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Abstract

The placenta guides fetal growth and development. Bisphenol A (BPA) and phthalates are widespread environmental
contaminants and endocrine disruptors, and the placental epigenetic response to these chemicals is an area of growing
research interest. Therefore, our objective was to summarize research linking BPA or phthalate exposure to placental
outcomes in human pregnancies, with a particular focus on epigenetic endpoints. In PubMed, studies were selected for
review (without limiting start date and ending on 1 May 2018) if they reported any direct effects of BPA or phthalates on the
placenta in humans. Collectively, available studies suggest that BPA and phthalate exposures are associated with changes
to placental micro-RNA expression, DNA methylation, and genomic imprinting. Furthermore, several studies suggest
that fetal sex may be an important modifier of placental outcomes in response to these chemicals. Studies in humans
demonstrate associations of BPA and phthalate exposure with adverse placental outcomes. Moving forward, more studies
should consider sex differences (termed “placental sex”) in the measured outcomes, and should utilize appropriate
statistical approaches to assess modification by fetal sex. Furthermore, more consistent sample collection and molecular
outcome assessment paradigms will be indispensable for making progress in the field. These advances, together with
improved non-invasive tools for measuring placental function and outcomes across pregnancy, will be critical for
understanding the mechanisms driving placental epigenetic disruption in response to BPA and phthalates, and how
these disruptions translate into placental and fetal health.
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Introduction

The placenta’s critical roles in nutrient transport and fetal
growth are well-established. In humans, toward the end of the
first trimester, deep trophoblast invasion and conversion of ma-
ternal spiral arteries allow for the uninterrupted supply of

nutrient-rich maternal blood to the placenta and fetus [1, 2].
Furthermore, hormones secreted by the human placenta
include human placental growth hormone, human chorionic
gonadotropin (hCG), progesterone, estradiol, and human
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chorionic somatomammotropic hormone/placental lactogen,
all with critical functions for pregnancy and fetal development
[3–10].

Maternal diet, environment, and lifestyle all impact fetal de-
velopment, and the placenta has become an important element
of the Developmental Origins of Health and Disease (DOHaD)
hypothesis, which suggests that our experiences in utero pro-
gram the way in which we respond to our postnatal environ-
ment [11]. Recently, the Human Placenta Project was launched
to “understand the role of the placenta in health and disease,”
stating: The placenta is the least understood human organ but argu-
ably one of the most important. It influences not just the health of a
woman and her fetus during pregnancy, but also the lifelong health of
both [12]. The impact of environmental chemicals on the pla-
centa is relatively unstudied in humans, despite the fact that
reproductive-age women are exposed daily to a barrage of
chemicals, including bisphenol A (BPA) and phthalates.
Phthalates are stabilizers and plasticisers found in many con-
sumer products, including toys and personal care products
(perfumes, cosmetics, lotions, deodorants, and many others)
[13–16]. They are also used in blood bags, medical devices, as
well as in adhesives, solvents, and pesticites [17–19]. Exposures
to bisphenols (including BPA), primarily come from polycarbon-
ate plastics used for food packaging and storage containters, as
well as from thermal paper receipts and some plastic toys
[16, 18, 20–22]. Greater than 90% of pregnant women in the USA
have measurable urinary levels of BPA and phthalate metabo-
lites [23]. Specifically, reproductive-age women have higher
concentrations of urinary phthalate metabolites than men,
likely because of greater use of cosmetics and personal care
products, which are important exposure sources [24]. Table 1
summarizes several phthalate parent compounds and their
commonly measured metabolites [25]. While exposure to other
phenols (e.g. triclosan) and parabens is equally widespread
among pregnant women [26], at this time research linking these
chemicals with fetal and placental outcomes remains too scarce
to warrant a review. However, studies in humans (reviewed in
[27]) suggest that maternal BPA and phthalate exposures are as-
sociated with numerous alterations in fetal and pregnancy out-
comes, including increased risk of pregnancy loss, alterations in
the timing of labor (either longer gestation or preterm birth),
and changes to infant birth weights [28–31]. Importantly, as will
be discussed throughout this review, there is recent research

proposing that the effects of these chemicals on the placenta
may mediate these associations.

