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A One-Penny Imputed Genome
from Next-Generation Reference Panels

Brian L. Browning,1,2,* Ying Zhou,2 and Sharon R. Browning2

Genotype imputation is commonly performed in genome-wide association studies because it greatly increases the number of markers

that can be tested for association with a trait. In general, one should perform genotype imputation using the largest reference panel

that is available because the number of accurately imputed variants increases with reference panel size. However, one impediment to

using larger reference panels is the increased computational cost of imputation. We present a new genotype imputation method, Beagle

5.0, which greatly reduces the computational cost of imputation from large reference panels. We compare Beagle 5.0 with Beagle 4.1,

Impute4, Minimac3, and Minimac4 using 1000 Genomes Project data, Haplotype Reference Consortium data, and simulated data for

10k, 100k, 1M, and 10M reference samples. All methods produce nearly identical accuracy, but Beagle 5.0 has the lowest computation

time and the best scaling of computation time with increasing reference panel size. For 10k, 100k, 1M, and 10M reference samples and

1,000 phased target samples, Beagle 5.0’s computation time is 33 (10k), 123 (100k), 433 (1M), and 5333 (10M) faster than the fastest

alternative method. Cost data from the Amazon Elastic Compute Cloud show that Beagle 5.0 can perform genome-wide imputation

from 10M reference samples into 1,000 phased target samples at a cost of less than one US cent per sample.
Introduction

Genotype imputation uses a reference panel of phased,

sequenced individuals to estimate sequence data in target

samples that have been genotyped on a SNP array.1,2 Impu-

tation of ungenotyped markers is a standard tool in

genome-wide association studies because it greatly in-

creases the number of markers that can be tested for asso-

ciation with a trait. Genotype imputation also provides a

foundation for meta-analysis of genome-wide association

studies because it converts data for samples that have

been genotyped on different SNP arrays into genotype

data for a shared set of sequence variants. Meta-analyses

based on genotype imputation have discovered thousands

of new genetic associations.3

The reference panel plays the primary role in deter-

mining the accuracy of imputed variants. Imputation

accuracy for a variant generally increases with increasing

reference panel size, and variants must be present in the

reference panel in order to be accurately imputed.4,5

Consequently, whenever a significantly larger reference

panel becomes available, it is advantageous to re-impute

target samples with the larger panel for subsequent

analysis.

The value of larger reference panels has led to steadily

increasing reference panel size, with the largest reference

panels to date having tens of thousands of samples.6–12

Ongoing, large-scale projects, such as the Trans-Omics for

Precision Medicine (TopMed) program13 and the National

Human Genome Research Institute’s Centers for Common

Disease Genomics (see Web Resources), are expected

to produce reference panels with more than 100,000

individuals.
1Department of Medicine, Division of Medical Genetics, University of Washi

Washington, Seattle, WA 98195, USA

*Correspondence: browning@uw.edu

https://doi.org/10.1016/j.ajhg.2018.07.015.

338 The American Journal of Human Genetics 103, 338–348, Septem

� 2018 American Society of Human Genetics.
Increasing reference panel size increases the computa-

tional cost of imputation, and this increasing cost hasmoti-

vated the development of many new computational

methods and optimizations. Current imputation methods

are able to make use of a rich palette of computational tech-

niques, including the use of identity-by-descent,6,14,15

haplotype clustering,4,16 and linear interpolation5 to reduce

the model state space, the use of pre-phasing to reduce

computational complexity,14,17,18 and the use of specialized

reference file formats to reduce file size and memory foot-

print.4,5,19 The techniques developed thus far have made it

possible to provide imputation using reference panels with

tens of thousands of individuals as a free web service.4

However, the total computational cost of imputation is

substantial and increasing. Millions of individuals have

been genotyped on SNP arrays and it is probable that mil-

lions more will be genotyped in the future. A sample may

be re-imputed to a current state-of-the-art reference panel

each time it is analyzed or included in a meta-analysis.

The increasing size of reference panels increases the per-

sample cost of re-imputation. If the past exponential

growth in reference panel size continues, reference panels

could have tenmillion individuals within a decade.6,7,10–12

In this paper, we present new methodology that reduces

the computational cost of genotype imputation 500-fold

when imputing from 10M reference samples, and we use

the Amazon Elastic Compute Cloud to show that the

new methodology can impute genotypes from 10M refer-

ence samples into 1,000 phased target samples for a cost

of less than one US penny per sample.

The computational performance of our method is made

possible by combining previous advances with several

methodological improvements and innovations. Our
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imputation method uses a Li and Stephens haplotype fre-

quency model,2,20 with a highly parsimonious model state

space that is a fraction of the size of the state space of the

full Li and Stephens model. We employ a pre-processing

step to reduce the full reference panel into a small number

of composite reference haplotypes, each of which is a

mosaic of reference haplotypes. In addition, we decouple

probability calculations at genotyped and ungenotyped

markers, which enables us to further reduce the number

of state probabilities that must be calculated and stored.

We also make use of recent advances in simulation

methods21 and inference of historical effective population

size22 to generate a simulated dataset that is much larger

and more realistic than simulated data used in previous

work.5 In large reference panels, many markers will be

multi-allelic, and our simulation allows for multi-allelic

markers, recurrent mutation, and backmutation.We simu-

late 10M reference samples and 1,000 target samples from

a population whose growth rates and demographic param-

eters are modeled on the UK European population.

