Table 2.
Classifier | Feature selection | AUC | Accuracy | Specificity | Sensitivity |
---|---|---|---|---|---|
LDA | WRST | 0.74 ± 0.07 | 0.83 ± 0.03 | 0.91 ± 0.10 | 0.67 ± 0.04 |
MRMR | 0.83 ± 0.05 | 0.79 ± 0.07 | 0.87 ± 0.08 | 0.65 ± 0.09 | |
RF | 0.77 ± 0.05 | 0.81 ± 0.03 | 0.91 ± 0.10 | 0.62 ± 0.06 | |
QDA | WRST | 0.87 ± 0.02 | 0.88 ± 0.02 | 0.93 ± 0.10 | 0.78 ± 0.04 |
MRMR | 0.81 ± 0.04 | 0.84 ± 0.05 | 0.88 ± 0.14 | 0.76 ± 0.04 | |
RF | 0.83 ± 0.06 | 0.85 ± 0.3 | 0.91 ± 0.15 | 0.72 ± 0.06 | |
RF | WRST | 0.81 ± 0.05 | 0.77 ±0.04 | 0.87 ± 0.06 | 0.59 ± 0.02 |
MRMR | 0.84 ± 0.03 | 0.81 ±0.04 | 0.87 ± 0.06 | 0.68 ± 0.06 | |
RF | 0.78 ± 0.04 | 0.74 ± 0.04 | 0.83 ± 0.13 | 0.58 ± 0.05 | |
SVM | WRST | 0.86 ± 0.02 | 0.82 ± 0.03 | 0.93 ± 0.06 | 0.62 ± 0.04 |
MRMR | 0.79 ± 0.07 | 0.72 ± 0.04 | 0.90 ± 0.15 | 0.35 ± 0.06 | |
RF | 0.84 ± 0.02 | 0.79 ± 0.02 | 0.92 ± 0.08 | 0.53 ± 0.03 |
Abbreviations: AUC, area under curve; LDA/QDA, linear/quadratic discriminant analysis; MRMR, minimum redundancy, maximum relevance feature selection method; RF, random forest; SVM, support vector machine; WRST, Wilcoxon rank sum test.
The best performance in each metric/column is shown in bold.