
Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 139

JAMIAThe Practice of Informatics

Application of Technology n

Managing Attribute–Value
Clinical Trials Data Using the
ACT/DB Client–Server
Database System

PRAKASH M. NADKARNI, MD, CYNTHIA BRANDT, MC, MPH, SANDRA FRAWLEY, PHD,
FREDERICK G. SAYWARD, PHD, ROBIN EINBINDER, BS, DANIEL ZELTERMAN, PHD,
LEE SCHACTER, MD, PERRY L. MILLER, MD, PHD

A b s t r a c t ACT/DB is a client–server database application for storing clinical trials and
outcomes data, which is currently undergoing initial pilot use. It stores most of its data in entity–
attribute–value form. Such data are segregated according to data type to allow indexing by
value when possible, and binary large object data are managed in the same way as other data.
ACT/DB lets an investigator design a study rapidly by defining the parameters (or attributes)
that are to be gathered, as well as their logical grouping for purposes of display and data entry.
ACT/DB generates customizable data entry. The data can be viewed through several standard
reports as well as exported as text to external analysis programs. ACT/DB is designed to
encourage reuse of parameters across multiple studies and has facilities for dictionary search and
maintenance. It uses a Microsoft Access client running on Windows 95 machines, which
communicates with an Oracle server running on a UNIX platform. ACT/DB is being used to
manage the data for seven studies in its initial deployment.

n JAMIA. 1998;5:139–151.

The Yale Cancer Center (YCC) conducts numerous
studies, with different numbers of patients and differ-
ent design complexities. While small studies can be
managed with simple tools (e.g., flat-file managers or

Affiliation of the authors: Center for Medical Informatics (PMD,
CB, SF, FGS, RE, PLM) and Yale Cancer Center (DZ, LS), Yale
University School of Medicine, New Haven, CT.

This work was supported in part by NIH grants G08 LM05583
and T15 LM07756 from the National Library of Medicine, with
additional funds provided by the Yale Comprehensive Cancer
Center and the Yale School of Medicine.

Correspondence and reprints: Prakash M. Nadkarni, MD, Cen-
ter for Medical Informatics, Yale University School of Medicine,
P.O. Box 208009, New Haven, CT 06520-8009.
e-mail: ^Prakash.Nadkarni@yale.edu&

Received for publication: 6/12/97; accepted for publication:
9/22/97.

spreadsheets), complex trials need sophisticated da-
tabase expertise not readily available to individual in-
vestigators. A single system for managing multiple tri-
als regardless of complexity can have significant
benefits besides pooling of resources for data man-
agement expertise. These include standardization and
reuse of data elements and controlled vocabularies; a
common user interface for entering, editing, display-
ing, and reporting data; and the potential for pooling
data from multiple studies for meta-analyses.

After evaluating several commercial clinical trials–
management packages and deciding that they were
not fully suitable to YCC’s requirements, we created
the Adaptable Clinical Trials DataBase (ACT/DB),
which is currently undergoing initial pilot use. As
guidelines, we used the numerous excellent descrip-
tions of production clinical patient record systems in



140 NADKARNI ET AL., Managing Clinical Trials Data

the medical informatics literature. We also had signif-
icant help from the Biostatistics Group at the Sloan-
Kettering Memorial Cancer Center in New York City.
This group, which has been operating a production
cancer protocols database for several years, willingly
shared their ideas and design with us. ACT/DB’s de-
sign was subsequently generalized to handle trials not
limited to oncology (and tested in collaboration with
the Yale Clinical Trials Office) and to record data for
certain types of outcomes research. After initial im-
plementation and evaluation as a standalone appli-
cation, it was recently ported to client–server mode.

ACT/DB is primarily a system for the gathering, ed-
iting, display, and reporting of information. It lets the
investigator define a protocol for data collection and
automatically generates graphical user interface (GUI)
forms for data entry. ACT/DB allows multiple itera-
tive cycles of rapid creation and modification of pro-
tocols and their associated forms, followed by testing
with real or simulated data. Almost any design deci-
sion can be changed, so that an investigator can easily
explore alternative ways of structuring (and permit-
ting entry of) the same parameters. ACT/DB is de-
signed to maximize reuse of components of existing
protocols (forms, parameters, and so on) to allow new
protocols to be defined rapidly.

ACT/DB is implemented with an Internet-accessible
Oracle Server running on a UNIX workstation at the
back end, and Microsoft Access 97 running on per-
sonal computers at the front end. In this paper we
describe the ACT/DB architecture, the way in which
we have handled design issues related to the entity–
attribute–value (EAV) database model, and how
ACT/DB is used.

