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PubCaseFinder: A Case-Report-Based, Phenotype-Driven
Differential-Diagnosis System for Rare Diseases

Toyofumi Fujiwara,1,2,* Yasunori Yamamoto,1 Jin-Dong Kim,1 Orion Buske,3 and Toshihisa Takagi4

Recently, to speed up the differential-diagnosis process based on symptoms and signs observed from an affected individual in the diag-

nosis of rare diseases, researchers have developed and implemented phenotype-driven differential-diagnosis systems. The performance

of those systems relies on the quantity and quality of underlying databases of disease-phenotype associations (DPAs). Although such

databases are often developed by manual curation, they inherently suffer from limited coverage. To address this problem, we propose

a text-mining approach to increase the coverage of DPA databases and consequently improve the performance of differential-diagnosis

systems. Our analysis showed that a text-mining approach using one million case reports obtained from PubMed could increase the

coverage of manually curated DPAs in Orphanet by 125.6%. We also present PubCaseFinder (see Web Resources), a new phenotype-

driven differential-diagnosis system in a freely available web application. By utilizing automatically extracted DPAs from case reports

in addition to manually curated DPAs, PubCaseFinder improves the performance of automated differential diagnosis. Moreover,

PubCaseFinder helps clinicians search for relevant case reports by using phenotype-based comparisons and confirm the results with

detailed contextual information
Introduction

At present more than 6,000 rare diseases have been iden-

tified, and �80% of them are genetic in origin.1 Unfortu-

nately, up to 50% of individuals affected by rare diseases

never receive a diagnosis,2 and such affected individuals

will most likely lose opportunities such as optimization

of clinical management and early intervention.3 To tackle

this situation, researchers are undertaking next-genera-

tion sequencing (NGS)-based analysis to identify candi-

date diseases for undiagnosed individuals.4,5 After anal-

ysis, clinicians rank candidate diseases through a

differential-diagnosis process based on symptoms and

signs, collectively called ‘‘phenotypes,’’ in the affected

individual.6

Even though the analysis and process improve diag-

nostic rates,7,8 the differential-diagnosis process is time-

consuming.6 At first, clinicians collect reported phenotypes

fromtrustedmedical sources (e.g.,Orphanet andpapers) for

each candidate disease and then check which disease

phenotypes overlap with the affected individual’s

phenotypes.9 Recently, to speed up the process, pheno-

type-driven differential-diagnosis systems such as

Phenomizer,6 Phenolyzer,10 and FACE2GENE11 have been

implemented.12 Phenomizer and Phenolyzer employ a se-

mantic similarity-computation method to compare the

affected individual’s phenotypes against a set of rare

diseases associated with phenotypes and against a set

of genes associated with phenotypes, respectively.

FACE2GENE detects an affected individual’s phenotypes

from a face image and calculates a similarity score for each
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genetic disease via a deep-learning method. These systems

provide a ranked list of diseases or genes on the basis of

the similarity score, and the top-listed diseases represent

the most likely differential diagnosis.

The performance of these systems is greatly influenced

by the quantity and quality of underlying databases of

disease-phenotype associations (DPAs). Currently, there

are two well-known DPAs sources, whose focus is each

slightly different from the other: Orphanet (Vasant et al.

[2014]. ISMB 2014) and the Human Phenotype Ontology

(HPO) consortium.12 Orphanet provides DPAs for the rare

diseases that are defined in Orphanet Rare Disease

Ontology (ORDO) (Vasant et al. [2014]. ISMB 2014), and

the HPO consortium mainly provides DPAs for the genetic

diseases that are defined in OMIM. Note that databases

that rely on manual curation inherently show a limited

coverage.13 In the case of Orphanet, more than half of

the diseases (�60.5% of 6,268) are not associated with a

phenotype. There are two main reasons for this limited

coverage. First, the development of databases is based

on the curation of papers by human experts, which is

time-consuming and labor-intensive because of the large

volume and rapid growth of life-sciences papers.14

Second, there are still many unknown phenotypes in

rare diseases because phenotypic spectrums for many

rare diseases are still under investigation.15 For example,

Elisabet et al.16 quantified many atypical phenotypes of

inherited kidney diseases caused by various genetic,

epigenetic, and environmental factors. Sawyer et al.2

diagnosed 105 undiagnosed rare-disease-affected individ-

uals by using whole-exome sequencing and showed that
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Figure 1. Distribution of the Number of
Case Reports Published per Year in
PubMed from 1980 to 2017
26 individuals presented with atypical phenotypes of a