Epigenetic (“above” genetic) modifications alter gene tran-
scription without affecting the underlying DNA code [32], which
make them especially responsive to dietary and environmental
cues [33]. Epigenetic modifications described here include geno-
mic imprinting and other measures of DNA methylation, as well
as the expression of non-coding RNAs. Imprinted genes are
expressed solely from the maternal or paternal allele [34]. In
early gestation, genomic imprinting regulates placental and fetal
development (reviewed in [35]), and is maintained in the pla-
centa by DNA methylation and histone modifications [36, 37].
Long interspersed nuclear elements (LINEs) and short inter-
spersed nuclear elements (SINEs) are retrotransposons that,
along with other repetitive DNA sequences, represent >50% of
the human genome [38]. Because of their pervasive nature within
the genome, the methylation of these repetitive sequences has
been assessed to represent whole genome methylation in re-
sponse to environmental exposures [39–41], and as a marker of
placental epigenetic disruption. miRs are small non-coding RNAs
that post-transcriptionally regulate gene expression, and several
miR clusters within the placenta have been shown to regulate
placental development and function (reviewed in [42]). For exam-
ple, the miR 17�92 and miR 106a�363 clusters were shown to
target human cytochrome p45019A1/aromatase (CYP19A1) and
glial cells missing 1 (GCM1) – a transcription factor important for
mouse placental labyrinth development [43], while miR-367c was
shown to induce trophoblast proliferation and invasion [44].
Although most downstream gene targets of these miRs have not
yet been elucidated, these miR clusters have been proposed to be
promising biomarkers of the effects of maternal chemical expo-
sures on the placenta. While not much is known about other
types of non-coding RNAs, long non-coding RNAs (lncRNAs) have
been shown to epigenetically regulate gene transcription [45],
with roles in development and disease [46, 47].

A critical question in the field of reproductive environmental
epidemiology is whether there is placental epigenetic disrup-
tion in response to BPA and phthalate exposures that could be
mediating fetal outcomes. Several studies have shown associa-
tions between phthalate or BPA exposure and altered placental
gene expression patterns [48–51], and there is reason to hypoth-
esize that the effects of environmental chemicals on the placen-
tal epigenome may impact placental and fetal growth. Early

Table 1: phthalates and their most commonly measured urinary metabolites

Parent phthalate compound (abbreviation) Metabolite (abbreviation)

Dimethyl phthalate (DMP) Monomethyl phthalate (MMP)
Diethyl phthalate (DEP) Monoethyl phthalate (MEP)
Di-n-butyl phthalate (DBP) Mono-n-butyl phthalate (MBP)
Di-iso-butyl phthalate (DIBP) Mono-iso-butyl phthalate (MiBP)
Butylbenzyl phthalate (BBzP) Monobenzyl phthalate (MBzP)
Di(2-ethylhexyl) phthalate (DEHP) Mono(2-ethylhexyl) phthalate (MEHP)

Mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP)
Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP)
Mono(2-ethyl-5-carboxypentyl) phthalate (MECPP)
Mono(2-carboxy-hexyl) phthalate (MCMHP)

Di-iso-nonyl phthalate (DiNP) Mono-iso-nonyl phthalates (MiNP)
Mono(hydroxy-iso-nonyl) phthalate (MHiNP)
Mono(oxo-iso-nonyl) phthalate (MOiNP)
Mono(carboxy-iso-octyl) phthalate (MCiOP)

Adapted from [25].

2 | Environmental Epigenetics, 2018, Vol. 4, No. 3



placentation occurs under strict epigenetic control (reviewed in
[52]), making it a sensitive process for disruption by maternal
environmental exposures. Furthermore, as pregnancy pro-
gresses, toxicant-induced epigenetic modifications to genes in-
volved in placental function have the potential to alter
placental development and efficiency. For example, several
studies described here have reported associations between
chemical exposures and placental gene expression (Table 2), but
additional studies will be needed to assess the epigenetic basis
for these changes.