Background

Clinical trials represent an active area of informatics
research.1 Numerous aspects of trials have been stud-
ied, among them methods of meta-analysis of pooled
trials,2 managing work flow in multicenter trials,3 cre-
ating a standardized structure for recording trial re-
ports,4 assuring the quality of keyed medical research
data,5 and means of data validation.6,7 Innovative re-
search toward building applications that feed into
clinical trials management systems include voice mail
integration8 and integration with screening systems
for patient eligibility.9

Several systems have been built by researchers for
data management of large clinical trials. Many of
these, like that described by Pradhan et al.,10 have
been built to address the needs of a single trial, but a
few have been generalized to address the more diffi-
cult problem of managing multiple trials (e.g., inter-

active database management11 and the system created
at Sloan-Kettering Memorial Cancer Center, men-
tioned earlier.)

While several clinical trials management packages12,13

are commercially available, they have some limita-
tions. Their user interfaces are relatively unsophisti-
cated: some still use terminal interfaces. Some pack-
ages have proprietary or inadequately documented
architecture, making customization by anyone other
than the vendor very difficult. Others generate study
templates based on a single–flat-file design, which
makes them inappropriate for data that are naturally
relational, e.g., studies in which sets of parameters (or
attributes)* are sampled redundantly at varying and
multiple time points. In general, commercial packages
need careful and extended evaluation before purchase
by institutions with access to programming expertise,
which have the option of building their own system.

Design Objectives

Our system had to be robust and easy for clinical in-
vestigators and their staff to learn and use. It had to
allow the rapid setup of new studies (within a couple
of hours if existing study elements were reused, or a
few days if a completely new domain was used). Easy
modifiability of study design was mandatory, because
study designs are often in flux. The end users needed
to be able to generate reports (or export accumulated
data to analytic programs) with minimal effort. A true
GUI was necessary for ease of use.

While providing maximal built-in functionality, the
system had to be customizable to meet the needs of
individual clinical departments. Because data, trans-
action, and concurrency loads were expected to be
low, speed and efficiency, while desirable, were less
important than ease of use. The design of ACT/DB,
while primarily for clinical trials, had to handle the
highly heterogenous attributes typical of a clinical pa-
tient record, because an oncology trial often continues
for several years and many of the clinical events need
to be tracked.

System Description

ACT/DB Architecture

The ACT/DB architecture is summarized in Figure 1.
It is divided into server and client components. The
server holds four kinds of tables:

*In this paper we will use the term ‘‘parameter’’ as synonymous
with ‘‘attribute.’’



Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 141

F i g u r e 1 A diagram of the ACT/DB architecture. The
database server and the forms server reside on different
machines because they require different operating sys-
tems (UNIX and Windows NT, respectively). On the
database server, the dictionary tables are central to the
operation of the system, being consulted in virtually
every database operation.

n Dictionary tables, which are study-independent, con-
tain definitions of the parameters and their logical
grouping and ordering for the purposes of display
and reporting of data.

n Vocabulary tables contain externally derived con-
trolled vocabularies. An example of a controlled
vocabulary in ACT/DB is COSTART (Common
Standard Thesaurus of Adverse Reaction Terms, cur-
rently used for reporting by the FDA, and shortly to
be superseded by an international system).

n EAV data are stored in a ‘‘normalized’’ form (i.e.,
with minimal data redundancy). Two forms of EAV
data are managed: data that have a common struc-
ture across all studies, and data whose structure
varies across studies. Examples of the former are
inclusion and exclusion criteria for adding a patient
to a trial, and treatment with standard therapeutic
agents defined as part of the study protocol. Here,
the data are segregated into individual tables based
on function (e.g., there is a table for on-protocol
treatment history), and there are few such tables.
Data whose structure varies across studies include
all the evaluation parameters recorded during a
study. (Many of these parameters are study-spe-
cific.) Here, information common to all the pa-
rameters in a single clinical event (patient ID, study
ID, start and end event times) is stored in higher-
level tables, while information about the individual
parameters gathered during that event is stored in
datatype-specific tables, which are described below.

n Non-EAV data, such as basic patient demographics
(name, sex, etc.), are stored in orthodox relational

form. Such information is homogeneous in struc-
ture and less of a natural fit to EAV structuring.
Also, we wished to explore ways in which EAV and
non-EAV information can coexist. Production sys-
tems will always have legacy non-EAV data on
which existing applications depend, and such data
must be usable without conversion to EAV form.

The client component consists of display tables to tran-
siently capture EAV data, the forms associated with
these tables and, most important, the code to manage
client–server communication. Forms are managed
through a network-accessible Windows NT–based
Version Control server.