Our new imputation method is freely available and im-

plemented in the open source Beagle 5.0 software package

(see Web Resources).
Material and Methods

Imputation Methods
We assume that the reference and target genotypes are phased and

non-missing. This reduces the computational complexity of impu-

tation from quadratic to linear in the size of the reference panel,

and it simplifies the imputation problem to imputing missing

alleles on a haplotype.17

We use the term ‘‘reference markers’’ to refer to markers that are

genotyped in the reference panel, the term ‘‘target markers’’ to

refer to the markers that are genotyped in the target samples,

and the term ‘‘imputed markers’’ to refer to markers in the refer-

ence panel that are not genotyped in the target samples. We as-

sume that the target markers are a subset of the reference markers.

Genotype imputation is based on identity by descent (IBD). Two

chromosome segments that are inherited from a common

ancestor without recombination since the common ancestor are

said to be inherited identical by descent. In an IBD segment, the

two chromosomes will have identical allele sequences except at

sites that have mutated in one of the lineages since the common

ancestor. We can use the genotypes at the target markers to iden-

tify long IBD segments that a target haplotype shares with the

reference haplotypes. If an IBD segment is accurately identified,

the ungenotyped alleles in the IBD segment in the target haplo-

type can be copied from the IBD segment in the reference haplo-

type. Since there is uncertainty in inferring IBD, a probabilistic

model is used to account for the uncertainty and to produce a pos-

terior probability for each possible allele at an imputed marker on

the target haplotype. This probabilistic model is typically a hidden

Markov model (HMM).23

Hidden Markov Model
Our imputation method is based on the Li and Stephens20 HMM.

Since the Li and Stephens model has been described many

times,1,2,4,5,24 we provide only a brief description here.
The American
In the Li and Stephens model, the HMM state space is a matrix

of reference alleles, whose rows are reference haplotypes and

whose columns are markers. Each HMM state is an entry of the

matrix defined by the reference haplotype (row) and marker (col-

umn), and each HMM state is labeled with the allele carried by the

reference haplotype at the marker.

In imputation with the Li and Stephens model, we assume that

the target haplotype corresponds to an unobserved path through

the HMM state space from the first marker to the last marker that

includes one state at eachmarker. TheHMMand the observed data

on the target haplotype determine a probability distribution on

the paths. The HMM forward-backward algorithm23 is used to

calculate the probability that the unobserved path passes through

a HMM state (the state probability). At eachmarker, the sum of the

probabilities of the states labeled with an allele is the imputed

probability for that allele.

A HMM is defined by its state space, initial probabilities, transi-

tion probabilities, and emission probabilities. The Li and Stephens

HMM state space is the set of all ordered pairs (h, m) whose first

element is a reference haplotype and whose second element is a

reference marker. We label the reference haplotypes, H, with

indices 1, 2, ., jH j , and we label the list of reference markers in

chromosome order, M, with 1, 2, ., jM j , where j, j denotes the

size of the list.

We assign an initial probability of 1=jH j to each state at the

first marker. State transitions are permitted from any state at a

marker to any state at the next marker. In the Li and Stephens

model used by Impute2 and Beagle,5 the state transition proba-

bilities between marker m � 1 and marker m are defined in

terms of the effective population size Ne, the genetic

distance dm in Morgans between markers m � 1 and m, and

the number of reference haplotypes jH j . If the HMM state at

marker m � 1 is on reference haplotype h then with probability

tm ¼ 1� e�4Nedm=jH j , a historical recombination event will cause

the HMM state at marker m to be randomly chosen from the jH j
reference haplotypes.2 Otherwise (with probability 1� tm), the

HMM state at marker m is required to stay on the same reference

haplotype. Consequently, the probability that a state (h, m � 1)

transitions to state (h, m) is ð1� tmÞþ tm=jH j , and the probabil-

ity that the state (h, m � 1) transitions to state ðh0
;mÞ with h

0
sh

is tm=jH j .
We define emission probabilities in terms of an error rate ε

(0.0001 by default). Each state (h, m) emits the allele carried by

reference haplotype h at marker m with probability ð1� εÞ and

emits a different allele with probability ε.

Our method uses several modifications of this basic Li and Ste-

phens HMM that are used in the Beagle 4.1 imputation method:

aggregate markers, restriction of the HMM to the target markers,

and a long slidingmarker window.5We briefly describe thesemod-

ifications next.

As in Beagle 4.1, we collapse tightly linked target markers within

0.005 cM into a single aggregate marker whose alleles are the se-

quences of alleles at the constituent markers. For an aggregate

marker comprised of l markers, the genetic map position is the

mean genetic position of the first and last markers, and the prob-

ability that a HMM state emits a different haplotype is lε since the

emission of a different allele at any of the l constituent markers

will cause a different haplotype to be emitted.5

We initially include only target markers in the HMM. After

computing state probabilities at the target markers, we use linear

interpolation on genetic distance to estimate HMM state probabil-

ities at each imputed marker.5
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Figure 1. Composite Reference Haplotypes
Long haplotype segments with identical allele sequences are
shown with the same color and pattern. The target haplotype
shares five segments of identical alleles with the reference haplo-
types. The two composite reference haplotypes are each a mosaic
of reference haplotypes, with themosaics chosen so that the target
haplotype also shares five segments of identical alleles with the
composite reference haplotypes. This permits the two composite
reference haplotypes to be used in place of the four original refer-
ence haplotypes.
Finally, we use a long slidingmarker window (40 cM by default),

with substantial overlap between adjacent windows (4 cM by

default). The sliding marker window limits the data stored in

memory when imputing entire chromosomes. Markers in the

overlap between two adjacent windows will be imputed twice

(once in each window). Since imputation accuracy is expected to

increase with distance from a window boundary, we discard the

imputed value from the window in which the position is closer

to the window boundary.