While experimental animal or cell studies assessing placen-
tal epigenetic disruption by BPA and phthalates are somewhat
limited, there is evidence that these chemicals target the mam-
malian placental epigenome. A study in mice showed that BPA
affected placental loss-of-imprinting and decreased both global
and CpG-specific DNA methylation [53], while also in mice,
DEHP was shown to increase maternal bias (via imprinting) of
the Rasgrf1 gene [54]. An in vitro study in 2 placental cell lines
(HTR-8/Svneo and 3A) showed that BPA treatment affected 25
and 60 (respectively) miRs [55], while two studies in HTR-8/
Svneo cells showed that treatment with MEHP (the primary oxi-
dative metabolite of DEHP) increased the expression of numer-
ous miRs, including miR-16, which was shown to mediate
MEHP-induced decrease in the BCL-2/BAX ratio, a measure of
cellular apoptosis [56, 57]. Given the findings from these mecha-
nistic studies, and the established role of epigenetics in placen-
tal and fetal development, researchers have begun the arduous
task of assessing associations between BPA/phthalate exposure
and placental epigenetic disruption in humans. Here we present
a comprehensive review of what is currently known about the
impacts of BPA and phthalates on placental outcomes in
humans, specifically focusing on epigenetic endpoints. In addi-
tion, we have provided examples and perspectives of future
directions for the field of environmental placental epigenetics.
To do this, PubMed was searched (through 1 May 2018) using
any combination of the following terms: “BPA,” “bisphenol A,”
“phthalate,” “phthalates,” and “placenta” or “placental.”
Although numerous studies in non-human placental tissues or
cells were identified, only studies with direct measurement of
placental physiological or molecular endpoints in human preg-
nancies were selected for review (n ¼ 18). Those only mention-
ing methodologies for chemical measurement within the
placenta, the placenta’s role in fetal outcomes, or review papers
(remaining n ¼ 38) were not included. Information extracted
from each study is reflected in the headings of Table 2.

Epigenetic Consequences of BPA or Phthalate
Exposures in the Human Placenta

To date, ten studies focusing on associations between placental
outcomes and BPA or phthalate exposures in humans have
measured epigenetic endpoints (shaded light yellow in Table 2).
As will be described in the sections below, these studies provide
evidence that the placenta is an epigenetic target of these
chemicals.

Placental Genomic Imprinting

One important and well-studied gene cluster linked to placental
and fetal development is placental IGF2/H19. Disruption of
methylation and imprinting status within the placental IGF2/
H19 domain has been associated with altered nutrient alloca-
tion and poor fetal growth [58]. Di(2-ethylhexyl) phthalate
(DEHP) is a plasticizer with widespread exposure in pregnant

women [59–61] that is used in food packaging, toys, medical
devices, and other PVC-containing products, and human expo-
sure occurs primarily from consuming processed and packaged
foods [14, 16]. Exposure to DEHP is most often estimated by
measuring the urinary concentrations of its major metabolites
(molar sum of MEHPþMEHHPþMEOHPþMECPP¼RDEHP) [62,
63]. A recent study in women with fetal growth restriction (n ¼
80) and healthy controls (n ¼ 101) assessed phthalates in third-
trimester first-morning urine, and observed that higher RDEHP
and 2 of its individual metabolites (MEHHP, MEOHP) were asso-
ciated with position-specific decreased methylation of placental
IGF2 at delivery in biopsies pooled from the maternal side. No
associations were observed for MEHP, mBP (metabolite of dibu-
tyl phthalate), or mMP (metabolite of dimethyl phthalate) [64].
After stratification of placentas by pregnancy outcome (fetal
growth restricted vs. healthy pregnancies), the negative associa-
tion between IGF2 methylation with urinary MEHHP, MEOHP,
and RDEHP persisted only in fetal growth restricted cases.
While it is unclear from this study whether the methylome in
fetal growth restricted pregnancies is especially sensitive to
phthalate exposure when compared to healthy pregnancies
(thus precluding a greater generalization to all pregnancies),
this study does suggest that DEHP may be associated with dis-
ruption of placental DNA methylation.

In another study, placental imprinting was assessed at birth
in placental samples (n ¼ 179) collected from the upper layer of
the placenta near the cord (primarily consisting of fetal cells) in
relation to first-trimester concentrations of 11 urinary phthalate
metabolites. Increases in either Rphthalate metabolites or Rlow
molecular weight phthalates were associated with decreased
methylation of placental H19 and IGF2 differentially methylated
region (IGF2DMR0), whereas increased deviation of allele-
specificity of the H19 gene was associated with RDEHP and
Rhigh molecular weight phthalate metabolites. Furthermore,
some findings were sex-specific, where increased MECPP,
MEHHP, MEHP, and RDEHP were associated with decreased
IGF2DMR0 methylation in females only [65]. While these find-
ings suggest that there may be a relationship between phthalate
exposure and placental imprinting in humans, the discrepancy
between gestational age at exposure assessment (first trimes-
ter) and methylation analysis (birth) is an important consider-
ation when interpreting these results in terms of the direct
effects of these chemicals on the placenta. There is evidence
that placental methylation increases across pregnancy [66–68],
and genomic imprinting may also be temporal. When compared
to human third-trimester placentas from term healthy pregnan-
cies, first-trimester placentas from elective terminations
showed some level of loss-of-imprinting (biallelic expression) in
the 14 genes tested, including IGF2/H19 [69]. Moreover, H19 has
been shown to be biallelically expressed until week 10 in
humans, when it becomes monoallelically expressed [70]. While
these temporal differences in imprinting could be due to mater-
nal contamination or could stem from a small number of cells
with low baseline methylation, these timing considerations are
especially critical for chemicals like BPA and phthalates that
have short half-lives, and for which there is considerable day-
to-day and within-day exposure variability [71–73]. Although
challenging, future studies would ideally assess exposure at
timepoints approximately age-matched to placental sampling.