known disease. With the rapid adaptation of NGS-based

diagnostics in clinical settings, phenotypic expansions

of disease spectrums will become increasingly com-

mon.3,16

Improving the performance of phenotype-driven dif-

ferential-diagnosis systems and thus improving our abil-

ity to diagnose rare diseases will require overcoming the

limited coverage of DPA databases. To address this prob-

lem, in this study we empirically explore one question

on a large scale: Can automatically extracted DPAs

from case reports contribute to improving the perfor-

mance of phenotype-driven differential-diagnosis sys-

tems for rare diseases? First, we extract DPAs from case

reports in PubMed by using a text-mining approach

and compare those with DPAs from Orphanet. We focus

on case reports because these are an important tool for

quickly expanding the growing body of clinical knowl-

edge on rare diseases,17 and case reports often deal

with previously undescribed and atypical phenotypes.18

For example, with respect to cerebrotendinous xantho-

matosis, Taboada et al.13 automatically extracted DPAs

from case reports in PubMed and obtained 11 new

DPAs that did not appear in manually curated DPAs. Sec-

ond, we develop a new phenotype-driven differential-

diagnosis system called PubCaseFinder and demonstrate

that automatically extracted DPAs without manual

screening can obviously contribute to improving

the performance of automated differential diagnosis.

To the best of our knowledge, this is the first report on

the potential of automatically extracted DPAs from one

million case reports for improving the performance of

phenotype-driven differential-diagnosis systems for rare

diseases.
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Material and Methods

Collecting Case Reports
We used PubMed E-utilities to obtain a

large collection of case reports.19 To find

an effective search query, we used the

publication-type tag ‘‘case reports,’’ which

was manually tagged by human experts. A

previous study has shown that PubMed in-

cludes many case reports that are not

explicitly tagged as such.20 We also chose

to consider a paper as a case report if its ti-

tle included ‘‘case report’’ or ‘‘case reports.’’

We used the following query to collect case

reports and record titles and abstracts:

‘‘case reports’’ [publication type] OR ‘‘case

reports’’ [ti] OR ‘‘case report’’ [ti]. We found

that 1,895,021 PubMed entries were

initially collected as case reports and that
among these only 1,083,283 had both titles and abstracts (as of

July 20, 2017). Figure 1 shows the growth of PubMed-indexed

case reports published per year. The apparent decrease observed

in recent years is attributed to the delay with PubMed indexing

for many reasons, e.g., a manual tagging process. Table 1 lists

the top 20 journals (out of 7,649 containing case reports) ranked

according to the number of published case reports (all journals

are shown in Table S1).

Identifying Disease-Phenotype Associations
We extracted DPAs from our collection of case reports by using a

text-mining approach (Figure 2). At first, we annotated titles and

abstracts of case reports with HPO terms andORDO terms by using

ConceptMapper (Tanenblatt et al. [2010]. LREC 546–551). HPO,

initially published in 2008, has been curated by domain experts

to provide a standardized vocabulary for describing phenotypic

abnormalities that are widely seen in human genetic diseases.12

ORDO, constructed by Orphanet and EBI, provides a standardized

vocabulary for rare diseases extracted from papers and validated by

international experts (Vasant et al. [2014]. ISMB 2014). We

downloaded the HPO file (releases/2017-06-30) provided by the

HPO consortium and the ORDO file (version 2.3) provided by

Orphanet.

HPO contains a set of 12,786 terms that were integrated with

9,473 textual definitions and 16,320 synonyms, and 16,443 is-a

(parent-child) relationships were established between HPO terms.

ORDO contains a set of 13,321 terms integrated with 3,737 textual

definitions, 20,542 synonyms, and 15,973 is-a relationships and

provides connections with other resources (e.g., OMIM and

ICD10). In this study, we used 6,268 ORDO terms that are descen-

dent terms of ORDO: 377788 (disease), ORDO: 377789 (malforma-

tion syndrome), ORDO: 377790 (biological anomaly), ORDO:

377791 (morphological anomaly), ORDO: 377792 (clinical syn-

drome), and ORDO: 377793 (particular clinical situation in a

disease or syndrome) as rare diseases.

