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Genetic Regulatory Mechanisms
of Smooth Muscle Cells
Map to Coronary Artery Disease Risk Loci

Boxiang Liu,1,2 Milos Pjanic,2,3 Ting Wang,2,4 Trieu Nguyen,2,3 Michael Gloudemans,7 Abhiram Rao,2,5

Victor G. Castano,2,3 Sylvia Nurnberg,8 Daniel J. Rader,8 Susannah Elwyn,8 Erik Ingelsson,2,3

Stephen B. Montgomery,2,4,6,10 Clint L. Miller,9,10 and Thomas Quertermous2,3,10,*

Coronary artery disease (CAD) is the leading cause of death globally. Genome-wide association studies (GWASs) have identified more

than 95 independent loci that influence CAD risk, most of which reside in non-coding regions of the genome. To interpret these

loci, we generated transcriptome and whole-genome datasets using human coronary artery smooth muscle cells (HCASMCs) from 52

unrelated donors, as well as epigenomic datasets using ATAC-seq on a subset of 8 donors. Through systematic comparison with publicly

available datasets from GTEx and ENCODE projects, we identified transcriptomic, epigenetic, and genetic regulatory mechanisms spe-

cific to HCASMCs. We assessed the relevance of HCASMCs to CAD risk using transcriptomic and epigenomic level analyses. By jointly

modeling eQTL and GWAS datasets, we identified five genes (SIPA1, TCF21, SMAD3, FES, and PDGFRA) that may modulate CAD risk

through HCASMCs, all of which have relevant functional roles in vascular remodeling. Comparison with GTEx data suggests that

SIPA1 and PDGFRA influence CAD risk predominantly through HCASMCs, while other annotated genes may have multiple cell and tis-

sue targets. Together, these results provide tissue-specific andmechanistic insights into the regulation of a critical vascular cell type asso-

ciated with CAD in human populations.
Introduction

Atherosclerotic coronary artery disease (CAD) is the lead-

ing cause of death in both developed and developing coun-

tries worldwide, and current estimates predict that more

than 1 million individuals will suffer from new and recur-

rent CAD this year in the U.S. alone.1 Like most polygenic

diseases, both genetic and environmental factors influence

an individual’s lifetime risk for CAD.2 Early Swedish twin

studies and more recent genome-wide association studies

(GWASs) have estimated that about 50% of CAD risk is ex-

plained by genetic factors.3,4 To date, GWASs have reported

more than 95 replicated independent loci and numerous

additional loci that are associated at an FDR < 0.05.5–8

A majority of these loci reside in non-coding genomic re-

gions and are expected to function through regulatory

mechanisms. Also, approximately 75% of CAD loci are

not associated with classical risk factors, suggesting that

at least part of them function through mechanisms

intrinsic to the vessel wall.

Smooth muscle cells (SMCs) constitute the majority of

cells in the coronary artery wall. In response to vascular

injury (e.g., lipid accumulation, inflammation), SMCs

undergo phenotypic switching and ultimately contribute

to both atherosclerotic plaque formation and stabiliza-

tion.9–12 Recent lineage tracing studies in mice have re-
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vealed that although 80% of plaque-derived cells lack

traditional SMC markers, roughly half are of SMC

origin.13,14 Thus, genetic studies of human coronary artery

smooth muscle cells (HCASMCs) have the potential to

shed light on their diverse functions in the vessel wall rele-

vant to human atherosclerosis. In a few cases, the underly-

ing mechanisms have been identified for CAD loci in

vascular SMC models.10,15–18 Large-scale expression quan-

titative trait loci (eQTL) mapping efforts such as the Geno-

type Tissue Expression (GTEx) project have helped refine

these mechanisms for multiple traits across human tis-

sues.19 However, due to the lack of HCASMCs in both

GTEx and other studies, the overall contribution of this

cell type toward heritable CAD risk remains unknown.

Herein, we performed whole-genome sequencing and

transcriptomic profiling of 52 HCASMC donors to quantify

the effects of cis-acting variation on gene expression and

splicing associated with CAD.We evaluated the tissue spec-

ificity and disease relevance of our findings in HCASMCs

by comparing to publicly available GTEx and ENCODE da-

tasets. We observed significant colocalization of eQTL and

GWAS signals for five genes (FES, SMAD3, TCF21, PDGFRA,

and SIPA1), which all have the capacity to perform relevant

functions in vascular remodeling. Further, comparative an-

alyses with GTEx datasets reveals that SIPA1 and PDGFRA

have stronger colocalization signals in HCASMCs than in
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other tissues. Together, these findings demonstrate the po-

wer of leveraging genetics of gene regulation for a critical

cell type to generate hypotheses on risk-associated mecha-

nisms for CAD.
Material and Methods

Sample Acquisition and Cell Culture
A total of 62 primary human coronary artery smooth muscle cell

(HCASMC) lines collected from donor hearts were purchased,

and 52 lines remained after stringent filtering (see Supplemental

Material and Methods). These 52 lines were from PromoCell (cat-

alog # C-12511, n ¼ 19), Cell Applications (catalog # 350-05a, n ¼
25), Lonza (catalog # CC-2583, n ¼ 3), Lifeline Cell Technology

(catalog # FC-0031, n ¼ 3), and ATCC (catalog # PCS-100-021,

n ¼ 2). All lines were stained with smooth muscle alpha actin to

check for smooth muscle content and all lines tested negative

for mycoplasma (Table S1). All cell lines were cultured in smooth

muscle growth medium (Lonza catalog # CC-3182) supplemented

with hEGF, insulin, hFGF-b, and 5% FBS, according to Lonza in-

structions. All HCASMC lines were expanded to passage 5–6 prior

to extraction.

Library Preparation and Sequencing
Whole-Genome Sequencing

Genomic DNAwas isolated using QIAGENDNeasy Blood & Tissue

Kit (catalog # 69506) and quantified using NanoDrop 1000 Spec-

trophotometer (Thermo Fisher). Macrogen performed library

preparation using Illumina’s TruSeq DNA PCR-Free Library Prepa-

ration Kit and 150 bp paired-end sequencing on Illumina HiSeq X

Ten System.

RNA Sequencing

RNA was extracted using QIAGEN miRNeasy Mini Prep Kit (cata-

log # 74106). Quality of RNAwas assessed on the Agilent 2100 Bio-

analyzer. Samples with RIN greater than or equal to 8 were sent to

the Next-Generation Sequencing Core at the Perelman School of

Medicine at the University of Pennsylvania. Libraries were made

using Illumina TruSeq Stranded Total RNA Library Prep Kit (cata-

log # 20020597) and sequenced using 125 bp paired-end on HiSeq

2500 Platform.

ATAC Sequencing

We used ATAC-seq to assess chromatin accessibility with slight

modifications to the published protocol.20 Approximately 5 3

104 fresh cells were collected at 5003 g, washed in PBS, and nuclei

extracted with cold lysis buffer. Pellets were subjected to trans-

position containing Tn5 transposases (Illumina) at 37�C for

30 min, followed by purification using the DNA Clean-up and

Concentration kit (Zymo). Libraries were PCR amplified using

Nextera barcodes, with the total number of cycles empirically

determined using SYBR qPCR. Amplified libraries were purified

and quantified using bioanalyzer, nanodrop, and qPCR (KAPA)

analysis. Libraries were multiplexed and 2 3 75 bp sequencing

was performed using an Illumina NextSeq 500.