Computational Methods
Beagle 5.0 also incorporates three additional computational

innovations beyond those inherited from Beagle 4.1: composite

reference haplotypes, imputation on output, and an improved

reference file format (bref3 format).

Composite Reference Haplotypes

One approach to reducing computation time for imputation is to

reduce the size of the HMM state space by using only a subset

of reference haplotypes when imputing a target haplo-

type.14,15,18,24 If the subset contains the reference haplotypes

that share the longest IBD segments with the target haplotype at

each position, then the subset can yield the same imputation ac-

curacy as the full set of reference haplotypes.6

Previous methods for selecting a target-specific set of reference

haplotypes6,14,15 have required pre-specifying a short marker win-

dow (typically with length % 5 cM) and selecting a target-specific

set of reference haplotypes for the short window based on Hamm-

ing distance between reference and target haplotype in the win-

dow,14 Hamming distance in subintervals of the window,15 or

IBS segment length.6 If the marker window is too long, computa-

tional efficiency is reduced because the size of the subset must be

increased in order to contain additional reference haplotypes that

share long IBD segments with the target haplotypes in the larger

window. However, if the marker window is too short, imputation

accuracy is reduced because IBD segments are truncated by the
340 The American Journal of Human Genetics 103, 338–348, Septem
window boundaries. We present an example of this loss of accu-

racy in the Results section.

We have developed amethod that allows imputation to use long

marker windows and a small HMM state space. Instead of a using a

target-specific set of reference haplotypes to construct the HMM

state space, we use a target-specific set of composite reference hap-

lotypes, where each composite reference haplotype is a mosaic of

reference haplotype segments (Figure 1).

By construction, each haplotype segment in a composite refer-

ence haplotype will contain a long interval in which the segment

and the target haplotype have identical alleles at the target

markers. These intervals are called identity by state (IBS) segments.

One can generally expect each long IBS segment to contain at least

one long IBD segment. A relatively small number of composite

reference haplotypes can be used with large marker windows

because each composite reference haplotype contains many long

IBS segments.

We give an informal description of composite reference haplo-

type construction followed by a more precise description using

pseudocode. There are a fixed number of composite reference hap-

lotypes (1,600 by default), and we construct these composite refer-

ence haplotypes one haplotype segment at a time as we work

through the marker window in chromosome order. As each

segment is identified, it is added to one of the composite reference

haplotypes. As we work through the marker window, we keep

track of the staleness of each composite reference haplotype,

which is the distance between the current position and the com-

posite reference haplotype’s last IBS segment. When we add a

new haplotype segment, we add it to the most stale composite

reference haplotype.

Constructing Composite Reference Haplotypes

In order to ensure that the haplotype segments in the composite

reference haplotypes cover the entire marker window and to facil-

itate parallel computation, we divide the marker window into

consecutive, non-overlapping intervals I1, I2, ., IK of fixed length

(0.1 cM length by default). In each interval Ik, we select a set Sk of

reference haplotypes that are identical by state with the target

haplotype. Each Sk can contain at most s elements (we describe

how s is determined in Appendix A). We want to preferentially

select haplotypes for Sk that have longer IBS segments, and we

do this by considering seven (by default) consecutive intervals

beginning with Ik. We add reference haplotypes to Sk that are IBS

with the target haplotype in seven consecutive intervals, six

consecutive intervals, and so on, until Sk has size s or until we

have added all haplotypes that are identical by state in Ik. All the

reference haplotypes and associated IBS segments in the Sk will

be included in the composite reference haplotypes.

Pseudocode for construction of the composite reference haplo-

types is given in Figure 2. In the pseudocode, the segments

comprising each composite reference haplotype are defined by a

list of starting markers mi and a list of haplotypes hi. The ith

segment will copy haplotype hi, starting with marker mi and

ending with marker miþ1 � 1 (or ending with the last marker in

the window if the ith segment is the last segment). We add one

segment at a time by adding a starting marker m and a haplotype

h to the starting marker and haplotype list of a composite refer-

ence haplotype.

In the pseudocode, L[j] keeps track of the staleness of the jth

composite reference haplotype. L[j] stores the index of the last Sk
that contained themost recent haplotype added to the jth compos-

ite reference haplotype. If Ik is the current interval being processed,

and we want to add a new segment to the jth composite reference
ber 6, 2018



Figure 2. Pseudocode for Constructing
Composite Reference Haplotypes
haplotype, we set the starting point of the segment to a position

approximately mid-way between intervals IL[j] and Ik.

