scaled with ε rather than
with Y so as to enable more direct comparisons with the re-
sults from (26). Taking Y ¼ 1 kBT/nm

2 and k ¼ 10 kBT,
consistent with the interval of values found for viruses, gives
then R ¼ 16 nm for this choice of g. As Y (or,
equivalently, ε) fixes the scale of pressure, this enables a



FIGURE 3 Mean shell radius (full line; left y axis) and asphericity (long-

dashed line; right y axis) as a function of the internal pressure acting on a

shell obtained from the numerical minimization of Eq. 1 with pressure (26)

(T ¼ 400). The scaled units of pressure ðε=RÞ are shown on the bottom

x axis. The pressures recalculated in standard atmosphere (atm) units are

shown on the top x axis. These were obtained by taking Y ¼ 10 kBT/nm
2,

k ¼ 10 kBT, and R ¼ 38 nm, yielding g ¼ 1450, which is the FvK number

at which the calculations were performed. The results of a numerical mini-

mization of energy of a shell with T ¼ 3 and same g are indicated by cir-

cles. The three shapes shown below the bottom x axis were calculated for

p ¼ 0, 0.1, 0.2 ε=R (T ¼ 400), as indicated in the figure. The brightly

colored (yellow in the online version) shell regions store relatively larger

elastic energy than the darkly colored (violet in the online version) regions.

To see this figure in color, go online.

Virus Swelling as Shell Inflation
transition from the scaled units of pressure shown in the bot-
tom x axis of Fig. 2 to the units of standard atmospheres
(atm) shown in the top x axis. A pressure of about half an
atmosphere, in this case, induces an increase in mean radius
of �7%—comparable to expansions observed experimen-
tally in STMV (8%) (44), CCMV (10%) (40), brome mosaic
virus (12%) (43), and tomato bushy stunt virus (14%) (34).

The calculations performed here should be viewed as
a continuum limit of the model elaborated in (24), as
they are performed for a triangulation number T ¼ 400

(h ¼ 20, k ¼ 0), which is already a very good representation
of a continuum situation, as demonstrated in (26). However,
the continuum limit is almost reached already at very
small T-numbers, as the calculations for T ¼ 3 in Fig. 2
clearly show. This further strengthens the applicability of
our results and the simple estimate of Eq. 2 to real viruses,
i.e., small T-numbers. To obtain the same g with a shell of a
smaller T-number requires either a change of equilibrium
edge length a so as to obtain a similar mean radius R or
an increase (decrease) of Y (k). We have checked that the
different choices produce virtually indistinguishable results
as long as they produce the same g, even in the case
in which a small shell, far from the continuum limit, is
studied (26).

For g as small as the one used in Fig. 2 (g¼ 26), the shell
is nearly a perfect sphere. Although the drop in asphericity
is obtained in the calculations, the overall asphericity,
as defined in (24), remains rather small (�10�6), and the
shell is practically a perfect sphere both in the native
and in the swollen form. The prediction of Eq. 2 agrees
with the numerical results quite well, especially when
DR=R< 0:02. The calculations thus validate the simple rela-
tion between the magnitude of swelling and the effective
pressure but still require confirmation in the case of more
aspherical shells.

The so-called (outward) ‘‘buckling transition’’ of a thin
elastic shell takes place when g � 103, as the pentagonal
disclinations buckle out and the shell becomes significantly
aspherical. It is of interest to see how the internal pressure
changes the buckled shell geometry, and Fig. 3 shows the
calculation for g ¼ 1450. The scale of pressure (top
x axis) in this case is chosen differently than in Fig. 2 to
correspond to the midrange of the interval of elastic ratios
found in (33). The values chosen are Y ¼ 10 kBT/nm