Alignment and Quantification of Genomic,

Transcriptomic, and Epigenomic Features
Whole-genome sequencing data were processed with the GATK

best practices pipeline with hg19 as the reference genome,21,22

and VCF records were phased with Beagle v.4.1.23 Variants with

imputation allelic r2 less than 0.8 and Hardy-Weinberg Equilib-
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riump value less than 13 10�6 were filtered out (see Supplemental

Material and Methods). De-multiplexed FASTQ files were mapped

with STAR version 2.4.0i in 2-pass mode24 over the hg19 reference

genome. Prior to expression quantification, we filtered our reads

prone to mapping bias using WASP.25 Total read counts and

RPKM were calculated with RNA-SeQC v1.1.826 using default pa-

rameters with additional flags ‘‘-n 1000 -noDoC -strictMode’’

over GENCODE v.19 reference. Allele-specific read counts were

generated with the createASVCFmodule in RASQUAL.27We quan-

tified intron excision levels using LeafCutter intron-spanning

reads.28 In brief, we converted bam files to splice junction files us-

ing the bam2junc.sh script, and defined intron clusters using leaf-

cutter_cluster.py with default parameters, which requires at least

30 reads supporting each intron and allows intron to have a

maximum size of 100 kb.We used the ENCODEATAC-seq pipeline

to perform alignment and peak calling (see Web Resources).29

FASTQ files were trimmed with Cutadapt v.1.930 and aligned

with Bowtie2 v.2.2.6.31 MACS2 v.2.0.832 was used to call peaks

with default parameters. Irreproducible Discovery Rate (IDR)33 an-

alyses were performed based on pseudo-replicates (subsample of

reads) with a cutoff of 0.1 to output an IDR call set, which was

used for downstream analysis. We used WASP25 to filter out reads

that are prone to mapping bias.
Mapping of cis-Acting Quantitative Trait Loci (QTL)
Prior to QTL mapping, we inferred ancestry principal components

(PCs) using the R package SNPRelate34 on a pruned SNP set

(Figure S4).We filtered out SNPs based onHardy-Weinberg equilib-

rium (HWE < 13 10�6), LD (r2 < 0.2), and minor allele frequency

(MAF < 0.05).34 To correct for hidden confounders, we extracted

15 covariates using PEER35 on quantile normalized and rank-based

inverse normal transformed RPKM values. The number of hidden

confounders to be removed was determined by empirically maxi-

mizing the power to discover eQTLs on chromosome 20 (for

computational speed and to avoid overfitting). We tested combi-

nations of 3 to 5 genotype principal components with 1 to 15

PEER factors. We found that the combination of 4 genotype PCs

with 8 PEER factors provides the most power to detect eQTLs.

We then used sex, the top four genotype principal components,

and the top eight PEER factors in both FastQTL and RASQUAL

to map cis-eQTL with a 2 Mb window centered at transcription

start sites. Mathematically, the model is the following:

Eðe j g; sex;PC; PEERÞ ¼ b0 þ bg$g þ bs$sexþ
X4

i¼1

ba;i $PC

þ
X8

i¼1

bp;i$PEER;

where e stands for gene expression and g stands for the genotype of

the test SNP. We used LeafCutter28 to quantify intron excision

levels and FastQTL36 to map cis-sQTLs within a 200 kbp window

around splice donor sites, controlling for sex, genotype PCs, and

splicing PCs. Using a similar approach, we found that 3 genotype

PCs and 6 splicing PCs maximized the power to map sQTLs. To

control for multiple hypothesis testing, we calculated per-gene

eQTL p values using FastQTL with permutation, and controlled

transcriptome-wide false discovery rate with the q-value pack-

age.37 For RASQUAL, it was not computationally feasible to

perform gene-level permutation testing. Instead, we used TreeQTL

to simultaneously control for SNP-level FDR and gene-level FDR.38

Note that TreeQTL is more conservative than permutation.
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Quantifying Tissue- and Cell Type-Specific Contribution

to Coronary Artery Disease (CAD) Risk
Weused stratified LD score regression39 to estimate the enrichment

of heritability for SNPs around tissue- and cell type-specific genes as

described previously.40 We defined tissue-specific genes by first se-

lecting for independent tissues and removing tissues primarily

composed of smooth muscle to avoid correlation with HCASMCs

(see SupplementalMaterial andMethods). After filtering, 16 tissues

remained: HCASMCs, adipose - subcutaneous, adrenal gland, ar-

tery - coronary, brain - caudate (basal ganglia), cells - EBV -trans-

formed lymphocytes, cells - transformed fibroblasts, liver, lung,

minor salivary gland, muscle - skeletal, pancreas, pituitary, skin -

not sun exposed (suprapubic), testis, and whole blood.We defined

tissue-specific genes using gene expression z-score. For each gene,

we determined the mean and standard deviation of median

RPKM across tissues, from which the z-score is derived:

~et ¼ medianðet Þ

z ¼ ð~et � Eð~etÞÞ
Varð~etÞ ;

where et is the RPKM across all individuals in tissue t. We ranked

each gene based on the z-scores (a higher z-score indicates more tis-

sue specificity) and defined tissue-specific genes as the top 1,000,

2,000, and 4,000 genes. A given SNP was assigned to a gene if

it fell into the union of exon 5 1 kbp of that gene. We estimated

the heritability enrichment using stratified LD score regression

on a joint SNP annotation across all 16 tissues against the

CARDIoGRAMplusC4D GWAS meta-analysis.41 To determine

whether CAD risk variants are enriched in the open chromatin re-

gions tissue- and cell type-specific fashion, we used a modified

version of GREGOR42 to estimate the likelihood of observing

given number of GWAS variants falling into open chromatin

regions of each tissue and cell type (see Supplemental Material

and Methods). We first defined a GWAS locus as all variants in LD

(r2> 0.7)with the leadvariant.Givena set ofGWAS loci,we selected

500 background variants matched by (1) number of variants in LD,

(2) distance to the nearest gene, (3) minor allele frequency, and (4)

gene density in a 1Mbwindow.We calculated p values and odds ra-

tios between GWAS variants and background variants across

HCASMCs and all ENCODE tissues and primary cell lines.
Colocalization between Molecular QTL and CAD GWASs
We used summary-data-based Mendelian Randomization (SMR)43

to determine GWAS loci that can be explained by cis-acting QTLs.

We performed colocalization tests for 3,379 genes with cis-eQTL

p value < 5 3 10�5 for the top variant and 2,439 splicing events

with cis-sQTL p value < 5 3 10�5 for the top variant in HCASMCs

against the latest CARDIoGRAMplusC4D and UK Biobank GWAS

meta-analysis.6 We identified genome-wide significant eQTL and

sQTL colocalizations based on adjusted SMR p values (Benja-

mini-Hochberg FDR < 0.05). The equivalent p value was 2.96 3

10�5 and 2.05 3 10�5 for eQTL and sQTL, respectively. SMR uses

a reference population to determine linkage between variants;

we used genetic data from individuals of European ancestry

from 1000 Genomes as the reference population in our analyses.

