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Characterization of a Human-Specific Tandem Repeat
Associated with Bipolar Disorder and Schizophrenia

Janet H.T. Song,1,2,4 Craig B. Lowe,1,3,4 and David M. Kingsley1,3,*

Bipolar disorder (BD) and schizophrenia (SCZ) are highly heritable diseases that affect more than 3% of individuals worldwide. Genome-

wide association studies have strongly and repeatedly linked risk for both of these neuropsychiatric diseases to a 100 kb interval in the

third intron of the human calcium channel gene CACNA1C. However, the causative mutation is not yet known. We have identified a

human-specific tandem repeat in this region that is composed of 30 bp units, often repeated hundreds of times. This large tandem repeat

is unstable using standard polymerase chain reaction and bacterial cloning techniques, which may have resulted in its incorrect size in

the human reference genome. The large 30-mer repeat region is polymorphic in both size and sequence in human populations. Partic-

ular sequence variants of the 30-mer are associated with risk status at several flanking single-nucleotide polymorphisms in the third

intron of CACNA1C that have previously been linked to BD and SCZ. The tandem repeat arrays function as enhancers that increase re-

porter gene expression in a human neural progenitor cell line. Different human arrays vary in the magnitude of enhancer activity, and

the 30-mer arrays associated with increased psychiatric disease risk status have decreased enhancer activity. Changes in the structure and

sequence of these arrays likely contribute to changes in CACNA1C function during human evolution and may modulate neuropsychi-

atric disease risk in modern human populations.
More than 3% of the global population has bipolar disor-

der (BD) or schizophrenia (SCZ), and both diseases are

among the top 25 causes of disability worldwide.1–3 Along

with the disability cost, both disorders are associated with

an increased risk of suicide.4,5 There are limited treatment

options for BD and SCZ, and the burden of these diseases

may be increasing.6 Improved diagnosis and treatments

may come from a better understanding of the molecular

pathways that contribute to disease risk.

Both BD and SCZ are highly heritable. While they are

classified as different diseases based on their clinical symp-

toms, they share a similar set of genomic risk variants.7

Genome-wide association studies (GWASs) for BD and

SCZ have consistently implicated risk variants in or

near genes involved in calcium signaling.8–14 Calcium

signaling-related genes are also enriched for rare variants

in families multiply affected by BD15 and in individuals

with SCZ,16,17 suggesting that calcium signaling plays an

important role in both BD and SCZ etiology.

Some of the strongest and best-replicated associa-

tions for BD and SCZ map within CACNA1C, which en-

codes the pore-forming subunit of the CaV1.2 calcium

channel.18 Disease-associated single-nucleotide polymor-

phisms (SNPs) are in strong linkage disequilibrium

with each other and contained within a 100 kb

region of the gene’s third intron.8–14,19 Underscoring

the importance of this genomic region for psychiatric dis-

ease in humans, these disease-associated SNPs have also

been associated with anxiety, depression-related symp-

toms, obsessive-compulsive symptoms, decreased perfor-

mance in memory-related tasks, major depression, and

autism.13,20–28
1Department of Developmental Biology, Stanford University, Stanford, CA 943

USA; 3Howard Hughes Medical Institute, Stanford University, Stanford, CA 94
4These authors contributed equally to this work

*Correspondence: kingsley@stanford.edu

https://doi.org/10.1016/j.ajhg.2018.07.011.

The American

� 2018
The causative variants at loci identified by GWASs could

be the assayed SNPs themselves29 or other variants tightly

linked to the SNP markers.30 Previous studies have investi-

gated the functional consequences of the genotyped SNPs

in CACNA1C and other closely linked SNPs.31,32 However,

the mutation responsible for the association between SNPs

within CACNA1C and human neuropsychiatric diseases is

still unknown.