Measures of Placental DNA Methylation

In a sub-sample from the study described above of women with
fetal growth restricted (n ¼ 55) and healthy pregnancies (n ¼ 64),
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increased MEHHP and
P

DEHP metabolites were also associated
with decreased placental LINE-1 methylation in women with
fetal growth restriction (also assessed in 8 pooled biopsies col-
lected at birth from the maternal side of the placenta) [74].
These results once again support the association of maternal
DEHP exposure with altered placental DNA methylation. In a
small study of 12 second trimester placentas obtained from a
tissue bank (therefore lacking demographic and sampling site
information), there was no relationship between the expression
of BPA metabolism-related genes and placental BPA concentra-
tion, or between average global % methylation assessed by the
LUMA assay and placental total or free BPA concentrations.
However, global LINE-1 methylation in 4 adjacent LINE-1 pro-
moter CpG sites assessed by pyrosequencing increased by 0.23%
and 0.27% with every 1 ng g�1 increase in total or free BPA (re-
spectively) [75]. These studies suggest that LINE-1 methylation
may be a sensitive measure of epigenetic disruption by BPA and
phthalates, and is perhaps more sensitive than global methyla-
tion, as discussed by authors in the above study. Although these
effects were rather small, a recent report suggests that caution
may be needed when dismissing small-magnitude effect sizes
in epigenetic outcomes in response to environmental chemicals
[76]. Therefore, additional studies are needed to investigate the
importance of these small EDC-induced epigenetic shifts for
placental and fetal development.

A recent study compared the placental villous methylome in
women who were characterized as having highest (n ¼ 7) vs.
lowest (n ¼ 9) total phthalate urinary concentrations (as a sum
of 23 urinary phthalate metabolites). 2214 CpG sites and 282
regions were differentially methylated between the high vs. low
phthalate groups. Overall, there were 39 gene-methylation cor-
relations, of which 29 had increased gene expression with de-
creased methylation, or vice versa. Gene expression and
methylation pathway analysis identified the ErbB pathway,
which has been shown to be critical for placental growth and
development, as being the top pathway that differed between
women in the high vs. low phthalate groups [77]. Although the
population in this study was quite small, and it is unclear
whether gestational ages were matched between the low vs.
high phthalate groups, one major strength of this analysis was
the use of placental tissues from elective terminations in the
first trimester, and concomitant urine collection for phthalate
assessment. While LINE-1 methylation appears to be a sensitive
marker of epigenetic disruption in general, additional larger
studies similar to the one above by Grindler et al. will continue
to improve our understanding of how BPA and phthalates
region-specifically impact the human placental methylome and
whether these outcomes have direct downstream consequen-
ces for placental function and fetal development.

Placental Expression of Non-Coding RNAs

Four studies in humans have reported associations between
BPA or phthalate exposures and placental miRs. In one study,
villous core placental samples were collected from healthy
pregnancies at term in an unpolluted area of Italy (n ¼ 40) or
from second-trimester abortions due to fetal malformations in
a highly polluted area of Salerno in southern Italy (n ¼ 40) [78].
BPA was measurable only in placentas of women from the pol-
luted area. Women from the polluted area had higher placental
expression of miR-146a, and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis identified 19 biological functions
associated with miR-146a target genes, including signal
transduction, cell differentiation, and enzymatic activity [78].T
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The obvious challenges for interpreting these results are the
gestational age differences between the exposed and unex-
posed placentas, and the presence of fetal malformations in as-
sociation with the BPA-exposed placentas. Authors did discuss
unpublished results suggesting the alteration of miR-146a with
BPA exposure was also observed in age-matched placentas
without fetal malformations, but additional data are needed to
confirm these findings. Furthermore, the Salerno area has sub-
stantial toxic waste dumping and air pollution [79], so it is likely
that BPA-exposed women were also concomitantly exposed to
many other environmental chemicals, making it difficult to
tease out contributions from BPA exposure alone.