For annotation, we used ConceptMapper, a dictionary-based

system for recognizing concepts in text. Christopher et al.21
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Figure 2. Process of Identifying Disease-Phenotype Associa-
tions from Case Reports
The set of titles and abstracts of case reports were annotated with
HPO terms and ORDO terms using ConceptMapper with HPO and
ORDO (step 1), and annotations with inappropriate synonyms
were excluded using the Allie database (step 2). DPAs were identi-
fied in processed annotations (step 3).

Table 1. Top 20 Journals Ranked According to the Number of
Published Case Reports

Journal Title
Country of
Publication

Number of
Published
Case Reports

BMJ Case Reports England 9,782

The Annals of Thoracic Surgery Netherlands 6,902

Internal Medicine (Tokyo, Japan) Japan 5,697

Gan to Kagaku Ryoho (Cancer
and Chemotherapy)

Japan 5,618

Southern Medical Journal United States 5,144

Journal of Pediatric Surgery United States 4,776

Clinical Nuclear Medicine United States 4,479

Journal of Neurosurgery United States 4,325

Chest United States 4,295

American Journal of Medical
Genetics

United States 4,290

Urology United States 4,273

The Japanese Journal of Thoracic
Surgery

Japan 4,116

Cancer United States 4,092

The Journal of Laryngology and
Otology

England 4,078

Neurosurgery United States 4,064

The Journal of Urology United States 3,958

Neurology United States 3,880

Hinyokika Kiyo Acta Urologica
Japonica

Japan 3,851

Journal of Medical Case Reports England 3,845

Nederlands Tijdschrift voor
Geneeskunde

Netherlands 3,845
evaluated MetaMap,22 NCBO Annotator, and ConceptMapper on

eight biomedical ontologies by using the Colorado Richly Anno-

tated Full-Text Corpus. They examined more than 1,000 combina-

tions of parameters and concluded that ConceptMapper was the

best-performing system, producing the highest F-measure for

seven out of eight ontologies. On the basis of our preliminary

survey on the processing speed of the three systems, we confirmed

that ConceptMapper was �50 times faster than MetaMap and

NCBO Annotator. In order to conduct ConceptMapper with

HPO and ORDO, we used Colorado Computational Pharmacology

(University of Colorado School of Medicine) natural language-

processing (NLP) pipelines with default parameter sets.21

Many synonyms are present in HPO and ORDO, and some of

them are abbreviations of labels. A previous study reported that

81.2% of abbreviations are ambiguous and have an average of

16.6 meanings.23 Thus, there are instances where case reports

annotated with synonyms that are abbreviations do not include

their labels. For example, the label of ORDO: 103918 is ‘‘tropical

pancreatitis,’’ and its synonym is ‘‘TCP.’’ A case report with

PubMed ID 24472742 includes ‘‘TCP,’’ but it does not include

‘‘tropical pancreatitis’’ and instead includes ‘‘thrombocytopaenia.’’

To exclude inappropriate annotations, we used the Allie database
The American
that deposits abbreviations generated on the basis of all titles

and abstracts in PubMed. Annotations including synonyms were

excluded if a case report did not include both the synonym and

its label in the text.

Finally, using the processed annotations, we identified DPAs in

all titles and abstracts of case reports. Others have proposed

various approaches, such as the co-occurrence approach, rule-

based approach, and machine-learning approach, to extract

relations such as protein-protein interactions and disease-gene

associations from biomedical text.24 We took the co-occurrence

approach, which is simple but known to be successful for many

previous works, such as AliBaba,25 EBIMed,26 iHOP,27 and Pharm-

spresso.28 This approach regarded two entities co-occurring in a

textual unit of some defined size as having relations. Due to the

intrinsic complexity of the biomedical text, most of the cases

using this approach work on a sentence-based level.25–28 Thus,

we regarded co-occurrences of an ORDO term and an HPO term

within a sentence as DPAs.

Development of PubCaseFinder
We developed PubCaseFinder, a new phenotype-driven differen-

tial-diagnosis system that uses the DPAs extracted from one

million case reports. PubCaseFinder is based on a DPA database

where phenotypes are associated with diseases defined in Orpha-

net. Some of the DPAs are from Orphanet, whereas some originate

from text-mining results. The goal of the system was to help clini-

cians rank candidate diseases for an individual who is suspected

have a rare disease. A case is represented by a set of HPO terms

that describe the phenotypes of the individual. The case represen-

tation is then compared to diseases in the database. Note that each

disease in the database is also represented by a set of HPO terms.

Thus, the comparison is performed as a similarity computation

between two sets of HPO terms. As a result, PubCaseFinder shows

a ranked list of candidate diseases according to the similarity score.