Given the difficulty in identifying causal mutations at

CACNA1C over the past 10 years,8 we considered whether

there might be additional structural variants at the locus

that are not easily detected using current genotyping and

sequencing methods. For example, copy-number variants

and expansions and contractions of micro- and mini-satel-

lite sequences can be difficult to identify with short-read or

Sanger sequencing technologies. Nevertheless, these types

of mutations have been implicated in a wide range of

neurological diseases, including Huntington disease, spi-

nocerebellar ataxia, fragile X syndrome, depression, and

aggression and impulsivity behaviors,33–40 and likely

contribute to undetected variation andmissing heritability

for additional human traits.41,42

To search for unrecognized copy-number variants at the

CACNA1C locus, we examined regions of the genome

where no mutations were identified by large-scale

sequencing projects such as the 1000 Genomes Project,43

yet DNA sequencing reads consistently differed from the

reference human assembly. We identified one such region

(hg38; chr12:2255791–2256090) within the 100 kb inter-

val associated with BD and SCZ. In the most recent human

reference genome (hg38), this region is assembled as a tan-

dem repeat composed of ten 30 bp units. Chimpanzees
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Figure 1. Human-Specific Tandem Repeat Region Is Composed of 30-mer Sequence Units Repeated Head-to-Tail in Multi-kilobase
Arrays
(A) The tandem repeat is located in the third intron of CACNA1C. The human reference assembly predicts ten copies of the 30 bp
segment while chimpanzees and other simians have a single copy of the 30 bp segment. More distantly related placental mammals,
out to Afrotheria, have a region that aligns to the 30 bp segment, but with insertions or deletions. There is an abnormally large number
of genomic DNA sequencing reads mapping to the tandem repeat region, consistent with this repeat being further expanded in human
individuals. The repeat region also shows enrichment for p300/CBP binding and DNase I hypersensitivity in the developing human
brain.
(B) We performed Southern blot analysis on 18 human individuals by probing for the 30 bp repeat after digesting with BlpI. We also
included two controls: mouse DNA (no orthologous sequence) and the 8 kb vector from which the probe was transcribed. The human
reference genome predicts a BlpI fragment of approximately 900 bp. In contrast, all humans tested showmuch larger BlpI fragment sizes
(4,000 to 35,000 bp), and many individuals show dual bands indicating distinct alleles at the locus.
(C) Frequency distribution of 362 repeat allele lengths detected by Southern blot analysis.
(D) The 30-mer sequence logo calculated from the 30-mer variants present in human repeat arrays that were sequenced with long-read
(PacBio) technology. Some positions are nearly invariant, whereas others vary from 30-mer to 30-mer.
(E) Structure and composition of tandem repeat arrays sequenced by PacBio long-read technology. Each row represents a different
sequenced array, and each color represents a distinct 30-mer variant. Black regions indicate gaps that we have introduced to maximize
repeat alignments between arrays. Many regions are organized similarly in all arrays, but common variable regions distinguish array
subtypes.
and other non-human primates have a single instance of a

homologous 30 bp sequence at this location (Figure 1A),

suggesting that an ancestral 30-mer sequence has

expanded in the CACNA1C intron during human evolu-

tion. Strikingly, the number of reads from individuals in
422 The American Journal of Human Genetics 103, 421–430, Septem
the 1000 Genomes Project that map to this 300 bp

segment is 3–3793 greater than expected based on the

reference assembly, and these reads contain multiple base

substitutions. Read depth coverage and composition in

Neanderthal and Denisovan genomes44,45 fall within the
ber 6, 2018



range observed among modern human populations

(Figure S1). Further investigation identified a longer

(3.3 kb) repeat array at this location in the Venter assembly

(HuRef)46 and an approximately 6 kb repeat array in the

genome of a hydatidiform mole sequenced to 403

coverage with long-read technology.47 Collectively, these

data suggest that hominins have a large and variable tan-

dem repeat in the neuropsychiatric risk-associated region

of CACNA1C. The size of the tandem array is likely un-

der-represented in the human reference genome by one

or two orders of magnitude based on empirical estimates

from read depth coverage (see Supplemental Methods).

To further characterize the size of the tandem arrays us-

ing independent methods, we examined DNA from hu-

mans and our closest living relative, the chimpanzee.

Polymerase chain reaction (PCR) amplification and

sequencing from six chimpanzees confirmed a single

instance of a 30-mer sequence, which exactly matches

the chimpanzee reference genome. In contrast, when we

performed Southern blots on human DNA (see Supple-

mental Methods), we found restriction fragment sizes

consistent with repeat arrays of 3,000 to 30,000þ bp,

with the majority of human repeat arrays showing sizes

of approximately 6,000 bp (Figures 1B and 1C). We never

observed a band size consistent with the human reference

genome (hg38). The smallest band size seen in the 181 hu-

man samples we assayed (362 alleles) was 10 times larger

than the repeat size annotated in the reference assembly

(300 bp), while the largest was more than 100 times larger.