2,
k ¼ 10 kBT (Y/k ¼ 1 nm�2), and R ¼ 38 nm, and they yield
g ¼ 1450, the FvK number for which the numerical calcu-
lations were performed. In this case, a notable decrease in
asphericity occurs as the internal pressure increases, from
�10�3 at zero pressure to �3 � 10�4 at p ¼ 2 atm. The
rounding of the ‘‘inflated’’ capsid as the pressure increases
can also be observed in the three shapes shown in Fig. 3.
The theoretical prediction of Eq. 2 remains quite reliable,
even though the nonpressurized shape of the shell is not a
sphere anymore. The slope of the analytical DR=R-~p depen-
dence (0.289) does not correspond to numerical results
when DR=R/0, but it can still be used to quickly and
reliably estimate the magnitudes of physical quantities
involved, as it underestimates the exact numerical results
by only �20%.
Basic electrostatic pressure estimation

Capsid swelling and shape transitions are often observed
when the electrostatic interactions acting on the capsid are
modified—for instance, when pH or salt concentration
of the surrounding solution are changed. Importantly,
modifications of electrostatic interactions can result in
significant changes of the electrostatic pressure even when
they do not incur conformational changes in the capsid pro-
teins (16). For a homogeneously charged thin spherical shell
of radius R, the electrostatic pressure acting on it can be ob-
tained by deriving its free energy with respect to the volume.
In the Couloumb limit—in the absence of salt ions—the
resulting pressure is pC ¼ 3s2/2εε0 (53) and is clearly inde-
pendent of the capsid radius. Here, s is the surface-charge
Biophysical Journal 115, 822–829, September 4, 2018 825
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density of the capsid and ε ¼ 80 the dielectric constant of
water. When we add a monovalent 1 : 1 salt of concentration
c0, we obtain for the pressure in the Debye-H€uckel (DH)
regime (54)

pDH ¼ pC � 2

3

�
1

kDHR ð1þ coth kDHRÞ þ
e�2kDHR

2

�
; (3)

where k�1
DH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εε0=2be20c0

p
is the inverse DH screening
length. In the limit of vanishing salt, we indeed obtain
limkDHR/0pDH ¼ pC. On the other hand, when the screening
becomes large, kDHR / N, the electrostatic pressure van-
ishes. From Eq. 3, one can see that the two important factors
in determining the electrostatic pressure on the capsid are
the screening (in the form of kDHR) and the surface charge
density s, which is, in the case of viruses, typically in the
range of js j(0:5e0/nm

2 at neutral pH (29,30).
Fig. 4 shows how the DH electrostatic pressure depends

on the screening length scaled by shell radius, kDHR (left
y axis), and surface charge density (x axis). As already
shown, the pressures required to achieve notable swelling
depend on the capsid elastic parameters and its radius
through a combination yielding an FvK number g (Figs. 2
and 3). The shell radius is also an important factor in
determining the electrostatic pressure, which depends quite
strongly on the scaled screening length of the system—left
y axis in Fig. 4. In general, pressures that can drive radial
swelling can be obtained at larger salt concentrations
when the shell radii are small, and shells with large radii
require very low salt concentrations to achieve significant
pressures. The largest electrostatic pressure is reached in
the Coulomb limit, having relevance for osmotic shock
experiments when salt is added to or depleted from a solu-
tion. Another way to achieve large changes in electrostatic
pressure, even at large monovalent salt concentrations, is
by adding polyvalent ions to the solution (55); in such cases,
FIGURE 4 Isolines of DH pressure (Eq. 3; in atm units) as a function of

scaled screening length, kDHR (left y axis) and surface charge density

s (x axis). The right y axis shows the monovalent salt concentration c0 in

the particular case when the shell has a radius of R ¼ 16 nm.
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however, analytical estimates for the pressure are difficult
to derive. What Fig. 4 clearly shows is that weakening
of the electrostatic screening can lead to increases in elec-
trostatic pressure large enough to drive radial swelling of
capsids (37).

Another important factor determining the electrostatic
pressure acting on the capsid is its surface-charge density.
The most common way of changing the charge on the capsid
is by changing the pH value of the solution, thus regulating
the charge on the constituent amino acids of the capsid pro-
teins (30,48,56). A study by Nap et al. (56) examined the pH
dependence of the capsid charge of several bacteriophages,
all of which exhibited similar properties, with the charge on
the capsid showing several large changes when the pH
shifted from acidic to basic (see Fig. 7 in (56)). The changes
in total charge in the studied bacteriophages range around
Ds ¼ 0.1–0.2 e0/nm

2 and can be even larger in viruses
whose total charge is larger at neutral pH. Consequently,
pH-induced changes in surface charge density can be large
enough to induce electrostatic swelling (cf. Figs. 2 and 4).
Of course, we assume here that no conformational changes
occur in capsid proteins when the pH is changed, which is
often not the case. However, our results indicate that the
pressure-driven radial swelling can reach similar magni-
tudes to swelling in the presence of capsid conformational
changes.