We also used a modified version of eCAVIAR44 to identify colocal-

ized signals (see Supplemental Material and Methods). We calcu-

lated colocalization posterior probability (CLPP) using all SNPs

within 500 kb of the lead eQTL SNP for all eGenes (FDR < 0.05)

against CAD summary statistics from CARDIoGRAMplusC4D
The American
and UK Biobank GWAS meta-analysis.6 For computational feasi-

bility, the GWAS and eQTL loci were assumed to have exactly

one causal SNP. We defined colocalization events using CLPP >

0.05. Note that this ismore conservative than the default eCAVIAR

cutoff (CLPP > 0.01). We determined the direction of effect,

namely whether gene upregulation increases risk, using the corre-

lation of effect sizes in the GWAS and the eQTL studies. We

selected SNPs with p value < 1 3 10�3 in both the GWAS and

eQTL datasets (since other SNPs carry mostly noise) and fitted a

regression using the GWAS and eQTL effect sizes as the predictor

and the response, respectively. We defined the direction of effect

as the sign of the regression slope.
Results

HCASMC-Specific Genomic Architecture

We obtained and cultured 62 primary HCASMC lines, and

52 lines remained for analysis after stringent quality con-

trol (Supplemental Material and Methodsand Table S1).

We performed whole-genome sequencing to an average

depth of 303 and jointly called genotypes using the

GATK best practices pipeline,21 producing a total of

�15.2 million variants after quality control (see Material

and Methods). For RNA, we performed 125 bp paired-end

sequencing to a median depth of 51.3 million reads, with

more than 2.7 billion reads in total. After quantification

and quality control, 19,607 genes were expressed in

sufficient depth for downstream analysis (Table 1). To

confirm that HCASMCs derived from tissue culture reflect

in vivo physiology, we first projected their transcriptomes

onto the 53 tissues profiled in GTEx19 (Figure 1A). Using

multi-dimensional scaling (MDS) to visualize the similarity

of HCASMCs to GTEx tissues, we observed that HCASMCs

form a distinct cluster and closely neighbors fibroblasts,

skeletal muscle, arteries, heart, and various smooth-mus-

cle-enriched tissues (vagina, colon, stomach, uterus, and

esophagus). These results were expected given that

HCASMCs are predicted to be similar to skeletal muscle,

smooth muscle-enriched tissues, as well as tissues repre-

senting the same anatomical compartment (e.g., heart

and artery).45 In addition, HCASMCs resemble fibroblasts

as both can be differentiated from mesenchymal cells

from the dorsal mesocardium.46 We also computed the

epigenetic similarity between HCASMCs and ENCODE

cell types.47 Consistent with the transcriptomic findings,

the closest neighbors to HCASMCs using epigenomic

data were fibroblasts, heart, lung, and skeletal muscle

(Figure 1B).

Next, we determined the pathways that may be selec-

tively upregulated in HCASMCs compared to closely

related tissues. We performed differential expression anal-

ysis of HCASMCs against fibroblasts and coronary artery

in GTEx after correcting for batch effects and other hidden

confounders (see Supplemental Material and Methods).

Overall, 2,610 and 6,864 genes were found to be differen-

tially expressed, respectively (FDR < 1 3 10�3, Figures

1C and S1), affecting pathways involved in cellular
Journal of Human Genetics 103, 377–388, September 6, 2018 379



Table 1. Molecular Quantitative Trait Loci Discoveries

Molecular Phenotype Trait Type # of Traits Tested

# of Traits with at Least One QTL

FDR ¼ 0.05 FDR ¼ 0.01 FDR ¼ 0.001

Gene expression protein coding 13,624 1,048 (7.69%) 841 (6.17%) 636 (4.67%)

lincRNA 1,266 51 (4.03%) 41 (3.24%) 33 (2.61%)

pseudogene 2,616 50 (1.91%) 34 (1.3%) 25 (0.96%)

other 2,101 71 (3.38%) 56 (2.67%) 44 (2.09%)

Total 19,607 1,220 (6.22%) 972 (4.96%) 738 (3.76%)

Splicing protein coding 24,461 519 (2.12%) 349 (1.43%) 245 (1%)

lincRNA 300 11 (3.67%) 7 (2.33%) 5 (1.67%)

pseudogene 376 22 (5.85%) 15 (3.99%) 12 (3.19%)

other 541 29 (5.36%) 19 (3.51%) 17 (3.14%)

Total 25,678 581 (2.96%) 390 (1.99%) 279 (1.42%)

We report the number of tests performed and the number of significant loci at FDR < 0.05, 0.01, and 0.001 for eQTL and sQTL stratified by molecular trait type.
We used permutation and the Benjamini-Hochberg adjustment for sQTL discovery, and a multi-level FDR correction procedure (TreeQTL38) for eQTL discovery,
where permutation was not computationally feasible (see Material and Methods).
proliferation, epithelial-mesenchymal transition (EMT),

and extracellular matrix (ECM) secretion (Table S2). Addi-

tionally, we determined the cellular content in human cor-

onary artery48 and found that smooth muscle cells are the

most abundant, followed by endothelial cells (Figure S16).

Next, we sought to identify HCASMC-specific epigenomic

signatures by comparing HCASMC open chromatin pro-

files, as determined with ATAC-seq, against DNaseI hyper-

sensitivity (DHS) sites across all ENCODE primary cell

types and tissues (Table S3). We processed HCASMC

ATAC-seq data with the ENCODE pipeline and standard-

ized peaks as 75 bp around the peak summit for all tissues

and cell lines to mitigate batch effect (see Material and

Methods). A total of 7,332 peaks (2.1%) were not previ-

ously identified in ENCODE and represent HCASMC-

specific sites (Figure 1D). For example, an intronic peak

within LMOD1 was found to be restricted to HCASMCs

(Figure 1E). This gene is expressed primarily in vascular

and visceral smooth muscle cells where it is involved in

actin polymerization and has been mapped as a candidate

causal CAD gene.11 We then sought to identify transcrip-

tion factor binding sites overrepresented in HCASMC-

specific peaks. Motif enrichment analyses indicated that

HCASMC-specific open chromatin sites are enriched with

binding sites for members of the forkhead box (FOX) tran-

scription factor family (see Material andMethods). We per-

formed motif enrichment analysis using 50-, 200-, and

1,000-bp regions flanking HCASMC-specific peaks and

found that the enrichment was robust to selection of win-

dow size, indicating the result is not simply due to selec-

tion bias (Figure S2). The FOX transcription factors are

known to regulate tissue- and cell type-specific gene tran-

scription,49 and a subgroup of this family includes those

with the ability to serve as pioneer factors.50 To validate

that FOX motif enrichment is specific to HCASMCs, we

performed similar analyses for brain-, heart-, and fibro-
380 The American Journal of Human Genetics 103, 377–388, Septem
blast-specific open chromatin regions and observed a

depletion of FOX motifs (Figure S3). Together these results

suggest that HCASMC-specific transcriptomic and epige-

nomic profiles identify regulatory mechanisms not previ-

ously established with large publicly available datasets.