To calculate semantic similarity between two sets of HPO terms,

various studies, such as those by Resnik,29 Lin,30 Jiang-Conrath,31

simGIC,32 and GeneYenta,33 have recommended several different
Journal of Human Genetics 103, 389–399, September 6, 2018 391
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measures. These measures are used for an affected individual’s

diagnosis,6 enrichment analysis of gene sets and disease sets,34,35

discovering causative genes of rare diseases,33 and other applica-

tions. Resnik, Lin, and Jiang-Conrath define semantic similarity

between two HPO terms as the information content (IC) of the

most informative common ancestor. simGIC is defined as the

sum of IC of HPO terms shared by two sets of HPO terms, divided

by the sum of IC of those HPO terms.

PubCaseFinder uses GeneYenta (based on Resnik’s measure),

which is a user-weighted matching algorithm that sets a matching

weight for each phenotype.33 The algorithm represents the simi-

larity, ranging from 0% for no phenotypic overlap to 100% for

complete phenotypic overlap. The algorithm starts with deter-

mining the information content (ICt) of each HPO term t. P(t) is

the probability of occurrence of a HPO term t in a set of case re-

ports, and the ICt of the HPO term t is defined as follows:

PðtÞ ¼ j annott j
j annotall j ;

ICt ¼ �log PðtÞ;

where annotall is the total number of annotations of all HPO

terms in case reports and annott is the total number of annotations

of the HPO term t and all its descendants in case reports. That is,

for the root node, P(t) is 1 and ICt is 0. There is an inverse relation-

ship between IC and the total number of annotations of an HPO

term t. ICt of the most informative common ancestor of the two

HPO terms was assigned as the similarity simterms between two

HPO terms. This is defined as follows:

simterms

�
t; t

0� ¼ maxat˛AtXA
t
0 ICat ;

where At is the HPO term t and all ancestral HPO terms of t, and

at is the HPO term of the intersection of At and At0. The similarity

simcase_disease between a case and a disease reflects the resemblance

between their sets of HPO terms and is defined as follows:

simcase diseaseðc; dÞ ¼
P

t˛Tc
Rt 3maxt 0˛Td

simterms

�
t; t

0�

P
t˛Tc

Rt 3 ICt

;
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where c represents a case, d represents a disease, and Rt allows

users to assign weights ranging from 1 to 5 in accordance with

how important a term t is for the user. For this evaluation, we as-

signed 1 to Rt for any HPO terms. Tc and Td represent HPO terms

for a case and for a disease, respectively. PubCaseFinder provides

a ranked list of diseases according to simcase_disease, but the disease

with the fewest Td values becomes highest ranking in the case of

diseases with the same simcase_disease.
Results

Identifying Disease-Phenotype Associations from Case

Reports

We annotated titles and abstracts of 1,083,283 case reports

with HPO terms and ORDO terms and identified DPAs that

are co-occurrences of an ORDO term and an HPO term

within a sentence. As a result, 810,705 case reports were

annotated with 6,380 HPO terms, and 316,674 case reports

were annotated with 3,788 ORDO terms. From the anno-

tated case reports, we extracted 70,011 DPAs consisting

of 3,881 HPO terms and 3,072 ORDO terms. Note that

we also obtained 51,590 DPAs from Orphanet, which con-

sists of 4,832 HPO terms and 2,478 ORDO terms. Figure 3

shows the overlap between the two sets of ORDO terms

included in DPAs from case reports and from Orphanet.

We found that 1,483 ORDO terms were common to the

two data sources and that 1,589 ORDO terms included in

DPAs from case reports were not found in DPAs from

Orphanet.

Within the overlapping 1,483 ORDO terms, we

compared 40,512 DPAs from case reports with 35,172

DPAs from Orphanet. We regarded DPAs as the same if

their related HPO terms were located in the same part of

the ontology hierarchy. As a result, 5,217 DPAs were in

common, and 35,295 new DPAs were added to 1,483 rare

diseases included in DPAs from Orphanet. We also identi-

fied 29,499 DPAs for 1,589 rare diseases that are not

associated with a phenotype in Orphanet. In total, our

text-mining approach could identify 64,794 new DPAs

and increase the coverage of DPAs in Orphanet by 125.6%.
An Overview of PubCaseFinder