To understand why the human genome assembly ap-

pears to have a version of the tandem repeat that is not

representative of the human population, we examined

four bacterial artificial chromosome (BAC) clones derived

from a single individual that were used in the sequencing

and assembly of the human genome.48 One BAC clone

matched the length and sequence present in the assembly

(300 bp). A BAC library made from a single individual

should have at most two alleles; however, the four BACs

all gave different tandem repeat lengths. Compounding

this anomalous result, colonies picked from a single BAC

clone are expected to be identical, but two of the four

BACs produced subclones with varying tandem repeat

lengths (Figure S2). In our experience, multi-kilobase tan-

dem repeats, whose size was determined by Southern

blot, reduced in length after amplification by PCR under

routine conditions or when propagated using standard cir-

cular vectors in bacteria. We propose that the human refer-

ence assembly is based on a BAC clone that was correctly

sequenced and assembled but that the sequence present

in the BAC is an artifact of the instability of this tandem

repeat when cloned and propagated using standard

methods. Given the large size disparity between the

version represented in the current human genome assem-

bly and the alleles detected by Southern blot, as well as the

instability of this region, we believe that the allele present

in the current human genome assembly is not present in

humans.
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In addition to variation in the length of this repeat re-

gion in the human population, the 30-mer units that

comprise each array also show sequence changes. For

example, the array in the reference assembly is composed

of four identical 30-mer units and six unique units that

each contain a small number of SNPs. This variability in

30-mers is also seen in the large number of reads from

the 1000 Genomes Project that map to this area. To better

understand this variation in tandem repeat arrays, even for

arrays of the same length, we performed long-read (PacBio)

sequencing of repeat arrays amplified from 20 individuals

using optimized PCR conditions (see Supplemental

Methods). The size of the resulting PCR fragments using

our optimized conditions matched the corresponding

repeat lengths determined from Southern blots. The

sequenced arrays were entirely composed of 30-mer units

repeated head-to-tail. Some positions in the 30-mer unit

appear to be largely invariant (e.g., position 2 is almost

always an ‘‘A’’), whereas other positions are more variable

(Figures 1D and S3). For instance, the most common

30-mer unit (31%) is 50-GACCCTGACCTGACTAGTTTA

CAATCACAC-30 and the second most common (17%) is

50-GATCCTGACCTGACTAGTTTACAATCACAC-30 (differ-

ence underlined). When aligning tandem repeat array var-

iants, the structural organization of the 30-mer units

within each array emerged (Figure 1E). Across all PacBio-

sequenced repeat arrays, certain regions, such as the begin-

ning and the end of each repeat array, contain the same

30-mer units organized almost identically. However, other

regions (marked in Figure 1E) are more variable and

contain specific patterns of 30-mer units that are consis-

tently found in only a subset of the sequenced arrays.

The presence of a large and variable repeat region in the

third intron of human CACNA1C raises the possibility that

variation in the tandem array contributes to functional

changes at the locus. To test whether the length or

sequence of the tandem repeat region shows any associa-

tion with genomic risk markers for BD and SCZ, we exam-

ined whole-genome sequence reads from individuals in

the 1000 Genomes Project. We limited our analysis to indi-

viduals of European or East Asian descent, the two groups

in which BD and SCZ risk status has been previously asso-

ciated with four SNPs clustered in the third intron of the

gene (rs2007044, rs1006737, rs4765905, and rs4765913;

Figure 2A).8–14,19 We first identified all sequencing reads

from this repeat region. To infer the length of the repeat

array (average of the individual’s two alleles), we used the

fraction of all sequencing reads for the individual that

are from the repeat region (see Supplemental Methods).

To estimate the sequence composition of the repeat array

(averaged over the two alleles), we calculated the fraction

of all 30-mers in the sequence reads identical to each

observed sequence variant of the 30-mer unit (see Supple-

mental Methods). Since our length and composition

statistics represent a mixture of the two alleles present in

each person, we limited our analysis to individuals that

are homozygous risk or protective at each of the four
Journal of Human Genetics 103, 421–430, September 6, 2018 423