Interestingly, a US study of 63 term vaginal births found
no associations between placental villous parenchyma BPA
concentrations and the 112 miRs found to be expressed in the
placenta, including those within the placenta-specific chromo-
some 19 microRNA cluster (C19MC, discussed in more detail
later) [80]. In another US-based study, BPA was assessed in 179
first-trimester urine samples, and placental samples were col-
lected at birth in the upper layer near the cord. In this study,
however, higher urinary BPA concentration was positively asso-
ciated with the expression of six miRs (Table 2) [81]. The null
findings in the Li et al. study and the positive associations ob-
served in the LaRocca study may be attributed to a variety of
factors, including the larger sample size in the LaRocca study
(179 vs. 63), as well as the assessment of urinary first-trimester
BPA vs. placental term BPA concentrations. The gestational tim-
ing of exposure assessment is critically important, but the deci-
sion to assess BPA in urine vs. within the placenta should also
be carefully examined. It has been suggested that there may be
preferential accumulation of BPA within the placenta [82, 83],
making studies that use urinary vs. tissue BPA assessment diffi-
cult to compare. This may be another important caveat to con-
sider in the Italian study discussed above. Given the major
differences in both exposure assessment (in tissue vs. urine)
and outcomes measured (different sets of miRs) between these
studies, additional data are still needed to establish precise con-
sequences of BPA exposure for placental miR expression.

The LaRocca study discussed above also assessed the associ-
ation of urinary phthalate concentrations with placental miRs
in 179 women. Fetal sex did not modify the associations be-
tween any phthalates and miRs. The sum of low molecular
weight phthalate metabolites (MEP, MnBP, MiBP) from first-
trimester urine samples was associated with a 0.10 (95% CI:
�0.18, 0.01) decrease in the DCt (normalized expression) of pla-
cental miR-185. When modeled individually, MEP seemed to
drive this negative association (�0.08 DCt; 95% CI: �0.15, �0.01).
Other summative phthalate measures were not associated with
placental miR expression, but 10 miRs were differentially asso-
ciated with individual phthalates, and there were moderate
associations between the expression of several miRs and the ex-
pression of selected placental genes [81]. The significance of
these changes in miR expression for placental function in
humans warrants future inquiry, as target genes for these miRs
in the placenta are likely to be numerous and studies into
the downstream functional roles of placental miRs are ongoing
[84–87]. However, overall, these studies suggest that both phtha-
lates and BPA may alter placental miRs, which likely has conse-
quences for protein translation and the resulting downstream
phenotypes.

One proposed approach for assessing placental function
across pregnancy is to measure placenta-specific miR clusters
(such as C19MC) that produce placentally exclusive miRs con-
tained in circulating exosomes [88]. The 56 miRs produced from

C19MC are encoded by 46 genes [88], shown to be regulated by
genomic imprinting [89], making it possible to distinguish pla-
cental exosomes from all others. These miRs have been pro-
posed as good biomarkers of placental health because several
miRs in the cluster have been linked to pregnancy complica-
tions [90], with studies suggesting roles of these miRs in regulat-
ing human trophoblast migration [91], as well as invasion and
interaction with the extracellular matrix [92]. Data related to the
use of exosomal miRs to assess associations of environmental
chemicals with placental health are still limited. However, a re-
cent small (n ¼ 10 twin pregnancies) study assessed 3 circulat-
ing placentally sourced miRs (identified a priori in a literature
search) in maternal plasma to assess associations with phtha-
lates and phenols. Authors reported that MBzP, but not other
phthalates, was positively associated with miR_518e, and that
several phenols (Table 2) were positively or negatively associ-
ated with the 3 measured miRs [93]. These data are promising,
and should be followed up by analyses in larger cohorts, assess-
ing a wider array of placenta-specific miRs. miRs are only one
type of non-coding RNAs, and a recent small study (from the
same 10 twin pregnancies described above) suggests that pla-
cental long non-coding RNAs (lncRNAs) may also be targets of
environmental chemicals. In this study, placental samples were
collected at birth within the chorionic plate near the cord inser-
tion cite, and many maternal urinary phthalate metabolites, in-
cluding MCNP, MEHP, MEHHP, MECPP, MEOHP, MBzP, MCOP,
MHiBP, and MiBP were positively correlated with placental
lncRNA expression [94]. lncRNAs have been shown to be impor-
tant during cell differentiations and human early embryonic de-
velopment [95–97]. Therefore, additional research in a larger
and more diverse population that would allow for controlling
for various demographic and lifestyle factors is warranted to
follow-up on the findings from this small pilot study. This
would allow assessment of whether lncRNAs mediate known
associations between phthalate exposure and adverse preg-
nancy/developmental outcomes.