Imputation on Output

Our previous genotype imputation method (Beagle 4.1) calculates

imputed allele probabilities for each individual immediately after

calculating HMM state probabilities at the target markers.5 Beagle

5.0 postpones calculation of imputed allele probabilities until the

output VCF file is constructed. This reduces memory requirements

because imputation can be performed in short chromosome inter-

vals with the results immediately written to the output VCF file. In

our experience, imputing short chromosome intervals has the

added benefit of reducing computation time, which may be a

consequence of improved spatial and temporal locality of data

in memory.

As in Beagle 4.1, we estimate the HMM state probabilities at

imputed markers using the two HMM state probabilities at the

bounding target markers and linear interpolation on genetic dis-

tance, andwe combine all reference haplotypes that have identical

allele sequences in the interval before performing linear interpola-

tion.5 Once the state probabilities are interpolated, the posterior

probability for a particular allele is the sum of the state probabili-

ties at the marker for the reference haplotypes that carry the allele.

The key point is that the state probabilities at all imputed markers

between two genotyped markers are obtained from the state prob-

abilities at the bounding genotyped markers. Consequently, by

storing state probabilities at consecutive markers, we can perform

imputation as the VCF output file is constructed.

In practice, only a small subset of the state probabilities at

consecutive markers needs to be stored. We store state probabili-

ties at consecutive markers for a reference haplotype only if one

of the state probabilities is >1/J, where J is the number of compos-

ite reference haplotypes, or equivalently the number of HMM

states at the marker. If state probabilities at consecutive markers

are not stored for a reference haplotype, they are assumed to be

0 when performing imputation.

Bref3 Format

Previously we developed a specialized file format for reference

panel data called binary reference (bref) format.5 In bref format,
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a chromosome is broken into consecutive,

non-overlapping intervals. If the non-ma-

jor alleles of a marker are rare, bref format

stores the indices of the haplotypes that

carry each non-major allele. For all remain-

ing markers in an interval, bref stores the

distinct allele sequences and a pointer

from each haplotype to the allele sequence

carried by the haplotype at these markers.

This reduces memory requirements

because the number of distinct allele se-

quences is typically much less than the

number of haplotypes.

Beagle 5.0 uses a new version of bref

format (bref3) that reduces imputation

time relative to the preceding version

(bref v2). bref3 uses two bytes to store a

haplotype’s allele sequence index in a
chromosome interval (bref v2 uses one byte). This permits bref3

to store allele sequences that extend over much longer chromo-

some intervals, which provides greater compression for large refer-

ence panels. In addition, bref3 does not gzip compress the binary

reference file (bref v2 files are gzip compressed). This eliminates

the computation time required for gzip decompression.

Table 1 reports file size for four reference file formats: gzip-com-

pressed vcf file, gzip-compressed m3vcf,4 bref v2,5 and bref3 for

10k, 100k, 1M, and 10M simulated UK European reference sam-

ples. m3vcf format is similar to bref format, except that m3vcf

format stores distinct allele sequences for all markers instead of

only higher-frequency markers. These results show that bref3

scales better than bref v2 and gzip-compressed m3vcf with

increasing reference panel size, and that bref3 achieves much

greater compression than gzip compression.
Data
We compared methods using 1000 Genomes Project11 chromo-

some 14 and chromosome 20 data, Haplotype Reference Con-

sortium12 chromosome 14 and chromosome 20 data, and

simulated data for 10k, 100k, 1M, and 10M reference samples.

The average recombination rates on chromosomes 14 and 20 are

1.12 cM/Mb and 1.72 cM/Mb, respectively, in the HapMap genetic

map, which span nearly the entire range of average recombination

rates for chromosomes (1.09–1.82 cM/Mb) in this map.8

Summary statistics for the six reference panels are given in

Table 2.

1000 Genomes Project Data

We downloaded the publicly available 1000 Genomes Project

phase 3 version 5a data. The 1000 Genomes data contain 2,504 in-

dividuals with phased sequence data from 26 populations.11 We

randomly selected two individuals from each population (52 total)

to be the imputation target. The remaining 2,452 individuals were

the reference panel. We restricted the 1000 Genomes reference

and target data to diallelic SNVs having at least one copy of themi-

nor allele in the reference panel. After this marker filtering there

were 2,508,019 markers on chromosome 14 and 1,718,742
ics 103, 338–348, September 6, 2018 341



Table 1. Memory (GB) Required by Reference File Formats

n vcf.gz m3vcf.gz bref v2 bref3

10k 0.045 0.011 0.006 0.017

100k 0.51 0.12 0.064 0.11

1M 7.9 1.9 0.7 0.7

10M 140.0 – 7.8 4.8

Number of gigabytes required to store 10 Mb of reference sample data for 10k,
100K, 1M, and 10M simulated UK European reference samples stored in vcf.gz,
m3vcf.gz, bref v2, and bref3 formats. A dash (–) indicates that the compression
could not be performed due to time and memory constraints.
markers on chromosome 20. In the target samples, we masked

markers that were not on the Illumina Omni2.5 array, resulting

in 72,973 target markers on chromosome 14 and 54,885 target

markers on chromosome 20.

Haplotype Reference Consortium Data

The publicly available Haplotype Reference Consortium (HRC)

data were downloaded from the European Genome-Phenome

Archive25 at the European Bioinformatics Institute (accession

EGAD00001002729). The HRC data include 27,165 individuals

with phased SNV genotypes, primarily from low-coverage

sequencing. The chromosome 14 HRC data consist of 1,270,436

SNVs at 1,265,969 distinct positions, and the chromosome 20

HRC data consist of 884,983 SNVs at 882,742 distinct positions.