Figure 2. 30-mer Repeat Variants Are Associated with Protective or Risk Status at GWAS SNPs Linked to Neuropsychiatric Disease
(A) Genome browser view of the third intron ofCACNA1C. A red linemarks the location of the repeat region. The human-specific 30-mer
repeats are embedded in a region defined by four SNPs that are repeatedly associated with BD and SCZ.
(B)We identified individuals from the 1000 Genomes Project that have the protective genotype at all four GWAS SNPs (protective haplo-
type) and individuals with the risk genotype at all four GWAS SNPs (risk haplotype). We used only European and East Asian individuals
because GWASs have only been done with these populations. For each possible 30-mer repeat unit, we determined what fraction of
30-mers in the reads that map to this locus in each individual exactly match that particular variant. The 30-mer sequence on the left
is significantly associated with the protective haplotype (‘‘prot’’), whereas the 30-mer variant on the right is significantly associated
with the risk haplotype (‘‘risk’’). Base pair differences between the two 30-mer variants presented here are underlined. Shown are stan-
dard box-and-whisker plots where the box represents the lower quartile, median, and upper quartile, and the whiskers represent the
range of the measurements. Outliers (‘‘þ’’) are data points that are outside the nearest quartile þ 1.53 the interquartile range.
(C) The table lists the mean and standard deviation of the fraction of reads that exactly match a given 30-mer for individuals with the
protective or risk haplotype. Repeats enriched in the protective haplotype group are shown in yellow, and repeats enriched in the risk
haplotype group are shown in purple. The p values were calculated using the Wilcoxon rank-sum test with Bonferroni correction (see
Supplemental Methods).
SNPs commonly associated with BD and SCZ (Figure 2A).

These SNPs are all tightly linked and define risk and protec-

tive haplotypes, making it possible to study repeat

structures associated with risk or protective genotypes at

CACNA1C.

We first tested whether repeat length is consistently

associated with genotype status at the four GWAS SNPs.

None of the four SNPs show a significant association

with repeat length and the direction of effect is not consis-

tent (Figure S4). It does not appear that repeat array length

is associated with the protective or risk genotypes at the

GWAS SNPs, at least not in a simple manner.
424 The American Journal of Human Genetics 103, 421–430, Septem
We then tested whether specific sequence variants of the

30-mer unit are associated with the risk or protective alleles

at the four GWAS SNPs. For each sequence variant of the

30-mer unit, we tested whether its propensity to appear

in reads from this repeat region differs between individuals

that are homozygous for risk or protective genotypes at the

four SNPs (Figure 2B). We identified a number of 30-mer

units that are consistently associated with a genotypic class

across all four SNPs (Figure S5). When considering only in-

dividuals that are homozygous protective at all four GWAS

SNPs (‘‘protective haplotype’’) or homozygous risk at all

four GWAS SNPs (‘‘risk haplotype’’), five 30-mer variants
ber 6, 2018
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Figure 3. Human-Specific Repeat Arrays Act as Enhancers in Neural Cells
(A) The single 30-mer found in chimpanzees (30 bp) and 21 different human repeat arrays (3.5–6 kb) were cloned upstream of a minimal
promoter driving expression of the luciferase reporter gene. 30-mer variants significantly associated with the protective haplotype are
colored yellow, 30-mer variants significantly associated with the risk haplotype are purple, and non-significant variants are black.
The fraction of total 30-mer variants associated with either the risk or the protective haplotype varies between the protective-associated
and risk-associated repeat arrays as expected, although the differences are subtle.
(B) Constructs were assayed for luciferase activity in a human neural progenitor cell line (ReNcell Cx), as described in Supplemental
Methods. Human repeat alleles drove significantly higher luciferase activity compared to the single 30-mer found in chimpanzees
(p < 10�8). Protective arrays drove significantly higher luciferase activity than risk arrays (p ¼ 0.001). The p values were calculated using
the Wilcoxon rank-sum test.
are associated with the protective haplotype, and five

30-mer variants are associated with the risk haplotype

(Figure 2C). These particular 30-mer units tend to be

located in the variable regions observed when aligning

the PacBio-sequenced repeat arrays (marked in Figure 1E).

Thus, while there is no straightforward association be-

tween the overall length of repeat arrays and the risk or

protective haplotype, the abundance of particular 30-mer

units is significantly and consistently associated with

markers for psychiatric disease risk at CACNA1C.

The repeat region gives a significant signal for p300

enrichment in ChIP-seq experiments performed on tissue

from the developing human brain49 and also shows an

open chromatin signal during human brain development

(Figures 1A and S6).50 Both of these results are consistent

with the repeat region acting as a distal enhancer element

during brain development. To experimentally test whether

the 30-mer repeat arrays show enhancer activity in devel-

oping neural cells, we cloned the single 30-mer sequence

found in chimpanzees (30 bp), as well as 21 different hu-

man repeat arrays (3.2–6 kb), upstream of a basal promoter

and a luciferase reporter gene (Figure 3A). We used a linear

cloning vector that greatly improved repeat stability, and

we confirmed clone stability via comparison to the ex-

pected size and sequence as determined from Southern

blot analysis and PacBio sequencing, respectively (see Sup-

plemental Methods). We then transfected each construct

into a human neural progenitor cell line (ReNcell Cx)