EAV-based Design Issues in ACT/DB

Most mainstream relational database engines have an
upper limit (typically 255) on the number of columns
per table. With an orthodox database design (one col-
umn per fact) numerous tables would be needed, and
more would constantly need to be added as the num-
ber of recorded parameters increased. Only a rela-
tively small number of positive and significant nega-
tive findings, however, are actually applicable (and
recorded) for a given patient. As a result, the vast ma-
jority of columns would be empty (null), resulting in
considerable wastage of space. Furthermore, any at-
tempt at presenting consolidated information for a
single patient (into a report, for example) would re-
quire navigating all these tables and looking for non-
null fields.

This situation is similar to the computer-science prob-
lem of sparse array representation. The equivalent da-
tabase design solution is row modeling. Here, data on
a single entity (e.g., patient) are conceptually repre-
sented as multiple rows in a single table with few
columns, rather than as a single row of data spread
across multiple tables and columns. This design is
also called the entity–attribute–value (EAV) design, be-
cause each row holds information on the entity (e.g.,
patient ID, visit, date), the attribute (the name or ID of
the parameter being recorded), and the value of the
parameter. To retrieve all facts on a patient, one sim-
ply searches the entity columns for the patient ID, or-
dering all rows by date if necessary.

Because of its structural simplicity, the EAV design
is popular in clinical databases. Production data-
bases using EAV components include the HELP sys-
tem,14 the Columbia-Presbyterian Medical Center’s
(CPMC’s) clinical repository,15 a system for tracking
the care provided to a homeless population in the
greater Boston area,16 DEC-RAD,17 a radiology pack-
age, and Oracle Clinical,13 a commercial package for
clinical trials management. Attribute–value pairs are



142 NADKARNI ET AL., Managing Clinical Trials Data

also used in World Wide Web ‘‘cookies,’’18 which store
state on the client and circumvent the stateless nature
of WWW communication.

Successful operation of an EAV database requires man-
agement of the attributes. This is accomplished
through a set of tables that make up an application-
specific (as opposed to vendor-supplied) data dic-
tionary. The dictionary component itself is often struc-
tured in EAV fashion. For example, the CPMC system
uses the Medical Entities Dictionary (MED).19 While
EAV design is storage-efficient, it introduces compli-
cations with respect to table representation, display of
data, query of data, and data input. In our system de-
scription below, we describe each problem briefly and
discuss our design in the light of existing approaches.

Table Representation

While EAV information is stored conceptually in a sin-
gle table, in reality databases are strongly typed. That
is, a column can store only data of a single datatype
(e.g., integer, floating-point, string, or date). Some da-
tabases (e.g., Oracle Clinical and early versions of
HELP) use a single structure for all EAV information.
Such a design achieves simplicity by coercing all the
other simple datatypes into the least common denom-
inator (i.e., string). This prevents efficient indexed
searching based on parameter values. Value-based in-
dexing can be important in queries aimed at rapidly
identifying patients with parameter values lying
within or beyond a specified range. It also becomes
important when an EAV design is used as the basis
of a large-scale data warehousing application and
needs to support fast value-based searching. (An in-
dex on numeric values that have been coerced into
strings is not very useful, because of a different sort-
ing order: the ASCII string ‘‘123’’ is less than the string
‘‘23,’’ even though it is numerically greater.)

Furthermore, this design deliberately sacrifices the
ability to store long text (so called ‘‘Memo’’ fields) or
complex Binary Large OBject (BLOB) data such as a
histopathology slide or a chest radiograph.† In to-

†A BLOB or long text field cannot do double-duty as a simple
field, because of the way such data is physically organized. It
is typically allocated on disk in units of ‘‘pages’’ rather than
individual bytes. Page sizes vary from 2K to 32K (in some da-
tabases, page size is configurable). Thus, with 8K pages, an ob-
ject that is actually 12K in size occupies 16K. A larger page size
results in more space wastage but faster retrieval time. In any
case, the relative wastage of space may be modest when dealing
with 100K objects, but is unacceptable when storing individual
numbers or short text. Additional limitations exist on such ob-
jects. Many vendors do not allow more than one BLOB/long
text field per table. Also, BLOBs and long text are ‘‘second-
class’’ objects in that their direct manipulation often cannot be
done through the native data manipulation language (SQL), but
requires working through a complex programming interface.

day’s Web-oriented, multimedia-influenced world,
with increasingly affordable disk storage costs (10
cents per megabyte or less) and desktop computing
power, there is little justification for not supporting
BLOBs when the underlying database engine is ca-
pable of handling such data.

ACT/DB segregates the EAV data into six tables,
based on the datatype of the attribute: integer, float-
ing-point, dates, short text (less than 256 characters),
long text (up to 32,000 characters), and BLOB. (The
inclusion of dates as EAV data is, in general, discour-
aged because ACT/DB has another means of tracking
date–time information, as described later. EAV dates
should be used only for isolated facts that will not be
used for chronologic reporting, such as ‘‘date of
menarche’’ in a gynecologic history.)