Expression and Splicing Quantitative Trait Locus

Discovery

In order to investigate the genetic regulatory mechanisms

of gene expression in HCASMCs, we conducted genome-

wide mapping of eQTLs using both FastQTL36 and

RASQUAL27 on the 52 donor samples from diverse ethnic

backgrounds (Table S1 and Figure S4). RASQUAL has

been previously shown to increase the cis-eQTL discovery

power in small sample sizes by leveraging allele-specific in-

formation.27 Indeed, using a threshold of FDR < 0.05,

RASQUAL increased the number of eQTLs discovered

approximately 7-fold as compared to FastQTL (RASQUAL:

1220 versus FastQTL:167, Table 1). We next evaluated

whether these eQTLs were enriched in regions of open

chromatin using data from a subset of individuals with

ATAC-seq profiles. We observed that eQTLs within

HCASMC open chromatin regions had more significant

p values compared to all eQTLs (Figure S5, two-sided

rank-sum test p value < 9.2 3 10�5). This is consistent

with putative effects of cis-acting variation, potentially

functioning through altered TF binding around these

accessible regions. Next, using a Bayesian meta-analytic

approach,51 we sought to identify HCASMC-specific eQTLs

using GTEx tissues as a reference. Under themost stringent

criteria (eQTL posterior probability > 0.9 for HCASMCs

and < 0.1 for all GTEx tissues, see Material and Methods),

we identified four HCASMC-specific eQTLs (Figure S6). For

example, rs1048709 is the top eQTL-SNP and confers

HCASMC-specific regulatory effects on Complement

Factor B (Figure S6B), a gene that has been previously
ber 6, 2018



Figure 1. The Relationship between HCASMCs and GTEx and ENCODE Cell and Tissue Types
(A) The multidimensional scaling plot of gene expression shows that HCASMCs form a distinct cluster, which neighbors fibroblast, skel-
etal muscle, heart, blood vessel, and various types of smooth muscle tissues such as esophagus and vagina (inset).
(B) Jaccard similarity index between HCASMCs and ENCODE cell and tissue types reveals that fibroblast, skeletal muscle, heart, and lung
are most closely related to HCASMCs.
(C) Thousands of genes are differentially expressed between HCASMCs and its close neighbors, fibroblast, as well as the tissue of origin,
coronary artery.
(D) A total of 344,284 open chromatin peaks are found in HCASMCs, of which 7,332 (2.1%) are HCASMC specific.
(E) An example of a HCASMC-specific peak located within the intron of LMOD1, which is an HCASMC-specific gene.
implicated in atherosclerosis and other inflammatory dis-

eases.52 In addition to regulatory effects on gene expres-

sion, previous studies have identified splicing as a major

source of regulatory impact of genetic variation on com-

plex diseases.53 Therefore, we mapped splicing QTLs

(sQTLs) using LeafCutter28 and identified 581 sQTLs asso-

ciated at FDR < 0.05 (Table 1). As a quality control, we esti-

mated the enrichment of sQTLs and eQTLs against a

matched set of background variants. As expected, eQTLs

were enriched around the 50 UTR (Figure S7A), whereas

sQTLs were enriched in splicing regions, particularly splice

donor and acceptor sites (Figure S7B).

Overall CAD Genetic Risk Mediated by HCASMCs

Wenext examined the heritable contribution of HCASMCs

toward the risk of CAD. Previous reports have suggested

that disease-associated SNPs are often enriched in genes ex-

pressed in the relevant tissue types.40 Thus, we estimated

the contribution to CAD risk from SNPs in or near genes

showing patterns of tissue-specific expression and identi-

fied the top 2,000 tissue-specific genes for HCASMCs and

GTEx tissues (see Material and Methods). We then applied

stratified LD score regression39 to estimate CADheritability

explained by SNPs within 1 kb of tissue-specific genes. We

found that HCASMCs, along with coronary artery and ad-

ipose tissues, contribute substantially toward CAD herita-
The American
bility (Figure 2A). These enrichment results were robust

to the tissue-specificity cutoff (top 1,000, 2,000, or 4,000

genes), suggesting that they were not simply due to selec-

tion bias (Figure S8). Complementary epigenomic evi-

dence previously demonstrated that risk variants for com-

plex diseases are often enriched in open chromatin regions

in relevant tissue types.39,42,47 Thus, we estimated the de-

gree of overlap between CAD variants and open chromatin

in HCASMCs and ENCODE cell types using a modified

version of GREGOR42 (see Material and Methods). We

observed that open chromatin regions in HCASMCs, as

well as vascular endothelial cells, monocytes, uterus

(smooth muscle), and B cells, are enriched for CAD risk

variants (Figure 2B). These findings support the role of

HCASMCs as an appropriate cellular model to map the ge-

netic basis of CAD, which may be supplemented by the

contribution of other vessel wall cell types.

Fine-Mapping CAD Risk Variants

Whole-genome sequencing of our HCASMC population

sample provides the opportunity to fine-map CAD risk

loci. Several studies have used colocalization between

GWAS and eQTL signals as a fine-mapping approach to

identify candidate causal regulatory variants,43,44,54,55

and in several cases pinpointing single causal vari-

ants.56,57 Given the global overlap between CAD risk
Journal of Human Genetics 103, 377–388, September 6, 2018 381



Figure 2. Tissue- and Cell Type-Specific
Contribution to CAD Risk
(A) Tissue-specific enrichment of CAD her-
itability. We used stratified LD score regres-
sion to estimate the CAD risk explained by
SNPs close to tissue-specific genes, defined
as the 2,000 genes with highest expression
z-scores (see Material and Methods). Genes
whose expression is specific to coronary ar-
tery, adipose, and HCASMCs harbor SNPs
with large effects on CAD. Error bars indi-
cate standard error of the enrichments.
(B) Overlap between CAD risk variants and
tissue- and cell type-specific open chro-
matin regions. We used a modified version
of GREGOR (see Material and Methods)
to estimate the probability and odds ratio
(compared with matched background
SNPs) of overlap between CAD risk variants

and open chromatin regions in HCASMCs and across ENCODE tissues. HCASMCs, arterial endothelial cells, monocytes, B cell, uterus
(composed primarily of smooth muscle), and pons (possibly through regulation of blood pressure) showed the highest degrees of
overlap.
variants and genetic regulation in HCASMCs, we sought to

find evidence for colocalization between GWAS and eQTL

signals. We thus compiled publicly available genome-wide

summary statistics from the latest meta-analysis.6 We then

applied two methods with different statistical assump-

tions, eQTL and GWAS Causal Variants Identification in

Associated Regions (eCAVIAR)44 and Summary-data-based

Mendelian Randomization (SMR)43 to identify colocaliz-

ing variants and genes across all CAD loci, and we focused

on the union of results from the two independent

methods. We used FDR < 0.05 and colocalization posterior

probability (CLPP) > 0.05 as cutoffs for SMR and eCAVIAR,

respectively (note that CLPP > 0.05 is more conservative

than the CLPP > 0.01 recommended in the publication

of the eCAVIAR method). From this approach, we identi-

fied five genes that showed statistically significant colocal-

ization, namely FES, SMAD3, TCF21, PDGFRA, and SIPA1

(Figure 3). Although the top genes found by two methods

differed, we observed that the SMR p values and eCAVIAR

CLPPs positively correlate (Figure S9) and that two of

the three genes found by eCAVIAR achieved nominal

significance in SMR (Table S4). We then investigated

whether these colocalizations were restricted to HCASMCs

by conducting colocalization tests across all GTEx

tissues. For SIPA1 and PDGFRA, colocalization appears to

be HCASMC-specific (Figures 3G, S10A, and S10D). For

SMAD3, both HCASMCs and thyroid have strong colocali-

zation signals (Figure S10B). TCF21 and FES colocalization

were found to be shared across multiple tissues (Figures

S10C and S11D). Next, we conducted colocalization anal-

ysis between sQTL and GWAS summary statistics with

both eCAVIAR and SMR. We identified colocalization

with four genes (Table S4 and Figure S12). The most signif-

icant colocalization event is at the SMG9 locus. Interest-

ingly, the top sQTL variant, rs4760, is a coding variant

located in the exon of the PLAUR (plasminogen activator

urokinase receptor) gene and is also a GWAS variant

for circulating cytokines and multiple immune cell
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traits.58,59 However, experimental validation is required