and measured luciferase activity (see Supplemental

Methods). The chimpanzee construct, containing a single
The American
30 bp unit, weakly enhanced luciferase activity relative to

the empty vector (p ¼ 0.01), while the much larger repeat

arrays found in humans significantly enhanced luciferase

activity compared to both the empty vector (p < 10�8)

and the chimpanzee construct (p < 10�8, Figure 3B). We

additionally tested three individual 30-mer sequence

variants that are commonly observed in humans. Like

the single 30 bp unit found in chimpanzees, these

30-mer variants acted as weak enhancers in the luciferase

assay (Figure S7). These results suggest that the expansion

of a single 30 bp unit to hundreds of tandem repeats at the

CACNA1C locus during human evolution has strength-

ened an existing enhancer element.

Although all of the tested human repeat arrays consis-

tently acted as enhancers, there was substantial quantita-

tive variation in enhancer strength among human repeat

arrays (Figure S8). To test whether enhancer strength var-

ied for arrays linked to protective or risk GWAS SNPs for

neuropsychiatric disease, we determined the genotypes

of the individuals from which these human repeat arrays

were cloned. Repeat arrays derived from individuals with

the protective haplotype were classified as ‘‘protective,’’

and repeat arrays derived from individuals with the risk

haplotype were classified as ‘‘risk.’’ For repeat arrays derived

from individuals who are heterozygous at the GWAS SNPs,

we determined the proportion of protective- and risk-asso-

ciated 30-mer variants from PacBio sequencing. We then

asked whether these proportions most closely resembled

individuals with the protective haplotype or individuals

with the risk haplotype in the 1000 Genomes Project and
Journal of Human Genetics 103, 421–430, September 6, 2018 425



designated the ambiguous repeat arrays accordingly

(Figure S9, see Supplemental Methods). The repeat arrays

characteristic of the protective haplotype drove signifi-

cantly higher luciferase activity than repeat arrays charac-

teristic of the risk haplotype (p ¼ 0.001, Figure 3). In

contrast, we did not observe an association between repeat

length in the human repeat arrays we tested (3.2–6 kb) and

luciferase activity (Figure S10). These data show that

compositional differences between human repeat arrays

lead to functional differences in enhancer activity and sug-

gest that differences in the repeat arrays may be causative

genomic changes underlying the association between

linked CACNA1C markers and susceptibility to neuropsy-

chiatric disease.

While the transcriptional enhancer is located within the

CACNA1C locus, the enhancer might also affect the

expression of other linked genes.51 In human brain sam-

ples, the enhancer is present in a topologically associating

domain (TAD) that contains both CACNA1C and seven

downstream genes.52,53 In human dorsolateral prefrontal

cortex, more than 90% of Hi-C associations found within

5 kb of the enhancer map to other locations within

CACNA1C, including locations near CACNA1C transcrip-

tion start sites.52 These results are consistent with the

enhancer regulating the expression of CACNA1C.

Previous studies have tested whether risk and protective

genotypes at the CACNA1C locus lead to higher or lower

CACNA1C expression in the brain. Studies in the dorsolat-

eral prefrontal cortex and cerebellum reported decreased

CACNA1C expression in individuals with risk variants at

human GWAS SNPs.20,54 In contrast, studies in the supe-

rior temporal gyrus and fibroblast-derived induced human

neurons reported increased CACNA1C expression in indi-

viduals with risk variants at human GWAS SNPs.32,55 Our

data show that risk-associated repeat arrays have reduced

enhancer activity in the particular human neural progeni-

tor cell line we tested. We note that differences in human

repeat arrays could also underlie more complex expression

differences at other tissues or developmental time points.

The base pair changes seen in particular 30-mer motifs

that are associated with risk or protective genotypes alter

the predicted binding sites for a number of potential

trans-regulatory factors (Table S1). These factors them-

selves vary in expression and abundance in different brain

regions,56–60 which could in turn lead to differential effects

of repeat variants at different times or places in vivo.