Sex-Specific Placental Outcomes

The placenta undergoes sex-specific development [98–100],
which likely explains the observed sexually dimorphic placental
responses to a variety of maternal factors, including diet [101–
103], obesity [104], and stress [105, 106]. It is especially critical to
consider placental sex when assessing the impact of external
stressors on epigenetic endpoints, as there is evidence to sug-
gest that associations between placental epigenetic markers
and fetal outcomes may be sex-specific [107–109]. Human stud-
ies reporting sex differences in the placental response to BPA
or phthalates are limited, but they do suggest that placental/
fetal sex is a critical factor to consider when interpreting pla-
cental outcomes in response to these and other environmental
chemicals. As is summarized in Table 2, however, of the 18
studies discussed here, only 4 utilized appropriate statistical
approaches for assessing sex-specific placental responses to
BPA or phthalates, while 4 others did not. Five other studies did
not specify sex at all, and 5 controlled for fetal sex, making com-
parisons between sexes impossible.

In a study from Southeast China, cord blood and placenta
(from both the maternal and fetal sides) were collected from
women after delivery (n ¼ 124 in high-exposed group and n ¼ 59
in low-exposed group) to assess the mRNA expression of a fam-
ily of placental metallothionein (MT) proteins, a fatty acid trans-
porter (FATP1), and a fatty acid binding protein (HFABP). This
study showed that dimethyl phthalate (DMP) and diethyl
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phthalate (DEP) did not differ by sex in their associations with
any genes tested. However, DEHP was associated with MT and
MT-2A only in female placentas [50]. While this study highlights
the importance of considering placental/fetal sex, several fac-
tors must be taken into account when interpreting these find-
ings. First, phthalate diesters in this study were measured in
cord blood, but the recommended approach for assessing
phthalate exposure is to measure their metabolites in urine be-
cause (i) the diesters have been shown to be non-persistent in
humans; they are oxidized quickly and the monoesters are ex-
creted in urine, and (ii) parent phthalate compound contamina-
tion is difficult to avoid in the laboratory setting, and may
overshadow any parent compounds in blood [110]. A similar
limitation was also present in a recent study of 207 women
from Southwest China, reporting associations of higher cord
blood concentrations of DiBP, DBP, and DEHP with higher pla-
cental (sampled near the cord) PPARG protein at delivery, higher
DEHP with higher cord blood estradiol, and higher DBP and
DEHP with lower cord blood estriol [111]. More importantly for
assessing sex-specific outcomes, unlike the studies by LaRocca
et al., modification by fetal sex (interaction between exposure
and fetal sex) was not assessed prior to testing associations
stratified by sex. The Xu et al. 2015 study discussed next has a
similar statistical limitation. In women from an electronic-
waste recycling town (n ¼ 189–192) and from a reference town
(n ¼ 56–60), BPA was assessed in cord blood, and placental tissue
was collected at delivery from the central region to assess the
mRNA expression of leptin receptor and KISS1, which has been
shown to be important for placental invasion and gonadotropin
release [112] . Both transcripts were higher in BPA-exposed
female placentas relative to the reference group, while only
KISS1 was higher in placentas of BPA-exposed males [49]. A re-
cent study using a more appropriate statistical approach and
study design assessed the mRNA expression of eight placental
(from the fetal chorionic villi) genes at delivery and the concen-
tration of nine third-trimester urinary phthalate metabolites in
90 male and 90 female placentas. Overall, associations between
gene expression and phthalate metabolites were strongest for
MnBP and MiBP, and tended to be stronger for males than
females (see Table 2 for additional detail) [51]. While more stud-
ies using appropriate analytical and statistical approaches are
needed, these studies do suggest that there may be sexually di-
morphic associations between exposure to BPA and phthalates
and placental outcomes.

While the mechanisms behind these sex-specific associa-
tions are not well-understood, a recent large (n ¼ 2725) cohort
study reported that urinary phthalate metabolites (MBP, MMP,
MEHP, MEOHP, MEHHP, SumLMWP, and SumHMWP) were asso-
ciated with changes to placental breadth (the maximal diameter
orthogonal to the maximal length of the placenta surface), sur-
face area, thickness, and the difference between length and
breadth. Importantly, many of these associations were only ob-
served in male or female placentas. For example, positive asso-
ciations of placental thickness with phthalates in the second
trimester (MBP, MEHP, MEHHP, and LMWP) and third trimester
(MBP and MEHP) were driven by effects in males. Furthermore,
in repeated measures analyses, increased MBP, MEHP, MEOHP,
LMWP, and HMWP concentrations were associated with larger
placental thickness in males, while higher MBP, MEHP, and
MEHHP concentrations were associated with longer placental
length in females [113]. David Barker was one of the first to
suggest that placental morphology (size, width, breadth) is an
important predictor of fetal development [114–116]. Given the
clear associations between placenta morphology and fetal

development, this study may provide an exciting opportunity
for future research to investigate whether these measures, to-
gether with upstream epigenetic disruption, mediate known
sex-specific associations between phthalate or BPA exposure
and fetal outcomes.