to confirm these candidate genes. By correlating eQTL

and GWAS effect sizes, we observed that increased TCF21

and FES expression levels are associated with reduced

CAD risk, while increased PDGFRA, SIPA1, and SMAD3

expression levels are associated with increased CAD risk

(Figure S17). These results provide genetic evidence that

pathways promoting SMC phenotypic transition during

atherosclerosis can be both protective and detrimental de-

pending on the genes implicated (Figure 4).
Discussion

In this study, we have integrated genomic, transcriptomic,

and epigenetic datasets to create the first map of genetic

regulation of gene expression in human coronary artery

smooth muscle cells. Comparison with publicly available

transcriptomic and epigenomic datasets in GTEx

and ENCODE revealed regulatory patterns specific to

HCASMCs. By comparing against neighboring tissues in

GTEx, we found thousands of differentially expressed

genes, which were enriched in pathways such as EMT, pro-

tein secretion, and cellular proliferation, consistent with

our current understanding of HCASMC physiology in vivo.

In comparison with ENCODE, we found 7,332 (�2.1%)

specific open chromatin peaks in HCASMCs, and we

showed that these peaks are enriched with binding motifs

for Forkhead box family proteins, which are known to

regulate cell-type-specific gene expression.60 FOXP1 in

particular has been shown to increase collagen production

in smooth muscle cells,61 supporting a potential role in

extracellular matrix remodeling in the vessel wall.

Using both transcriptomic and epigenomic profiles, we

established that HCASMCs represent an important cell

type for coronary artery disease. On a tissue level, we

demonstrated that genes highly expressed in HCASMCs,

coronary artery and adipose tissue are enriched for SNPs
ber 6, 2018



Figure 3. Colocalization between
HCASMC eQTL and Coronary Artery Dis-
ease GWASs
(A–C) Three candidate genes identified by
eCAVIAR.
(A) Platelet-derived growth factor alpha
(PDFGRA) eQTL signal colocalized with
the KDR GWAS locus, which has p value
< 3.16 3 10�5 (FDR < 0.05) in the latest
CARDIoGRAMplusC4D and UK Biobank
GWAS meta-analysis.6

(B) Signal-Induced Proliferation-Associ-
ated 1 (SIPA1) eQTL signal colocalized
with the PCNX3 locus, which has p value
< 7.75 3 10�6 in the UK Biobank meta-
analysis, and reached genome-wide signifi-
cance (p value < 9.71 3 10�9) in Howson
et al.5 Note that the latter study has a larger
sample size than the UK Biobank study.
(C) SMAD3 eQTL signal colocalized with
the SMAD3 locus, which was identified in
the UK Biobank meta-analysis.6

(D) Transcriptome-wide colocalization sig-
nals between HCASMC eQTL and CAD
GWAS. We used eCAVIAR (top) and SMR
(bottom) to fine-map GWAS causal vari-
ants and to identify eQTL signals that can
explain CAD risk variants (see Material
and Methods). We found five genes whose
eQTL signals show significant colocaliza-
tion with CAD GWAS signal (SMR FDR <
0.05 or eCAVIAR colocalization posterior
probability > 0.05).
(E and F) Two candidate genes identified
by SMR.
(E) Transcription factor 21 (TCF21) eQTL
signal colocalized with the TCF21
locus, which was identified by Schunkert
et al.74 and replicated in the UK Biobank
meta-analysis.
(F) FES eQTL signal colocalized with the
FURIN-FES locus, which was identified by
Deloukas et al.75 and replicated in the UK
Biobank meta-analysis.
(G) SIPA1 colocalization is strongest in
HCASMCs, suggesting that this gene may
influence CAD risk through this special-
ized cell type.
associated with CAD risk. While the proximal aortic wall

is also susceptible to atherosclerosis, the coronary ar-

teries represent the primary origin of ischemic coronary

artery disease in humans.9 Given that the majority of

coronary arteries in the epicardium are encapsulated by

perivascular adipose tissue in individuals with disease,

one would expect these tissues to share gene responses

involved in both vascular inflammation and lipid ho-

meostasis.62 Further, we demonstrated that HCASMCs,

endothelial cells, and immune cells also contribute

toward the genetic risk of coronary artery disease.

Recent -omic profiling of human aortic endothelial cells

(HAECs) isolated from various donors identified a

number of genetic variants and transcriptional networks

mediating responses to oxidized phospholipids and pro-

inflammatory stimuli.63 Likewise, systems approaches

investigating resident macrophages and other im-
The American
mune cells involved in vessel inflammation have pro-

vided additional insights into context-specific disease

mechanisms.64,65

Our integrative analyses identified a number of

CAD-associated genes that may offer clues into poten-

tially targetable HCASMC-mediated disease mechanisms.

Although two of these associated genes, TCF21 and

SMAD3, have established roles in regulating vascular re-

modeling and inflammation during disease,12,16,66 the

other identified genes, PDGFRA, FES, and SIPA1, appear

to also be SMC-associated genes. While the role for

PDGFRB-mediated signaling has been well documented

in atherosclerosis and modulation of SMC phenotype,

the possible involvement of PDGFRA has not been inves-

tigated in detail.67,68 It is worth noting that the GWAS

signal for PDGFRA reached FDR < 0.05 and not genome-

wide significance. In the latest meta-analysis using an
Journal of Human Genetics 103, 377–388, September 6, 2018 383



Figure 4. Candidate Genes Are Involved
in HCASMC-Related Vascular Remodeling
Hypothetical functions of five candidate
genes. Upregulation of TCF21 facilitates
the transition of smooth muscle cells
from a contractile to a synthetic state.76

Upon phenotypic transition, FES assists
in smooth muscle cell migration to
the neo-intima.77 Both SIPA1 and PDGFRA
promote HCASMC proliferation.67,78

SMAD3 induces synthetic smooth mus-
cle re-differentiation into the synthetic
phenotype for vessel wall repair.79 Upward
arrows indicate genetic upregulation in-
creases CAD risk, and downward arrows
indicate genetic upregulation is protective
against CAD risk.
interim release of UKBB data,6 12 of the 13 loci identified

at genome-wide significance were on the previous list of

loci meeting the FDR < 0.05 threshold, and the study

argued that most remaining loci at the FDR < 0.05

threshold likely represent genuine signals. Similarly, we

chose to include PDGFRA on the reasonable expectation

that it may become genome-wide significant in the next

release of GWAS integrating full UKBB data. Interestingly,

FES and SIPA1 were found to harbor CpGs identified

in current smokers in the Rotterdam Study, based on

targeted methylation profiling of CAD loci in whole

blood.69 The two identified CpGs in FES were located

near the transcription start site, while the one CpG iden-

tified in SIPA1 was located in the 50 UTR, suggesting po-

tential environmental influences on gene expression

levels. SIPA1 encodes a mitogen-induced GTPase acti-

vating protein (GAP), specifically activating Ras and Rap

GTPases.70 SIPA1 may be a specific mitogen response

signal in HCASMCs undergoing phenotypic transition in

the injured vessel wall; however, these hypotheses should

be explored in relevant functional models. Another

HCASMC eQTL variant, rs2327429, located in the

TCF21 promoter region, was also the lead SNP in this lo-

cus in a recent CAD meta-analysis and has been identified

as an mQTL for TCF21 expression in two separate

studies.71,72 These data suggest that regulation of methyl-

ation is a molecular trait that may mediate risk for CAD.