Some positions have multiple SNVs because in the publicly avail-

able VCF file, multi-allelic markers are represented as multiple dia-

llelic SNV markers at the same position. Since the HRC panel is

predominantly European, we randomly selected 1,000 individuals

from the constituent UK10K study6 to be the imputation target.

The remaining 26,165 individuals were the reference panel. We

report computation time for imputation into 10, 100, and 1,000

target samples. After excluding monomorphic markers in the

reference samples, there were 1,240,379 SNVs at 1,236,165 unique

positions on chromosome 14 and 864,376 SNVs at 862,298

unique positions on chromosome 20. In the target samples, we

masked markers that were not on the Omni2.5 array or which

had more than one ALT allele in the reference samples, resulting

in 72,886 target markers on chromosome 14 and 55,013 target

markers on chromosome 20.

Simulated Data

Weused themsprimeprogram21 (SupplementalData) to simulate10

Mb of sequence data for 10,001,000 diploid samples with a demo-

graphic history modeled on the UK European population. Recent

growth rates for the UK European effective population size were ob-

tained from the IBDNe program.5 We created four reference panels

with 10k, 100k, 1M, and 10M samples by selecting the first 10k,

100k, 1M, and 10M simulated samples. The last 1,000 simulated

samples became the imputation target. We report computation

time for imputation into 10, 100, and 1,000 target samples.

Sincemsprime simulates diallellic variants, we devised a strategy

for simulating multi-allelic single-nucleotide variants which per-

mits recurrent and back mutation. When running msprime, we

increased the length of the 10 Mb simulated region by a factor

of 100 and decreased the mutation rate and recombination rate

by a factor of 100. After generating data with msprime, we divided

the simulated region into non-overlapping 100 base pair windows

and collapsed the VCF records in the kth window into a single

genomic position whose position was k. In each 100 base pair win-

dow, we reconstructed the phylogenetic binary tree for the haplo-

types in the window from the alleles carried by the haplotypes in
342 The American Journal of Human Genetics 103, 338–348, Septem
the window. At each mutation event in the phylogenetic tree, we

randomly chose a new allele from the three possible new alleles,

and the haplotypes in each leaf of the tree were assigned the allele

inherited by that leaf.

We randomly selected 3,333 diallelic variants having minor

allele frequencyR 0.05 to be the genotyped markers in the impu-

tation target samples. The resulting targetmarker density (1marker

per 3.3 kb) corresponds to a 1M SNP array in humans.

We also created one chromosome-scale reference panel by mak-

ing 30 copies of the 10M sample reference panel and shifting each

copy by a multiple of 10 Mb. We used this large reference panel to

explore the computational performance of our imputation

method when imputing a long 300 Mb chromosome from 10M

reference samples.
Comparison of Methods
We compared the imputation accuracy and the computation time

of our imputation method with four recent versions of three pub-

lished imputation methods: Beagle 4.1 (27Jan18.7e1),5 Impute4

r265.2,14,17,18,26 Minimac3 v2.0.1,4,17 and Minimac4 v1.0.0

(S. Das et al., 2015, Am. Soc. Hum. Genet., abstract #1278W).

Weuseddefault parameters for eachprogram, exceptwhenother-

wise noted.When running Impute4, we used the no_maf_align op-

tion because strand alignment of reference and target variants was

not needed. Impute4 requires specification of the analysis region,

which was the entire chromosome or 10 Mb simulated region,

except for the HRC reference panel. For the HRC Impute4 analysis,

we split chromosome 14 and chromosome 20 into two analysis re-

gions with 250 kb overlap (the default Impute4 buffer parameter)

inorder toperform imputationwithin the available computermem-

ory. For Beagle 4.1, we increased the window parameter so that the

imputation analysis used a single marker window, except for the

simulated 10M reference panel. For the 10M reference panel, Beagle

4.1 used amarkerwindowof 1,400,000markers (z4.45 cM)with an

overlap of 315,000 markers (z1 cM) between adjacent windows in

order to run within the available computer memory.

Beagle and Impute require a user-specified geneticmap.We used

the HapMap2 genetic map27 for analyses with real data, and we

used the true genetic map for analyses with simulated data. Mini-

mac does not require a genetic map because recombination pa-

rameters are estimated and stored when producing the m3vcf

format input file for the reference data.4,24

Beagle 4.1, Beagle 5.0, Minimac3, andMinimac4 were run using

their specialized formats for reference panel data: bref v25 for

Beagle 4.1, bref3 for Beagle 5.0, and m3vcf4 for Minimac3 and

Minimac4. We used Minimac3 to construct the m3vcf files. We

succeeded in creating an m3vcf reference file for 1M reference

samples by borrowing a compute node with 1 TB of memory,

but we were unable to create an m3vcf reference file for the largest

10M reference panel due to time and memory constraints.

We report the squared correlation (r2) between the true number

of non-major alleles on a haplotype (0 or 1) and the posterior

imputed allele probability. Since there is little information to esti-

mate squared correlation for an individual marker when minor

allele counts are low, we binned imputed minor alleles according

to the minor allele count in the reference panel, and we calculated

r2 for the imputed minor alleles in each minor allele count bin.