We implemented the algorithms described above in a web

application called PubCaseFinder (Figures 4A and 4B). In

addition to comparing an affected individual’s phenotypes

with rare diseases, a user can compare an affected individ-

ual’s phenotypes against published case reports that are

associated with their HPO terms (Figure 4C). On the basis

of the ranked lists of rare diseases and case reports, clini-

cians can discuss differential diagnoses for undiagnosed

individuals with suspected rare diseases. Users can also nar-

row down the ranked list of rare diseases to specify

the causative genes for rare diseases. PubCaseFinder

shows the context in which a DPA appears to confirm

detailed contextual information on the presence of DPAs

(Figure 4D). To keep up with new DPAs that are
ber 6, 2018



Figure 4. PubCaseFinder at a Glance and Integration of PubCaseFinder with IRUD Exchange and PhenomeCentral
Once a user types an affected individual’s phenotype in the search box, PubCaseFinder displays candidate HPO terms. This enables rapid
entry of HPO terms because users select appropriate HPO terms from the list (A). The affected individual is then compared with all rare
diseases in Orphanet on the basis of phenotypic similarity, and the ranked list of rare diseases is shown (B). The higher the phenotypic
similarity, the higher the displayed probability as a candidate disease. Users can also obtain a ranked list of published case reports in the
same manner (C). The context in which a DPA appears is useful for confirming detailed contextual information on the presence of
DPAs (D). This figure also shows the integration of PubCaseFinder with IRUD Exchange (a customized system of Patient Archive) (E)
and PhenomeCentral (F) via the PubCaseFinder application programming interface (API). The PubCaseFinder API is also developed as
the Matchmaker Exchange (MME) API.
continuously introduced in case reports, we equipped

PubCaseFinder with an automatic update system.

Currently, existing data-sharing and matchmaking ser-

vices for affected individuals lack methods for consulting

published case reports, so we integrated PubCaseFinder

with available services, namely IRUD (Initiative on Rare

and Undiagnosed Diseases) Exchange,36 which is a

customized system of Patient Archive37 (Figure 4E), and

PhenomeCentral38 (Figure 4F) in BioHackathon 2017.

IRUD is actively engaged in the diagnosis of individuals

with suspected rare diseases in Japan, and IRUD Exchange

is a customized system of the Patient Archive platform for

IRUD. PhenomeCentral is a portal for phenotypic and

genotypic matchmaking of individuals with suspected

rare genetic diseases. We developed a JSON-based REST

endpoint to query PubCaseFinder by using HPO terms

and Ensemble gene IDs and to return ranked lists of

rare diseases and case reports based on phenotypic

similarity. We also developed the Matchmaker Exchange
The American
(MME) application programming interface (API)39 as a

secondary querying option for PubCaseFinder. Using the

PubCaseFinder API and the MME API, we enabled the use

of PubCaseFinder in both IRUD Exchange (from Patient

Archive) and PhenomeCentral.

Performance Evaluation of PubCaseFinder

To evaluate the performance of PubCaseFinder as a pheno-

type-driven differential-diagnosis system, we collected

1,584 PhenomeCentral clinical cases, which were regis-

tered by the Care4Rare Canada Consortium. It turned

out only 243 cases out of them had both phenotypes and

diagnoses, the former represented by HPO terms and the

latter represented by MIM IDs. We used them as the test

cases of our evaluation. We converted all MIM IDs of the

cases to Orpha numbers by using connections between

MIM IDs and Orpha numbers in ORDO. To evaluate the

effect of DPAs form case reports, we compared the perfor-

mance of PubCaseFinder in three different settings: one
Journal of Human Genetics 103, 389–399, September 6, 2018 393
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Clinical cases of rare diseases were collected from PhenomeCentral
(step 1), and a ranked list of rare diseases based on phenotypic
similarity was obtained with PubCaseFinder for each clinical case
(step 2). The performance of PubCaseFinder was evaluated via
the ‘‘recall at ranks’’ metric (step 3).
with DPAs from Orphanet only (PubCaseFinder-O), one

with DPAs from case reports only (PubCaseFinder-CR),

and one with DPAs from both (PubCaseFinder-O and

-CR). For reference purposes, we included Phenomizer

and Orphamizer (a customized system of Phenomizer for

Orphanet) in our comparison because they were the

most comparative systems among phenotype-driven

differential-diagnosis systems. For the evaluation, we

compiled two exclusive sets of diseases as targets of differ-

ential diagnosis; one consisted of 2,323 diseases that were

associated with phenotypes in Orphanet and conse-

quently could potentially be targeted with PubCaseFinder,

Phenomizer, and Orphamizer (target A), and the other

consisted of 1,589 diseases that were not associated with

a phenotype in Orphanet (target B).