Summary and Conclusions
Placental Epigenetic Disruption by BPA and Phthalates

The studies reviewed here provide evidence that exposures to
BPA and phthalates are associated with changes to placental
epigenetic endpoints (e.g. genomic imprinting, global DNA
methylation, and miR expression). Given the fundamental role
of the placenta in maternal and fetal health, substantive addi-
tional research is needed to understand how environmental
toxicants drive human placental epigenetic shifts. Specifically,
more research is needed in humans to understand whether
these chemicals interact with hormone receptors to disrupt
downstream molecular signaling and alter the chromatin state
of placental cells, or whether they create a microenvironment
within the placenta that is more conducive to epigenetic disrup-
tion [for example by increasing reactive oxygen species (ROS)
or inflammation]. While certain dietary components (e.g.
folate) indirectly contribute to DNA methylation by participat-
ing in 1-carbon (methyl group) metabolism [117], and the
metabolic status of a cell drives the modifications on histone
tails [118–120], little insight is available regarding the precise
epigenetic actions of EDCs. The reasons for this are numerous,
but include the fact that exposure assessment across pregnancy
is challenging, and investigating direct relationships between
chemical exposures and placental epigenetic disruption are
complicated by the placenta’s unique epigenetic signature. This
includes temporal shifts in epigenetic marks across gestation
[121], relative genomic hypomethylation driven by the pla-
centa’s unique methylation machinery signature [122–125],
differential genomic imprinting [126], and seemingly unique in-
tragenic vs. gene body methylation patterns [127] when com-
pared to other tissues (reviewed extensively in [128]). If the goal
is to more-deeply interrogate the epigenetic effects of environ-
mental chemicals on the placenta, entirely unique approaches
are needed for both the design of studies (e.g. timing of expo-
sure and endpoint assessment) and the interpretation of
placental epigenetic outcomes (e.g. sexual-dimorphism and epi-
genetic shifts across pregnancy). Although modeling human
exposures and development in experimental animal and cell
models is unquestionably challenging, such models could be
helpful for establishing mechanistic hypotheses that can be
tested in humans.

Limitations of Current Studies and Future Directions

The major challenges for interpreting results from currently
available research are as follows:

1. Discordant timing of exposure and placental endpoint analysis, es-
pecially as it relates to measurement of epigenetic endpoints.

2. Differences in the matrix (tissue vs. urine vs. plasma) used for ex-
posure analysis. As discussed in the previous sections, the
non-persistent nature of bisphenols and phthalates means
that the interpretation of results depends on the biological
matrix used for exposure analysis.

3. Absence of sex-specific analyses, or use of inappropriate statistical
analysis to assess sex differences. Future placental studies
should include data from both sexes to accurately assess the
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potential for sex-specific associations of chemical exposure
with placental outcomes. Furthermore, caution may be war-
ranted when drawing conclusions from currently available
studies that do not distinguish between the sexes, that in-
clude only one sex in the measured placental outcomes, or
that do not utilize appropriate statistical approaches to as-
sess sex differences.

4. Differences in placental sampling paradigms (especially important
for consistently assessing molecular endpoints). While most hu-
man studies reviewed here carefully reported their tissue
collection protocols, the sampling procedures differed
greatly across studies (Table 2). A study of full-term human
placentas assessed the expression of two genes disrupted by
phthalates in other tissues (CYP19 and PPARg). Samples were
collected from 12 placental regions, at various times after
delivery, and mRNA expression data were normalized to two
housekeeping genes or total RNA. When expression from all
12 sampling sites was considered, within-placenta variabil-
ity was actually greater than between-placenta variability
(63–99% vs. 1–37%, respectively). The expression of both
transcripts decreased within 25 min of delivery, which the
authors suggested may be due to increased hypoxia, and
variability differed greatly depending on the housekeeping
gene selected for normalization (with 18S determined to be a
better internal control). The authors concluded that sam-
pling site, timing of analysis after delivery, and the selection
of an appropriate internal control for qPCR analysis must be
optimized to best assess the impact of external factors, in-
cluding chemical exposures, on the placenta [129]. These
considerations are also critical for assessing large-scale pla-
cental epigenetic outcomes, including DNA methylation and
other nucleic-acid based analyses [130–133]. To limit both
within- and between-study variability, it may be necessary
to establish widely accepted sampling and analytical quality
standards, which include consistent sampling location (dis-
tance from the cord, biopsy depth from the surface) and
time from placental delivery to sampling, as well as selec-
tion of appropriate analytical controls (e.g. housekeeping
genes) for gene expression and other molecular analyses.