All imputation analyses were run on a dedicated 12-core

2.6 GHz computer with Intel Xeon E5-2630v2 processors and

128 GB of memory, except where otherwise noted. We evaluated

one program at a time using 1 and 12 computational threads.
ber 6, 2018



Table 2. Summary Statistics for Reference Panels Used in This Study

Reference Panel n Length (Mb) Markers Density (SNVs/kb) Tri-allelic (%) Quad-allelic (%)

1000 Genomes (chr 14) 2,452 107.3 2,508,019 23.4 0.0 0.0

1000 Genomes (chr 20) 2,452 62.9 1,718,742 27.3 0.0 0.0

HRC (chr 14) 26,165 107.3 1,236,165 11.5 0.34 0.00049

HRC (chr 20) 26,165 62.9 862,298 13.7 0.23 0.00058

Sim10k 10k 10.0 88,124 8.8 1.1 0.0057

Sim100k 100k 10.0 352,091 35.2 3.6 0.033

Sim1M 1M 10.0 1,210,904 121.1 10.0 0.29

Sim10M 10M 10.0 3,145,425 314.5 19.8 1.4
For the single-threaded analyses, we report the sum of the system

and user time returned by the Unix time command. For multi-

threaded analyses, we report the real (wall-clock) time returned

by the Unix time command.

Multi-allelic Markers
Beagle is the only program evaluated that permits reference

markers to have more than two alleles. For the other programs

(Minimac and Impute), triallelic and quadallelic markers in the

simulated reference panels were partitioned into two and three di-

allelic markers, respectively, using the bcftools norm -m command

(see Web Resources). The downloaded HRC reference panel repre-

sents multi-allelic markers as multiple diallelic markers and was

left as is.
Results

Beagle was evaluated using all reference panels. Minimac3

and Minimac4 were run with all reference panels except

the largest reference panel (10M) because an m3vcf format

file could not be constructed for this reference panel.

Impute4 was run with all reference panels except the three

largest reference panels (100k, 1M, and 10M). The Impute4

error message for the 100k reference panel indicated that

Impute4 is limited to 65,536 reference haplotypes.

Accuracy

All the genotype imputation methods that we evaluated

are based on the Li and Stephens probabilistic model20

and have essentially the same imputation accuracy

(Figure 3), which is consistent with previous reports.4,5

The apparent difference in accuracy between Beagle 4.1

and Beagle 5.0 with the 10M reference panel is due to

Beagle 4.1 using a short (z4.45 cM) marker window in or-

der to run within the available computer memory. Experi-

ments with different window and overlap lengths showed

that the difference in imputation accuracy for the 10M

reference panel is almost entirely explained by the differ-

ence in window length (Figure S1).

Single-Threaded Computation Time

Single-threaded computation times for 10k, 100k, 1M, and

10M reference samples and 1,000 target samples are shown
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in Figure 4. Beagle 5.0’s computation time was 3 times

(10k), 12 times (100k), 43 times (1M), and 533 times

(10M) faster than the fastest alternative method. For the

1000 Genomes reference panel with 52 target samples,

Beagle 5.0 was 1.63 faster (chromosomes 14 and 20)

than the fastest alternative method (Tables S1 and S2).

For the HRC reference panel with 1,000 target samples,

Beagle 5.0 was 9.53 (chromosome 14) and 8.73 (chromo-

some 20) faster than the fastest alternative method (Tables

S3 and S4). Beagle 5.0 had the lowest computation time in

all single-threaded analyses and the best scaling of compu-

tation time with increasing reference panel size.

Figure 4A shows that the latest versions of imputation

methods have achieved substantial improvements in

computational efficiency. Beagle 5.0 is significantly faster

than Beagle 4.1, Minimac4 is significantly faster than

Minimac3, and a comparison with imputation results in

previous studies4,5 for the 1000 Genomes and HRC refer-

ence panels shows that Impute4 is significantly faster

than Impute2.

One striking feature of Figure 4B is the sublinear scalingof

computation time with increasing reference panel size for

Minimac4 and Beagle 5.0. This is particularly pronounced

for Beagle 5.0. Moving from 10k to 10M reference samples

increases the number of reference samples by a factor of

1,000 and the number of imputed markers by a factor of

36, but Beagle 5.0’s imputation time increases by only a fac-

tor of 11 (Tables S5 and S8). Sublinear scaling in reference

panel size over this range of reference panel sizes is made

possible by the use of specialized file formats for the refer-

ence panel (bref3 for Beagle 5.0 and m3vcf for minimac4)

which scale sublinearly in reference panel size (Table 1).
Multi-threaded Computation Time

Beagle and Minimac can be run with multiple threads,

which reduces wall-clock computation time and permits

a single copy of the reference panel data to be stored in

memory and used by all CPU cores. Multi-threaded

computation times for 10k, 100k, 1M, and 10M reference

samples and 1,000 target samples are shown in Figure 5.