First, we evaluated the performance of PubCaseFinder

in the three different settings when targeting target A.

Figure 5 shows the evaluation process. The 135 cases (all

PhenomeCentral IDs are shown in Table S2) out of the

243 PhenomeCentral cases were used for this evaluation,

because they had diagnoses that belonged to target A.

The result of each run was obtained as a ranked list of dis-

eases (all results are shown in Table S3). They were repre-

sented in terms of ‘‘recall at ranks’’ (i.e., the fraction of

cases where the correct diagnosis appeared in the top-listed

diseases). Figure 6 shows the recall rates by PubCaseFinder

in the three settings (the recall numbers are shown in Ta-

ble 2). The top-10 recall rate of PubCaseFinder-O and -CR

is 57% (Figure 6), which means that there is a correct

diagnosis in the top 10 of a ranked list of 2,323

diseases for about one in every two cases. All recall rates

of PubCaseFinder-O and -CR are higher than those of

PubCaseFinder-O and PubCaseFinder-CR (Figure 6). The

top 50 recall rate of PubCaseFinder-O is lower than the

top 20 recall rate of PubCaseFinder-O and -CR, which
394 The American Journal of Human Genetics 103, 389–399, Septem
means that even if a user checks the top 50 diseases of

PubCaseFinder-O, the diagnostic rate is lower than when

that user checks the top 20 diseases of PubCaseFinder-O

and -CR. We also evaluated the statistical significance

of the appearance of a correct diagnosis in the top

10 with a binomial test and found that the p value of

PubCaseFinder-O and -CR was 4.01 3 10�144, whereas

those of PubCaseFinder-O and PubCaseFinder-CR were

2.833 10�108 and 4.893 10�33, respectively. Those results

clearly show the potential of DPAs from case reports to

improve the performance of phenotype-driven differen-

tial-diagnosis systems.

Let us take a running example. A clinical case from

PhenomeCentral had HP: 0000657 (Oculomotor apraxia),

HP: 0001263 (Global developmental delay), and HP:

0002066 (Gait ataxia) as the phenotypes, which were diag-

nosed with ORDO: 2318 (Joubert syndrome with oculore-

nal defect). PubCaseFinder-O could place ORDO: 2318

only at the 41st rank because the association between it

and HP: 0000657 was missing in the DPAs from Orphanet.

However, the association existed in the DPAs from case re-

ports, and PubCaseFinder-O and -CR could place it at the

5th rank.

Moreover, we compared the performance of

PubCaseFinder-O and -CR to that of Phenomizer and

Orphamizer by using the 135 cases with target A (all results

are shown in Table S3). Figure 7 shows the recall rates of

the three systems (the recall numbers are shown in Table

2). Note, however, that the comparison should be taken

only for a reference purpose for at least two reasons. First,

Phenomizer is based on the OMIM ID system, whereas

the other two are based on the ORDO ID system, and the

two ID systems are not directly comparable to each

other. Second, the development stages of the three

systems are all different: Phenomizer is a mature system,

PubCaseFinder is entering into a production stage, and

Orphamizer is at a development stage.

Second,we evaluated theperformanceof PubCaseFinder-

CRwhen targeting target B.Wenarroweddown243 cases of

PhenomeCentral to 59 cases whose diagnoses were part of

the target B. For the 59 cases (all PhenomeCentral IDs are

shown in Table S2), we obtained ranked lists of target B by

using PubCaseFinder-CR (all results are shown in Table S4)

and then calculated recalls on the basis of the results.

PubCaseFinder-CR showed the recall number (rate) as fol-

lows: 2 (3.4%) in the top 1, 3 (5.1%) in the top 5, 5 (8.5%)

in the top 10, 6 (10.2%) in the top 20, 13 (22.0%) in the

top 50, and 24 (40.7%) in the top 100 (Figure 8). We

evaluated the statistical significance of the appearance of

a correct diagnosis in the top 10 by using a binomial test

and found a p value of 3.72 3 10�5. Although Figure 8

highlights the low recall rates of PubCaseFinder-CR, the

p value shows the potential of PubCaseFinder for differen-

tial diagnosis of rare diseases that were not associated

with a phenotype in Orphanet. Note that the recall

rates of PubCaseFinder-CR for target B were lower than

those of PubCaseFinder-CR for target A even though they
ber 6, 2018



Figure 6. Performance Comparison of
ThreeDifferent Settings of PubCaseFinder
Recalls were calculated on the basis of
ranked lists of 2,323 rare diseases for 135
clinical cases from PhenomeCentral.
both exploited DPAs from case reports. Examining the

number of associated DPAs from case reports for target A

and target B revealed that, on average, each disease in

target-A had 27.3 DPAs, whereas each disease in target B

had 18.6 DPAs. Our interpretation is that the difference in

recall rates is caused by the difference of the number of

associated DPAs.