Splicing QTL colocalization analysis reveals that alterna-

tive splicing in SMG9 also influences CAD risk. SMG9

has been shown to regulate the nonsense-mediated decay

(NMD) pathway in human cells and has been implicated

in several developmental disorders such as brain malfor-

mations and congenital heart disease.73 It is worth noting

that TCF21, which was the top hit for SMR, received low

CLPP from eCAVIAR. This is because SMR uses the top

eQTL SNP as the instrumental variable. In this case, the

SNP rs2327429 is genome-wide significant for both

eQTL and GWAS (eQTL p value < 2.3 3 10�29 and

GWAS p value < 2.5 3 10�09), and thus SMR returned

a significant causal probability. On the other hand,

eCAVIAR first assigns causal posterior probability inde-
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pendently for GWAS and eQTL. Because the GWAS and

eQTL does not share a lead variant (rs2327429 for eQTL

and rs12202017 for GWAS) for TCF21, eCAVIAR assigns

high posterior to rs2327429 and low posterior to

rs12202017 in eQTL and vice versa in GWAS. As a result,

the product of the causal posterior probability (i.e., coloc-

alization posterior probability, CLPP) was low. Due to

these differences, we argue that a systematic comparison

across colocalization methods is needed in the future. In

addition, our power to detect causal genes is limited by

the modest sample size, and an increase in the number

of sample will aid in identifying weaker eQTLs and coloc-

alization events.

In summary, the current study confirms the value of

detailed genomic and genetic analyses of disease-related

tissues and cell types, which when analyzed in the context

of publicly available data can provide deep insights into

the physiology of human traits and pathophysiology of

complex human disease. We expect that these findings

will provide a rich resource for the community and prompt

detailed functional investigations of candidate loci for pre-

clinical development.
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Web Resources

1000 Genomes, http://www.internationalgenome.org/

ATAC-seq and DNase-seq processing pipeline, https://github.com/

kundajelab/atac_dnase_pipelines

BEAGLE, http://faculty.washington.edu/browning/beagle/beagle.

html

bedtools, http://bedtools.readthedocs.io/en/latest/

Bowtie2, http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

BWA, https://github.com/lh3/bwa/releases

DESeq2, https://bioconductor.org/packages/release/bioc/html/

DESeq2.html

ENCODE, https://www.encodeproject.org/

ENCODE ATAC-seq/DNase-seq pipeline, https://github.com/

kundajelab/atac_dnase_pipelines

eCAVIAR, http://zarlab.cs.ucla.edu/tag/ecaviar/

FastQC, https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/

FastQTL, http://fastqtl.sourceforge.net/

FINEMAP, http://www.christianbenner.com

GATK, https://software.broadinstitute.org/gatk/

Gencode v.17, https://www.gencodegenes.org

GEO, https://www.ncbi.nlm.nih.gov/geo/

GREGOR, https://genome.sph.umich.edu/wiki/GREGOR

hcasmc_eqtl, https://github.com/boxiangliu/hcasmc_eqtl

JASPAR, http://jaspar.genereg.net/

LD score regression, https://github.com/bulik/ldsc

LeafCutter, https://github.com/davidaknowles/leafcutter

MACS2, https://github.com/taoliu/MACS

METASOFT, http://genetics.cs.ucla.edu/meta/

Montgomery lab, http://montgomerylab.stanford.edu/resources.

html

NOISeq, https://bioconductor.org/packages/release/bioc/html/

NOISeq.html

Picard, http://broadinstitute.github.io/picard/

PLINK 1.9, https://www.cog-genomics.org/plink2/

RASQUAL, https://github.com/natsuhiko/rasqual

RNA-SeQC,https://software.broadinstitute.org/cancer/cga/rna-seqc

SMR, http://cnsgenomics.com/software/smr/#Overview

STAR, https://github.com/alexdobin/STAR

sva, https://bioconductor.org/packages/release/bioc/html/sva.

html

TreeQTL, http://www.bioinformatics.org/treeqtl/

VerifyBamID, https://genome.sph.umich.edu/wiki/VerifyBamID

WASP, https://github.com/bmvdgeijn/WASP
The American
References

1. Benjamin, E.J., Blaha, M.J., Chiuve, S.E., Cushman, M., Das,

S.R., Deo, R., de Ferranti, S.D., Floyd, J., Fornage, M., Gillespie,

C., et al.; American Heart Association Statistics Committee

and Stroke Statistics Subcommittee (2017). Heart disease and

stroke statistics-2017 update: a report from the American

Heart Association. Circulation 135, e146–e603.

2. Khera, A.V., Emdin, C.A., Drake, I., Natarajan, P., Bick, A.G.,

Cook, N.R., Chasman, D.I., Baber, U., Mehran, R., Rader,

D.J., et al. (2016). Genetic risk, adherence to a healthy lifestyle,

and coronary disease. N. Engl. J. Med. 375, 2349–2358.

3. Won, H.-H., Natarajan, P., Dobbyn, A., Jordan, D.M., Roussos,

P., Lage, K., Raychaudhuri, S., Stahl, E., and Do, R. (2015).

Disproportionate contributions of select genomic compart-

ments and cell types to genetic risk for coronary artery disease.

PLoS Genet. 11, e1005622.

4. Zdravkovic, S., Wienke, A., Pedersen, N.L., Marenberg, M.E.,

Yashin, A.I., and De Faire, U. (2002). Heritability of death

from coronary heart disease: a 36-year follow-up of 20 966

Swedish twins. J. Intern. Med. 252, 247–254.

5. Howson, J.M.M., Zhao, W., Barnes, D.R., Ho, W.-K., Young, R.,

Paul, D.S., Waite, L.L., Freitag, D.F., Fauman, E.B., Salfati, E.L.,

et al.; CARDIoGRAMplusC4D; and EPIC-CVD (2017). Fifteen

new risk loci for coronary artery disease highlight arterial-

wall-specific mechanisms. Nat. Genet. 49, 1113–1119.

6. Nelson, C.P., Goel, A., Butterworth, A.S., Kanoni, S., Webb,

T.R., Marouli, E., Zeng, L., Ntalla, I., Lai, F.Y., Hopewell, J.C.,

et al.; EPIC-CVD Consortium; CARDIoGRAMplusC4D; and

UK Biobank CardioMetabolic Consortium CHD working

group (2017). Association analyses based on false discovery

rate implicate new loci for coronary artery disease. Nat. Genet.

49, 1385–1391.

7. Klarin, D., Zhu, Q.M., Emdin, C.A., Chaffin, M., Horner, S.,

McMillan, B.J., Leed, A., Weale, M.E., Spencer, C.C.A., Aguet,

F., et al.; CARDIoGRAMplusC4D Consortium (2017). Genetic

analysis in UK Biobank links insulin resistance and transendo-

thelial migration pathways to coronary artery disease. Nat.