5. Small sample sizes in some studies.
6. Lack of information about placental epigenetic outcomes in early

pregnancy.

To circumvent some of these challenges, in addition to the
suggestions provided above, non-invasive approaches would al-
low for the assessment of placental function throughout preg-
nancy, for the concurrent measurement of both exposures and
placental function, and for the measurement of a variety of mo-
lecular, genetic, and epigenetic markers to correlate with both
exposure and fetal growth measures. Circulating miRs have
long-been considered as promising biomarkers for the detection
of cancer and other diseases [134]. As discussed in the previous
section, potentially more important for assessing effects of en-
vironmental exposures on placental function and/or epigenetic
disruption is the recent interest in circulating vesicles/exo-
somes (and the miRs/other material they contain) as noninva-
sive biomarkers of placental function [42, 121, 135, 136].
Numerous challenges and uncertainties still exist for using
these circulating biomarkers, and while their assessment can-
not replace animal/cell models for studying mechanisms asso-
ciated with environmental exposures, their presence in blood
provides a potentially exciting method for non-invasively
assessing the effects of environmental chemicals on the human
placenta across pregnancy. There is recent evidence that these

biomarkers also exist in urine, and the feasibility of assessing
placental exosomes in maternal urine is also being explored
(unpublished findings from the Illinois Children’s
Environmental Health Research Center).

Other less direct approaches for the non-invasive temporal
measurement of placentally relevant endpoints may also con-
tribute to our knowledge of the effects of environmental chemi-
cals on placental function. While these markers do not directly
measure the epigenetic state of the placenta in response to en-
vironmental exposures, they are important for developing fu-
ture epigenetic studies based on established mechanisms of
actions of BPA and phthalates within the placenta. In a study of
mothers who delivered preterm (n ¼ 130) or at term (n ¼ 352),
urinary BPA and phthalates were assessed at up to 4 points
across pregnancy, as were two plasma angiogenic markers: pla-
cental growth factor (PlGF), a member of the vascular endothe-
lial growth factor (VEGF) family important for placental
vascularization [137], and soluble fms-like tyrosine kinase-1
(sFlt-1), a VEGF receptor splice variant associated with de-
creased angiogenesis [138]. No associations were found for
plasma sFlt-1 and urinary phthalates, however, increased uri-
nary MECPP and

P
DEHP were significantly associated with de-

creased PlGF, while increased mono-ethyl phthalate (MEP) was
significantly associated with increased PlGF. Furthermore, an
increase in urinary MEHHP, MECPP, and

P
DEHP was signifi-

cantly associated with an increased plasma sFlt-1/PlGF ratio.
BPA was positively associated with sFlt-1 and the ratio of sFlt-1/
PlGF in both crude and adjusted models [139]. Placental hor-
mones may also be important non-invasive markers of placen-
tal health in response to environmental chemicals. In 541
women, maternal serum hCG, which is released from the pla-
centa to initiate testosterone production in the male fetus [140],
was positively associated with MnBP, MBzP, and MCOP in
women carrying a female fetus, and negatively associated with
these chemicals in women carrying a male fetus [141].
Furthermore, hCG was shown to partially mediate associations
between maternal urinary phthalate concentrations and ano-
genital distance, a marker of androgen status in the fetus [142].

In conclusion, the development of non-invasive measures of
placental function in humans should be a high priority, as has
been clearly highlighted as part of the The Human Placenta
Project [12]. Such approaches will be needed to further our under-
standing of the impacts of prenatal chemical exposure on pla-
cental outcomes and to begin unraveling the proposed role of
epigenetic changes in mediating these associations. Regardless
of the types of assays or approaches that become available, the
studies reviewed here suggest that moving forward, it will be
critical to assure measurement accuracy and relevance of the se-
lected placental biomarkers, as well as consideration of placental
sex. Such progress will also be indispensable in expanding our
understanding of the placenta’s role in mediating relationships
between the environment and fetal health.
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