There are also other ways to modify the surface charge
density of capsids. One way involves mutation of the amino
acids in the capsid protein, in which mutants with as
many as four added or removed positive charges per capsid
protein have been made (57,58). For instance, the addition
of two fully ionized residues per capsid protein on a
capsid of R ¼ 16 nm and T ¼ 3 leads to a change of
Ds ¼ 180 Te0=4pR

2 � 0:17 e0/nm
2. Yet another mecha-

nism for the modification of the capsid surface charge den-
sity is the adsorption of divalent ions and their removal,
chelation. Chelation often leads to capsid swelling, albeit
one that is usually related to protein conformational changes
(34,59–61). Divalent ions modulate the mechanics of viral
capsids regulated by the large electrostatic forces imparted
by the ions. For instance, it was estimated that the virion
of red clover necrotic mosaic virus—a T ¼ 3 virus with
R � 15 nm—has approximately 3905 30 Ca2þ ions bound
to the capsid (60). This amounts to �2 bound divalent ions
per capsid protein, imparting an additional surface charge
density of Ds � 0.25 e0/nm

2. Although the adsorption
and localization of Ca2 ions are ion-specific effects, often
resulting in strong conformational changes, they also have
a nonspecific background resulting simply from the large
additional charge brought on by the ions. This nonspecific
effect of the adsorption of Ca2þ ions certainly contributes
to swelling and can be evaluated within our model.

Decrease of the salt concentration enhances (descreens)
the electrostatic repulsion and increases the electrostatic
pressure acting on the capsid shell. This should be a
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continuous effect, unlike the changes in pH which result in
an essentially discrete jump in capsid surface charge den-
sity, Ds (56). This effect has been noted in the literature
in the case of polovirus, whose radius increases from
28 nm in 100 mM Tris to 31 nm in 10 mM Tris and further
to 34 nm in 1 mM Tris. Such a large radial swelling is not
inconsistent with our data. If we assume that the virus has
an effective charge density of �0.5 e0/nm

2, the decrease
in Tris concentration from 100 to 1 mM results in an
increase of electrostatic pressure from �0.2 to 1.5 atm
(Fig. 4), which may then lead to strong swelling depending
on the stretching elasticity (Figs. 2, 3, and 4).
DISCUSSION

We have presented a study of virus swelling in a generic
elastic-electrostatic framework that treats swelling as an
inflation of an elastic icosahedral shell under pressure.
The calculations presented in Figs. 2 and 3—although
(deliberately) simple when compared to real viruses—reach
far enough to determine the characteristic pressure scale
required for capsid swelling. We have found that the neces-
sary pressures required to reach the experimentally observed
swelling of �10% fall into the range of p � 0.5–5 atm. This
estimate is based on elastic properties of the viruses quanti-
fied in several previous works (13,17,24,33). We have also
shown that such pressures can be realized by changes in
ionic screening and capsid surface charge density which
can be induced experimentally.

The two-dimensional nature of our model may appear
as an oversimplification when compared to real viruses.
However, the atomically inhomogeneous capsid should be
imagined as a network of points—those representing
‘‘soft’’ regions of proteins and the points of contact between
the proteins. The elastic response involved in the radial
expansion of the capsid is encoded in the energetics of these
contacts, whereas all the other protein regions can be
treated as essentially fixed, as they are much more difficult
to stretch. Thus, perhaps somewhat paradoxically, a two-
dimensional model may be a better approximation of a
real capsid than the one that represents it as a thick shell.
In such a model, the shell thinning upon expansion would
appear as an important effect (42), modifying the effective
response of the shell; this feature is not present in our
approach. Note also that our model does not require specifi-
cation of the soft and hard regions of the shell and takes the
same form irrespective of whether the regions that stretch
are within the capsomeres or between them.