Beagle 5.0’s computation time was 5 times (10k), 23 times

(100k), 156 times (1M), and 458 times (10M) faster than
Journal of Human Genetics 103, 338–348, September 6, 2018 343



Figure 3. Genotype Imputation Accuracy
Genotype imputation accuracy when imputing genotypes from a 1000 Genomes Project reference panel (n ¼ 2,452), a Haplotype Refer-
ence Consortium reference panel (n ¼ 26,165), and from 10k, 100k, 1M, and 10M simulated UK-European reference samples. Imputed
alleles are binned according to their minor allele count in each reference panel. The squared correlation (r2) between the true number of
alleles on a haplotype (0 or 1) and the imputed posterior allele probability is reported for eachminor allele count bin. The horizontal axis
in each panel is on a log scale. The difference in accuracy for 10M reference samples is due to a difference in length of marker window.
the fastest alternative method. For the 1000 Genomes

reference panel, Beagle 5.0 was 3.83 (chromosome 14)

and 3.63 (chromosome 20) faster than the fastest alterna-

tive method (Tables S9 and S10). For the HRC reference

panel with 1,000 target samples, Beagle 5.0 was 123 (chro-

mosome 14) and 113 (chromosome 20) faster than the

fastest alternative method (Tables S11 and S12). Beagle

5.0 had the lowest wall-clock time in all multi-threaded

analyses and the best scaling of wall-clock time with

increasing reference panel size.

Computational Efficiency with Decreasing Target

Sample Size

The computation time results in Figures 4 and 5 are for

batchesof1,000 target samples.Wealso examinedcomputa-
344 The American Journal of Human Genetics 103, 338–348, Septem
tion times for batches of 100 and 10 target samples (Tables

S3–S8 and S11–S16). In general, the computation time per

sample increases as the number of target samples decreases.

This is because the time required to read referencepanel data

from persistent storage is independent of the number of

target samples. As the target sample size decreases, this fixed

computational cost is shared among fewer target samples.

As the ratio of the number of reference to target samples

increases, the time required to read the reference panel

into memory will eventually dominate the total computa-

tion time. For example, the computation times when

imputing from 10M reference samples into 100 or 10 target

samples differ by only 20% because most of the computa-

tion time in these two analyses is spent reading in the refer-

ence panel data (Table S8).
ber 6, 2018



Figure 4. Single-Threaded Computation
Time
Per-sample CPU time when imputing a 10
Mb region from 10k, 100k, 1M, and 10M
simulated UK-European reference samples
into 1,000 target samples using one
computational thread. CPU time is the
sum of the system and user time returned
by the Unix time command. Impute4
was run with only the 10k reference panel
due to software limitations. Minimac3 and
Minimac4 were not run with the 10M
reference panel due to memory and time
constraints.
(A) Results for Impute4, Minimac3,
Minimac4, Beagle 4.1, and Beagle 5.0.
(B) Zoomed-in results for Impute4,
Minimac4, and Beagle 5.0.
Genome-wide Imputation on the Amazon Compute

Cloud

We benchmarked genome-wide imputation time and cost

when imputing from 10M reference samples into 1,000

target samples using the Amazon Web Services (AWS)

compute cloud. We measured the cost of imputing a

long 300 Mb chromosome. We used an AWS Elastic

Compute Cloud (EC2) r4.4xlarge server with 16 virtual

CPUs, 122 GB of memory, and a 150 GB Elastic Block

Store (EBS) general purpose solid state drive. We copied

data to the EBS drive via Amazon’s Simple Storage Service

(S3), and we used the OpenJDK Java 1.8 runtime environ-

ment. We used a 30 cM analysis window to ensure that

the memory requirements did not exceed the memory

available on the EC2 server. The EC2 server ran for

97 min, which included 2.5 min for status checks and

setting up the computing environment, 16 min for

copying the program and data files onto the EBS drive,

78 min for genotype imputation, and 0.5 min for copying

the imputation output files to our local computer. For

comparison, we note that the same analyses can be per-

formed with 40 cM windows on our local compute

12-core server with 128 GB of memory and a wall-clock

computation time of 78 min.

The cost of the imputation analysis on the Amazon

cloud was $0.63, which is comprised of the cost of the

EC2 r4.4xlarge spot instance ($0.24), the cost of the EBS

drive ($0.03), the cost of transferring data to S3 storage

and briefly storing data there ($0.05), the cost to transfer

3.1 GB of imputed output data from AWS to our local

computers ($0.28), and state taxes ($0.02). The per-hour

cost of the EC2 r4.4xlarge spot instance was $0.15 per

hour on the Ohio region servers, and this cost ranged be-

tween $0.1489 and $0.1537 per hour during a 4 month

period from January to April, 2018. Since our analysis

imputed one-tenth of the human genome, we extrapolate

a total cost of $6.30 for imputation of 1,000 target sam-

ples, or equivalently a genome-wide imputation cost of

less than one penny per sample when imputing from

10M reference samples into 1,000 target samples with

Beagle 5.0.
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Discussion

We have presented a new genotype imputation method

implemented in Beagle 5.0 that has similar accuracy and

much faster computation time than the Beagle 4.1,5

Impute4,26 Minimac3,4 and Minimac4 (Web Resources)

imputation methods. The Beagle 5.0 method had the

lowest computation time for all reference panel sizes

(2.5k–10M) and target sample sizes (10–1,000) considered.

Imputation of one tenth of the genome from a reference

panel with 10M individuals and one variant per 3 base

pairs was performed on the AmazonWeb Services compute

cloud for $0.00063 per sample, which corresponds to a

genome-wide imputation cost of 0.63 cents per sample.