Filtering of Unreliable Disease-Phenotype Associations

In a previous study, Tudor et al.40 also tried to extract DPAs

for common diseases from papers in PubMed, and they

suggested ignoring low frequency occurrences to filter

out potentially noisy DPAs. This method is often used

and is based on the hypothesis that if two entities are

frequently mentioned together, it is likely that they are

related.24 However, we found that most DPAs identified

in this study appeared in few case reports. Figure 9 shows

the distribution of DPA numbers from case reports accord-

ing to frequencies of occurrence in case reports. More than
Table 2. Recall Numbers by Phenomizer, Orphamizer, and Three Different Settings of PubCas

Differential-Diagnosis
System

Top-1 Recall
Number (Rate)

Top-5 Recall
Number (Rate)

Top-10 Recall
Number (Rate)

Top-20 Rec
Number (Ra

PubCaseFinder (with DPAs
from Orphanet)

19 (14.1%) 40 (29.6%) 62 (45.9%) 71 (52.6%)

PubCaseFinder (with DPAs
from Case Reports)

11 (8.1%) 20 (14.8%) 25 (18.5%) 35 (25.9%)

PubCaseFinder (with DPAs
from Orphanet and Case
Reports)

20 (14.8%) 63 (46.6%) 77 (57.0%) 87 (64.4%)

Phenomizer 22 (16.3%) 46 (34.1%) 63 (46.7%) 84 (62.2%)

Orphamizer 12 (8.9%) 31 (23.0%) 42 (31.1%) 49 (36.3%)
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half of DPAs appeared in only one

case report, and the ratio of DPAs

that appeared in multiple case reports

was only �34.0%. Using the 135 clin-

ical cases from PhenomeCentral, we

calculated the top-10 recall rate of

PubCaseFinder that exploits each set

of DPAs filtered by their frequencies

of occurrence in case reports (Figure 9;

all results are shown in Table S5). The

top-10 recall rates gradually decreased

from 57.0% to 49.6% when the fre-

quency of DPA occurrence increased.

That is, this indicates that not filtering

out DPAs by their frequencies of

occurrence improves the performance
of PubCaseFinder. We therefore chose not use frequencies

of occurrence to filter out DPAs from case reports.

Discussion

To speed up the differential-diagnosis process on the basis

of symptoms and signs observed from affected individuals,

researchers have developed and implemented phenotype-

driven differential-diagnosis systems for rare diseases. The

performance of these systems is influenced by the quantity

and quality of underlying DPA databases. We found that

the limited coverage of manually curated databases was a

major problem that hindered the further progress of auto-

mated differential diagnosis. To address the problem, we

developed a text-mining approach to extend the coverage

of DPAs in manually curated databases such as Orphanet.

By applying the approach to a million case reports from

PubMed, we could increase the coverage of DPAs from

Orphanet more than two times. By using this extended
eFinder

all
te)

Top-50 Recall
Number (Rate)

Top-100 Recall
Number (Rate)

84 (62.2%) 91 (67.4%)

53 (39.3%) 80 (59.3%)

96 (71.1%) 104 (77.0%)

99 (73.3%) 111 (82.2%)

63 (46.7%) 68 (50.4%)
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Figure 7. Performance Comparison of
PubCaseFinder (using DPAs from Orpha-
net and Case Reports), Phenomizer, and
Orphamizer
Recalls were calculated on the basis of
ranked lists of 2,323 rare diseases for 135
clinical cases from PhenomeCentral.
DPA database, we also developed PubCaseFinder, a new

phenotype-driven differential-diagnosis system. A series

of experiments that was conducted with clinical cases

from PhenomeCentral showed that the performance of

phenotype-driven differential diagnosis could be substan-

tially improved thanks to the extension of the DPA

database.