Previous studies of coding region mutations suggest that

both loss-of-function and gain-of-function alterations in

CACNA1C can lead to behavioral changes in mice and hu-

mans with similarities to BD and SCZ. For example, in

mouse models where CACNA1C expression levels are

either globally reduced or ablated only in specific brain re-

gions, mice display increased anxiety and depression in

behavioral tests such as the elevated plus maze, light-

dark box, and learned helplessness test.18,61–63 Conversely,

gain-of-function mutations in CACNA1C lead to Timothy

syndrome (TS) in humans, an autosomal-dominant disease
426 The American Journal of Human Genetics 103, 421–430, Septem
where afflicted individuals display autism-like symptoms

in addition to a host of non-neurological pathol-

ogies.64,65 Although TS is normally lethal in young chil-

dren, a rare individual with TS who survived into his late

teens developed BD.54 These studies suggest that modu-

lating CACNA1C expression levels, such as through hu-

man variation at the repeat arrays we report in this study,

could result in behavioral changes associated with BD

and SCZ.

We note that the 30-mer repeat arrays might have addi-

tional functional effects beyond the enhancer activities we

characterize here. For example, the most common 30-mer

sequences have open reading frames in both directions

(Figure S11A). Previous studies have shown that some tan-

dem repeats are transcribed and translated even in the

absence of conventional ATG start codons.66–68 The tan-

dem repeat also contains canonical splice site consensus

sequences, including a donor site, an acceptor site, branch

sites, and a polypyrimidine tract (Figure S11B). Intrigu-

ingly, the single 30-mer found in chimpanzees has an

‘‘A’’ at the 17th position, whereas the vast majority of hu-

man 30-mers (99.94%) have a ‘‘G’’ at that position. This

single base pair difference means that chimpanzees do

not have canonical splice donor or acceptor sites at this lo-

cus. Finally, when organized in head-to-tail fashion, the

30-mers also form a CpG site located between the ‘‘C’’

that ends most 30-mers and the ‘‘G’’ that begins the next

30-mer (Figure S11B). The tandem repeat arrays may affect

translation, splicing, or methylation, in addition to form-

ing a functional enhancer sequence within CACNA1C.

Tandem repeats have previously been proposed as a

possible causal basis for the evolution of both species-

specific traits and individual-to-individual variation in

complex phenotypes such as neurological functions in

humans.69 Our studies have identified a dramatic expan-

sion of a 30-mer sequence that generates human-specific

tandem arrays in a key gene related to calcium signaling,

gene expression, and behavior. The human-specific repeat

arrays show enhancer activity in human neural progenitor

cells, and risk-associated versions of the tandem repeat

have less enhancer activity than protective-associated ver-

sions. We hypothesize that generation of these repeat

arrays has modified CaV1.2 function during human evolu-

tion and that structural and compositional differences of

the 30-mer repeats among humans represent causal

genomic changes that modify risk of neuropsychiatric dis-

ease in modern populations.

Many diseases that are particularly common in human

populations occur at body locations that have also under-

gone dramatic and relatively recent evolution in the

human lineage. For example, humans have a high inci-

dence of lower back, knee, and foot problems, likely due

to the recent evolutionary transition to upright bipedal

walking.70 More than 70% of young adults develop

impacted third molars (wisdom teeth), likely due to evolu-

tionary reduction of jaw size in the human lineage and

modern changes in diet.71,72 Similarly, the high prevalence
ber 6, 2018



of neurological diseases in modern humans may be, in

part, due to recent evolutionary changes in genes control-

ling brain size, connectivity, and function in humans

compared to other primates.73,74 Tandem repeat expan-

sions provide a particularly interesting class of genomic

variants in evolution and disease studies because the gen-

eration of new tandem repeats can not only alter gene

functions between species, but also make the same genes

prone to variation and diversity among individuals of the

same species.69

Producing new cellular and animal models that carry

either chimpanzee or various human 30-mer repeat arrays

at the CACNA1C locus should make it possible to further

characterize both the evolutionary and disease effects of

this repeat region. In addition, the sequence differences

in the 30-mer repeats can now be used as a feature to group

affected individuals into distinct genetic subtypes. Further

stratification of individuals based on CACNA1C repeat ge-

notypes may prove useful for refined disease association

studies or for identifying affected individuals who are

likely to show favorable responses to drugs targeting cal-

cium channel activity. These drugs have long been avail-

able but have produced mixed results as treatments for

psychiatric diseases.75,76

Finally, our research illustrates how characterizing hid-

den variation in the human genome can uncover variants

associated with both human evolution and disease. SNPs

are still the most commonly studied type of variant in

most genotyping and trait association studies. However,

structural variants and repeat sequences make up a sub-

stantial fraction of the human genome, show abundant

variation both within and between species, and may

contribute to key phenotypic traits and disease susceptibil-

ities in humans and other organisms.77
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