Genet. 49, 1392–1397.

8. van der Harst, P., and Verweij, N. (2018). Identification of 64

novel genetic loci provides an expandedviewon the genetic ar-

chitecture of coronary artery disease. Circ. Res. 122, 433–443.

9. Khera, A.V., and Kathiresan, S. (2017). Genetics of coronary ar-

tery disease: discovery, biology and clinical translation. Nat.

Rev. Genet. 18, 331–344.

10. Pu, X., Xiao, Q., Kiechl, S., Chan, K., Ng, F.L., Gor, S., Poston,

R.N., Fang, C., Patel, A., Senver, E.C., et al. (2013). ADAMTS7

cleavage and vascular smoothmuscle cell migration is affected

by a coronary-artery-disease-associated variant. Am. J. Hum.

Genet. 92, 366–374.

11. Miller, C.L., Pjanic, M., Wang, T., Nguyen, T., Cohain, A., Lee,

J.D., Perisic, L., Hedin, U., Kundu, R.K., Majmudar, D., et al.

(2016). Integrative functional genomics identifies regulatory

mechanisms at coronary artery disease loci. Nat. Commun.

7, 12092.

12. Braitsch, C.M., Combs, M.D., Quaggin, S.E., and Yutzey, K.E.

(2012). Pod1/Tcf21 is regulated by retinoic acid signaling

and inhibits differentiation of epicardium-derived cells

into smooth muscle in the developing heart. Dev. Biol. 368,

345–357.

13. Shankman, L.S., Gomez, D., Cherepanova, O.A., Salmon, M.,

Alencar, G.F., Haskins, R.M., Swiatlowska, P., Newman, A.A.C.,
Journal of Human Genetics 103, 377–388, September 6, 2018 385

http://www.internationalgenome.org/
https://github.com/kundajelab/atac_dnase_pipelines
https://github.com/kundajelab/atac_dnase_pipelines
http://faculty.washington.edu/browning/beagle/beagle.html
http://faculty.washington.edu/browning/beagle/beagle.html
http://bedtools.readthedocs.io/en/latest/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/lh3/bwa/releases
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.encodeproject.org/
https://github.com/kundajelab/atac_dnase_pipelines
https://github.com/kundajelab/atac_dnase_pipelines
http://zarlab.cs.ucla.edu/tag/ecaviar/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://fastqtl.sourceforge.net/
http://www.christianbenner.com
https://software.broadinstitute.org/gatk/
https://www.gencodegenes.org
https://www.ncbi.nlm.nih.gov/geo/
https://genome.sph.umich.edu/wiki/GREGOR
https://github.com/boxiangliu/hcasmc_eqtl
http://jaspar.genereg.net/
https://github.com/bulik/ldsc
https://github.com/davidaknowles/leafcutter
https://github.com/taoliu/MACS
http://genetics.cs.ucla.edu/meta/
http://montgomerylab.stanford.edu/resources.html
http://montgomerylab.stanford.edu/resources.html
https://bioconductor.org/packages/release/bioc/html/NOISeq.html
https://bioconductor.org/packages/release/bioc/html/NOISeq.html
http://broadinstitute.github.io/picard/
https://www.cog-genomics.org/plink2/
https://github.com/natsuhiko/rasqual
https://software.broadinstitute.org/cancer/cga/rna-seqc
http://cnsgenomics.com/software/smr/#Overview
https://github.com/alexdobin/STAR
https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html
http://www.bioinformatics.org/treeqtl/
https://genome.sph.umich.edu/wiki/VerifyBamID
https://github.com/bmvdgeijn/WASP
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref1
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref1
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref1
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref1
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref1
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref1
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref2
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref2
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref2
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref2
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref3
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref3
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref3
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref3
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref3
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref4
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref4
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref4
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref4
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref5
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref5
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref5
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref5
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref5
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref6
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref6
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref6
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref6
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref6
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref6
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref6
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref7
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref7
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref7
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref7
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref7
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref7
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref8
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref8
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref8
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref9
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref9
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref9
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref10
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref10
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref10
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref10
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref10
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref11
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref11
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref11
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref11
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref11
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref12
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref12
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref12
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref12
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref12
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref13
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref13


Greene, E.S., Straub, A.C., et al. (2015). KLF4-dependent

phenotypic modulation of smooth muscle cells has a key

role in atherosclerotic plaque pathogenesis. Nat. Med. 21,

628–637.

14. Cherepanova, O.A., Gomez, D., Shankman, L.S., Swiatlowska,

P., Williams, J., Sarmento, O.F., Alencar, G.F., Hess, D.L.,

Bevard, M.H., Greene, E.S., et al. (2016). Activation of the plu-

ripotency factor OCT4 in smoothmuscle cells is atheroprotec-

tive. Nat. Med. 22, 657–665.

15. Nurnberg, S.T., Cheng, K., Raiesdana, A., Kundu, R., Miller,

C.L., Kim, J.B., Arora, K., Carcamo-Oribe, I., Xiong, Y., Tella-

kula, N., et al. (2015). Coronary artery disease associated tran-

scription factor TCF21 regulates smooth muscle precursor

cells that contribute to the fibrous cap. PLoS Genet. 11,

e1005155.

16. Miller, C.L., Haas, U., Diaz, R., Leeper, N.J., Kundu, R.K., Pat-

lolla, B., Assimes, T.L., Kaiser, F.J., Perisic, L., Hedin, U., et al.

(2014). Coronary heart disease-associated variation in TCF21

disrupts a miR-224 binding site and miRNA-mediated regula-

tion. PLoS Genet. 10, e1004263.

17. Srivastava, R., Zhang, J., Go, G.-W., Narayanan, A., Nottoli,

T.P., and Mani, A. (2015). Impaired LRP6-TCF7L2 activity en-

hances smooth muscle cell plasticity and causes coronary ar-

tery disease. Cell Rep. 13, 746–759.

18. Kim, J.B., Pjanic, M., Nguyen, T., Miller, C.L., Iyer, D., Liu, B.,

Wang, T., Sazonova, O., Carcamo-Orive, I., Matic, L.P., et al.

(2017). TCF21 and the environmental sensor aryl-hydrocar-

bon receptor cooperate to activate a pro-inflammatory gene

expression program in coronary artery smooth muscle cells.

PLoS Genet. 13, e1006750.

19. Battle, A., Brown, C.D., Engelhardt, B.E., Montgomery, S.B.;

GTEx Consortium; Laboratory, Data Analysis &Coordinating

Center (LDACC)—Analysis Working Group; Statistical

Methods groups—Analysis Working Group; Enhancing GTEx

(eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/NHGRI;

NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site—

NDRI; BiospecimenCollection Source Site—RPCI; Biospecimen

Core Resource—VARI; Brain Bank Repository—University of

Miami Brain Endowment Bank; Leidos Biomedical—Project

Management; ELSI Study; Genome Browser Data Integration

&Visualization—EBI;GenomeBrowserData Integration&Visu-

alization—UCSC Genomics Institute, University of California

Santa Cruz; Lead analysts; Laboratory, Data Analysis &Coordi-

nating Center (LDACC); NIH program management; Bio-

specimen collection; Pathology; and eQTLmanuscriptworking

group (2017). Genetic effects on gene expression across human

tissues. Nature 550, 204–213.

20. Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J.

(2015). ATAC-seq: a method for assaying chromatin accessi-

bility genome-wide. Curr. Protoc. Mol. Biol. 109, 1–9.

21. Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., del

Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen,

D., Thibault, J., et al. (2002). From FastQ Data to High-Confi-

dence Variant Calls: The Genome Analysis Toolkit Best Prac-

tices Pipeline (Hoboken, NJ, USA: John Wiley & Sons, Inc.).

22. DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire,

J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A.,

Hanna, M., et al. (2011). A framework for variation discovery

and genotyping using next-generation DNA sequencing data.

Nat. Genet. 43, 491–498.

23. Browning, B.L., and Yu, Z. (2009). Simultaneous genotype

calling and haplotype phasing improves genotype accuracy
386 The American Journal of Human Genetics 103, 377–388, Septem
and reduces false-positive associations for genome-wide asso-

ciation studies. Am. J. Hum. Genet. 85, 847–861.

24. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C.,

Jha, S., Batut, P., Chaisson,M., andGingeras, T.R. (2013). STAR:

ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

25. van de Geijn, B., McVicker, G., Gilad, Y., and Pritchard, J.K.

(2015). WASP: allele-specific software for robust molecular

quantitative trait locus discovery. Nat. Methods 12, 1061–

1063.

26. DeLuca, D.S., Levin, J.Z., Sivachenko, A., Fennell, T., Nazaire,

M.-D., Williams, C., Reich, M., Winckler, W., and Getz, G.

(2012). RNA-SeQC: RNA-seq metrics for quality control and

process optimization. Bioinformatics 28, 1530–1532.

27. Kumasaka, N., Knights, A.J., and Gaffney, D.J. (2016). Fine-

mapping cellular QTLs with RASQUAL and ATAC-seq. Nat.

Genet. 48, 206–213.

28. Li, Y.I., Knowles, D.A., Humphrey, J., Barbeira, A.N., Dickin-

son, S.P., Im, H.K., and Pritchard, J.K. (2018). Annotation-

free quantification of RNA splicing using LeafCutter. Nat.

Genet. 50, 151–158.

29. Sloan, C.A., Chan, E.T., Davidson, J.M., Malladi, V.S., Strattan,

J.S., Hitz, B.C., Gabdank, I., Narayanan, A.K., Ho, M., Lee, B.T.,

et al. (2016). ENCODE data at the ENCODE portal. Nucleic

Acids Res. 44 (D1), D726–D732.

30. Martin, M. (2011). Cutadapt removes adapter sequences from

high-throughput sequencing reads. EMBnet Journal17, 10–12.

31. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read

alignment with Bowtie 2. Nat. Methods 9, 357–359.

32. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S.,

Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li,

W., and Liu, X.S. (2008). Model-based analysis of ChIP-Seq

(MACS). Genome Biol. 9, R137.

33. Li, Q., Brown, J.B., Huang, H., and Bickel, P.J. (2011).

Measuring reproducibility of high-throughput experiments.

Ann. Appl. Stat. 5, 1752–1779.

34. Zheng, X., Levine, D., Shen, J., Gogarten, S.M., Laurie, C., and

Weir, B.S. (2012). A high-performance computing toolset for

relatedness and principal component analysis of SNP data.

Bioinformatics 28, 3326–3328.

35. Stegle, O., Parts, L., Piipari, M., Winn, J., and Durbin, R.

(2012). Using probabilistic estimation of expression residuals

(PEER) to obtain increased power and interpretability of

gene expression analyses. Nat. Protoc. 7, 500–507.

36. Ongen, H., Buil, A., Brown, A.A., Dermitzakis, E.T., and Dela-

neau, O. (2016). Fast and efficient QTL mapper for thousands

of molecular phenotypes. Bioinformatics 32, 1479–1485.

37. Storey, J.D., and Tibshirani, R. (2003). Statistical significance

for genomewide studies. Proc. Natl. Acad. Sci. USA 100,

9440–9445.

38. Peterson, C.B., Bogomolov, M., Benjamini, Y., and Sabatti, C.

(2016). TreeQTL: hierarchical error control for eQTL findings.

Bioinformatics 32, 2556–2558.

39. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Re-

shef, Y., Loh, P.-R., Anttila, V., Xu, H., Zang, C., Farh, K.,

et al.; ReproGen Consortium; Schizophrenia Working Group

of the Psychiatric Genomics Consortium; and RACI Con-

sortium (2015). Partitioning heritability by functional annota-

tion using genome-wide association summary statistics. Nat.

Genet. 47, 1228–1235.

40. Boyle, E.A., Li, Y.I., and Pritchard, J.K. (2017). An expanded

view of complex traits: from polygenic to omnigenic. Cell

169, 1177–1186.
ber 6, 2018

http://refhub.elsevier.com/S0002-9297(18)30267-2/sref13
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref13
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref13
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref13
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref14
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref14
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref14
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref14
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref14
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref15
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref15
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref15
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref15
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref15
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref15
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref16
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref16
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref16
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref16
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref16
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref17
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref17
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref17
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref17
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref18
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref18
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref18
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref18
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref18
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref18
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref19
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref20
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref20
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref20
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref21
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref21
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref21
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref21
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref21
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref22
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref22
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref22
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref22
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref22
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref23
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref23
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref23
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref23
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref24
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref24
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref24
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref25
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref25
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref25
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref25
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref26
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref26
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref26
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref26
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref27
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref27
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref27
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref28
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref28
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref28
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref28
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref29
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref29
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref29
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref29
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref30
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref30
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref31
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref31
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref32
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref32
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref32
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref32
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref33
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref33
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref33
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref34
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref34
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref34
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref34
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref35
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref35
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref35
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref35
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref36
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref36
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref36
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref37
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref37
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref37
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref38
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref38
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref38
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref39
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref39
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref39
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref39
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref39
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref39
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref39
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref40
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref40
http://refhub.elsevier.com/S0002-9297(18)30267-2/sref40


41. Nikpay, M., Goel, A., Won, H.-H., Hall, L.M., Willenborg, C.,

Kanoni, S., Saleheen, D., Kyriakou, T., Nelson, C.P., Hopewell,

J.C., et al. (2015). A comprehensive 1,000 Genomes-based

genome-wide associationmeta-analysis of coronary artery dis-

ease. Nat. Genet. 47, 1121–1130.

42. Schmidt, E.M., Zhang, J., Zhou, W., Chen, J., Mohlke, K.L.,

Chen, Y.E., and Willer, C.J. (2015). GREGOR: evaluating

global enrichment of trait-associated variants in epigenomic

features using a systematic, data-driven approach. Bioinfor-

matics 31, 2601–2606.

43. Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell,

J.E., Montgomery, G.W., Goddard, M.E., Wray, N.R., Visscher,

P.M., and Yang, J. (2016). Integration of summary data from

GWAS and eQTL studies predicts complex trait gene targets.

Nat. Genet. 48, 481–487.

44. Hormozdiari, F., van de Bunt, M., Segrè, A.V., Li, X., Joo, J.W.J.,
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