The computational efficiency of Beagle 5.0 is due to

several methodological improvements and innovations.

The use of composite reference haplotypes permits

modeling of arbitrarily large genomic regions with a parsi-

monious statistical model. An improved reference file

format (bref3) reduces the computation time required to

read in large reference panels relative to Beagle 4.1. Delay-

ing imputation until output file construction reduces

memory use because it permits imputation to be per-

formed incrementally in short genomic intervals with

the imputed data written immediately to the output VCF

file.

As the size of the reference panel increases, the number

of multi-allelic variants in the reference panel also in-

creases. Many genotype imputation programs require

multi-allelic markers to be represented as multiple diallelic

markers. However, splitting a multi-allelic marker into dia-

llelic markers is problematic because the constraint that

posterior allele probabilities must sum to 1.0 cannot be

enforced, potentially resulting in a loss of accuracy and

inconsistent imputed data. Among the imputation

methods evaluated in this study, Beagle was the only

method that does not require multi-allelic markers to be

represented as multiple diallelic markers.

The Beagle 5.0 genotype imputation method effectively

solves the problem of imputing SNV variants in large

batches of target samples. However, there is scope for
Journal of Human Genetics 103, 338–348, September 6, 2018 345



Figure 5. Multi-Threaded Computation
Time
Per-sample wall-clock timewhen imputing
a 10 Mb region from 10k, 100k, 1M, and
10M simulated UK-European reference
samples into 1,000 target samples using
12 computational threads. Minimac3 was
not run with the 1M reference panel using
12 threads due to memory constraints.
Minimac3 and Minimac4 were not run
with the 10M reference panel due to mem-
ory and time constraints.
(A) Results for Minimac3, Minimac4,
Beagle 4.1, and Beagle 5.0.
(B) Zoomed-in results for Minimac4 and
Beagle 5.0.
further methodological work to improve computational ef-

ficiency when imputing from large reference panels into

small batches of target samples, and in the development

and evaluation of imputation methods for non-SNV vari-

ants, such as HLA alleles,28–31 STR alleles,32 and other

structural variants.

When reference panel size ismuch greater than the target

panel size, the time required to read the reference panel

from persistent storage dominates the computation time.

For a fixed size reference panel, we observed a large increase

in Beagle 5.0’s imputation time per sample when the refer-

ence panel size is 1,000 or 10,000 times larger than the

target sample size (Tables S5–S8). Like many imputation

programs, Beagle 5.0 requires all target samples in the

same input file to be genotyped for the same set of markers,

which limits the number of target samples that can be

included in an imputation analysis. One potential

approach to reducing imputation time for a small number

of target samples would be to modify imputation software

to allow multiple input target files to be specified so that

the time required to read in the reference panel data can

be shared among a larger number of target samples.

Although an individual researcher may not have a large

number of target samples, an imputation server4 could

use this approach to imputemultiple batches of target sam-

ples submitted by different researchers in a single analysis.

The computation time for imputation with Beagle 5.0

scales sublinearly with reference panel size over the range

of reference panel sizes considered in this study. A 1,000-

fold increase in the number of reference samples and a

36-fold increase in the number of reference markers led

to only an 11-fold increase in computation time. Although

we have limited our evaluation to reference panels with at

most 10M individuals, these results suggest that Beagle 5.0

can analyze much larger reference panels than analyzed

here.
Appendix A: The Maximal Size of Sk

We enforce a maximal size, s, for each Sk set in order to

ensure that each segment in a composite reference haplo-

type exceeds a minimum length L cM. If the intervals Ik
346 The American Journal of Human Genetics 103, 338–348, Septem
used to define the Sk have length I cM, there are L/I inter-

vals in L cM, and the Sk sets for these intervals will contain

%sL/I distinct haplotypes. If there are J composite refer-

ence haplotypes, we set s to be the largest integer such

that sL/I < J. This ensures the number of haplotype seg-

ments added in L cM is less than the number of composite

reference haplotypes. Consequently, each segment

must be at least L cM in length. By default there are

J ¼ 1,600 composite reference haplotypes, the interval

length is I ¼ 0.1, and the minimum segment length is

L ¼ 6 cM, so that s ¼ bJI=Lc ¼ 26.
Supplemental Data

Supplemental Data include 1 figure, 16 tables, and msprime code

for simulating the genetic data and can be found with this article

online at https://doi.org/10.1016/j.ajhg.2018.07.015.
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Web Resources

1000 Genomes Project Phase 3 version 5a data, ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

bcftools 1.5, http://www.htslib.org/doc/bcftools.html

Beagle 5.0 and bref3 programs, http://faculty.washington.edu/

browning/beagle/beagle.html

Haplotype Reference Consortium data, https://www.ebi.ac.uk/

ega/datasets/EGAD00001002729
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NIH,RFA-HG-15-001:Centers forCommonDiseaseGenomics (UM1),

http://grants.nih.gov/grants/guide/rfa-files/RFA-HG-15-001.html

NIH, RFA-HG-15-026: NHGRI Genome Sequencing Program Anal-

ysis Centers (U01), http://grants.nih.gov/grants/guide/rfa-files/

RFA-HG-15-026.html
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