Although our model decoupled the elastic and electro-
static contributions to swelling, in real systems, a change
in conditions is likely to produce an effective pressure
together with a change in the capsid elastic parameters.
This could be caused either by conformational changes
influencing the equilibrium length a of the capsid protein
network (Eq. 1), thus leading, for instance, to a less dense
structure, or by the changes in the electrostatic interactions
in the system (49) modifying the shell elasticity and equilib-
rium lengths. However, the renormalization of the capsid
elastic parameters brought about by these effects has not
been studied in detail and is difficult to determine precisely.
Our approach thus presents a sort of a decoupling approxi-
mation, i.e., the elastic properties of the shell are assumed to
be unchanged in the process of swelling that is driven exclu-
sively by the excess pressure.

One may also wonder whether the representation of a vi-
rus as a homogeneously charged shell is an oversimplifica-
tion and how the (attractive) electrostatic interactions
between the patches with predominantly positive and pre-
dominantly negative charge are treated in this approach.
Note, however, that the variations in positive and negative
charge repeat in each capsomere of the capsid so that the in-
teractions affected by these variations are mostly tangential,
the strongest contribution coming from the charge in a
particular capsomere and those around it. These, thus, do
not contribute to swelling, which is mainly governed by
the overall imbalance of charge and the global predomi-
nance of either positive or negative charge. In our approxi-
mation, the total charge is simply smeared homogeneously
(continuously) over the entire capsid surface. One could
also perform a multipole expansion of the complete
surface-charge density, as done, for instance, in (54,62).
However, higher-order corrections (pertaining to higher-
order multipoles) fall off more quickly with the screening
parameter kDHR; what is more, because of the icosahedral
symmetry of viral capsids, the first multipole correction
can occur only at the multipole with the wave number
‘ ¼ 6 (54).

Our simplified model does not explicitly account for the
presence of the viral genome, either single- or double-
stranded RNA or DNA. Although it may seem that its appli-
cability is thus reduced only to empty viruses, it can be
applied to filled RNA viruses as well, presuming that the
changes in the RNA distributions accompanying swelling
occur on an energy scale much softer than the one pertaining
to capsid proteins. In such cases, only the protein-protein
interactions essentially determine the amount of swelling
(16), but one should note that the presence of charged sin-
gle-stranded RNA modifies the charge equilibrium in the
system (63–65). Such reasoning appears to be corroborated
to some extent by atomic force microscopy pressing exper-
iments performed on CCMV (42), which measure similar,
although discernibly different, elastic responses of filled
and empty viruses. Our description is particularly relevant
for functional viruses that feature RNA distributed in a shell
close to the capsid, held there by the basic tails of capsid
proteins (16,30). The two ‘‘shells’’ of charge—that of the
RNA and that of the capsid—can, in the lowest order, be
treated as a single shell of excess charge so that the approach
we presented here can be applied quite directly. On the other
hand, although it has recently been shown experimentally
Biophysical Journal 115, 822–829, September 4, 2018 827
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that the presence of double-stranded DNA (dsDNA) genome
in viral capsids effectively modifies the detectable surface-
charge density of the capsid (66), this is not the major effect
DNA genome has on the virion. The capsids of dsDNA
viruses and bacteriophages in particular already suffer a sig-
nificant internal pressure built up by the confinement of the
DNA. This pressure, which can be as high as tens of atmo-
spheres (16), can be additionally modified by changes in the
electrostatic interactions. However, this generic mechanism
that we have elaborated here would modify the overall pres-
sure only to a relatively small extent and has consequently
less significance for dsDNA viruses.

Our results, based on a very generic mechanism that does
not depend on the details of the capsid proteins, can also
prove useful in the design of pH-responsive nanoparticles
used in, e.g., drug delivery (67–69), for which swelling,
dissociating, or surface charge switching can be controlled
by pH in a manner that favors drug release at the target
site over surrounding tissues. What is more, synthetic pro-
tein nanocontainers of nonviral origin often have similar
material properties to viral ones (70) and can be computa-
tionally designed to have desired properties for drug deliv-
ery and other biomedical applications (71).
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