Note that automatic text-mining techniques are often

regarded as assistive tools to help manual curation of data-
396 The American Journal of Human Genetics 103, 389–399, September 6, 2018
bases because of the potentially high

chance of noisy results in such

manual curation. Our techniques us-

ing text mining to automatically

extract DPAs also included noisy re-

sults, but they included many new

DPAs that were not obtained by

manual curation of Orphanet.

Figure 6 shows that the performance

of PubCaseFinder was much lower

when automatically extracted DPAs

were used independently. However,

we could regard them as useful sup-

plementary information for manually
curated DPAs because the performance was highest when

both were used in combination. Manual curation is the

best approach for obtaining correct DPAs, but our pro-

posed approach using text mining techniques is practically

useful because manual curation will take enormous time

and cost, particularly when one considers the large volume

and rapid growth of case reports.

ForannotationwithHPOtermsandORDOterms,weused

ConceptMapper, which was reported as a state-of-the-art
Figure 8. Recalls of PubCaseFinder for
Rare Diseases Not Included in Disease-
Phenotype Associations from Orphanet
Recalls were calculated on the basis of the
ranked lists of 1,589 rare diseases via Pub-
CaseFinder for 59 clinical cases from
PhenomeCentral.



Figure 9. Distribution of Numbers of
Disease-Phenotype Associations from
Case Reports and Top-10 Recall Rates
For each set of DPAs ordered according to
the frequency of occurrence in case reports,
we counted the number of DPAs and calcu-
lated the top-10 recall rate to evaluate the
performance of PubCaseFinder from the
set of DPAs. Bars indicate case reports, and
a solid line indicates top 10 recall rates.
concept-recognition system among publicly available ones.

Recently, Bio-LarK,whichwas also a concept recognizer spe-

cifically tailored to annotating HPO terms, has become a

publicly available system. A previous study showed that

Bio-LarK was benchmarked with both the gold standard

and the test suite corpora for HPO and outperformed other

concept recognizers.41 Because our approach does not rely

on a specific concept recognizer, we are planning to seek a

further performance improvement by finding and adopting

a more optimal concept recognizer.

In clinical practice, a specific phenotype canbe extremely

prominent or severe; thus, we used the GeneYenta algo-

rithm, which allows users to set a matching weight for

each phenotype.33 However, we always assigned the same

weights to HPO terms in this evaluation in order to only

evaluate the contribution of automatically extracted DPAs

from case reports for improving the automated differential

diagnosis. In future work, we are planning to modify the

user interface of PubCaseFinder to make users set weights

to HPO terms; setting weights will empower users to

leverage their expertise andknowledge to customize results.

Our experiment and discussion on the filtering of unreli-

able DPAs suggest that a simple filtering method based on

the frequencyofoccurrencewillnotworkwell for automated

differential analysis of rare diseases, although itwas reported

to be effective for common diseases. We attribute this to the

fact that data for rare diseases are by nature much less

available than those of common diseases. As a future work,

we are planning to develop a much more sophisticated

filtering method, such as using a negation detector.42
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Supplemental Data include five tables and can be found with this
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Web Resources

BioHackathon2017, http://2017.biohackathon.org

Care4Rare Canada Consortium, http://care4rare.ca

CCP NLP pipelines, https://github.com/UCDenver-ccp/ccp-nlp-

pipelines

EBI, https://www.ebi.ac.uk

FACE2GENE, https://www.face2gene.com

Human Phenotype Ontology consortium, http://human-phenotype-

ontology.github.io

ICD10, http://www.who.int/classifications/icd/icdonlineversions/en/

MetaMap, https://metamap.nlm.nih.gov

MME API, https://github.com/ga4gh/mme-apis

NCBO Annotator, https://bioportal.bioontology.org/annotator

negation-detection, https://github.com/gkotsis/negation-detection

OMIM, https://www.omim.org

Orphamizer, http://compbio.charite.de/phenomizer_orphanet

Orphanet, http://www.orpha.net/consor/cgi-bin/index.php/

Orphanet Rare Disease Ontology, http://www.orphadata.org/cgi-

bin/inc/ordo_orphanet.inc.php/

Patient Archive, http://www.patientarchive.org
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Phenolyzer, http://phenolyzer.wglab.org

Phenomizer, http://compbio.charite.de/phenomizer/

PubMed, https://www.ncbi.nlm.nih.gov/pubmed/

PubCaseFinder, https://pubcasefinder.dbcls.jp/

PubCaseFinder API, https://pubcasefinder.dbcls.jp/mme

PhenomeCentral, https://www.phenomecentral.org
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