All six tables have an identical structure except for the
datatype of the value field. The first four EAV tables
have an index on the value column. The integer table
is also used to store Boolean data and enumerated
data. (We discuss enumerated and BLOB data in more
detail below.) The ACT/DB data dictionary records
the datatype of each parameter so that the appropriate
EAV table may be accessed for querying.

Attribute Grouping. As described above, all attributes
are atomic. However, many attributes are related to
each other because they refer to the same clinical
event. Consider, for example, radiotherapy. For each
radiotherapy course (a separate event), the attributes
of interest are the dose, the site, and the best response.
One attribute by itself is relatively meaningless with-
out the others.

Therefore, the study designer can aggregate attributes
into groups and can also specify whether the group
occurs an indefinite number of times (as in the above
example) or just once in a given phase of the clinical
trial. Groups are further aggregated into clusters, one
cluster corresponding to all the groups that are to be
displayed, or edited, on a single form. The designer
specifies the ordering of groups within the cluster and
the ordering of attributes within the group. This or-
dering information is used by ACT/DB’s form gen-
erator, described later.

There is a many-to-many relationship between the at-
tributes, groups, and clusters. This is because in dif-
ferent studies, different clusters may share the same
attributes. In the interests of standardization as well
as study design throughput, however, designers are
encouraged to reuse existing clusters and groups
rather than create new groups with existing attributes.
In practice, therefore, most of the data follows a hi-
erarchic relationship.



Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 143

Data Display

It is generally desirable to present EAV data as though
they were stored in orthodox format—one column
per fact. Apart from being easier to look at, such a
format is required for analysis by statistical and
spreadsheet packages. If EAV storage is regarded as a
column-to-row transformation, then display generally
needs the reverse (row-to-column) transformation. If
such transformation needs to be done regularly, some
form of automation is desirable. One way to automate
reverse transformation is through database views
(predefined queries), with the EAV tables participat-
ing in multiple self-joins. Johnson et al., in their de-
scription of the CPMC system architecture,20 mention
the possibility of predefined views customized to in-
dividual classes of users. Packages like Oracle Clinical
allow a database manager to generate ‘‘canned’’ views
for sets of parameters.

The major limitation of study-specific views in an
EAV database is that the number of views needed by
different users may increase nonlinearly with the
number of parameters in the database. (This problem
is noted in Johnson et al.20) Furthermore, in the case
of clinical trials, each time a new study is defined in
the database, additional canned views need to be cre-
ated. In a situation where dozens of studies are active,
simply managing such views can be a major under-
taking.

When numerous clinical parameters need to be ex-
tracted in a single operation, an additional problem
arises. When the same EAV table is used multiple
times in a view by repeatedly joining with itself, each
additional use of the table is treated by the database
engine as if it were a new table. Most database en-
gines limit the number of tables participating in a
multitable join. (For example, Sybase has the rather
small limit of 16.) Working around such limits man-
ually requires inelegant solutions, such as creating
temporary tables in multiple steps to hold interme-
diate results and joining these temporary tables to
each other. Automating such operations then requires
writing study-specific stored procedures (server-based
subroutines), which again become increasingly hard
to manage as they increase in number. (Very few pack-
ages support SQL-3’s package mechanism for modu-
larization of server subroutines.)

Predefined queries run somewhat faster than dynamic
SQL queries because they are ‘‘compiled’’ on the
server into a query execution plan. Such performance
enhancements are not, however, guaranteed to be dra-
matic. Complex joins involving a large number of ta-
bles may not run significantly faster than a number
of simple queries, each involving only a few tables.21

Especially if the total volume of the returned data is
modest, it may be as efficient (or more efficient) to
issue a series of simple queries and assemble the re-
turned data on the client.22

In designing ACT/DB, we decided that the improved
performance of study-specific queries involved too
much maintenance overhead. As a result, ACT/DB
uses a small number of study-independent views and
lets the user select parameters, or sets of parameters,
through a list-selection interface. The result is gener-
ation of dynamic SQL, which is sent to the server. The
captured data are sent in EAV form to the client,
where they are converted to columnar form for out-
put.

ACT/DB displays data to the user in two ways. Pa-
rameter values gathered during an individual clinical
event are shown on forms, where they can be edited.
Data for an entire study are presented through reports
of several kinds. Some of these reports (e.g., those re-
lating to a single patient) present the data in attribute–
value form, while others (e.g., reports on numerous
patients in a single study) use columnar form. Al-
though ACT/DB is not primarily an analytic tool, it
can export columnar data into text files for direct im-
port into spreadsheet and statistical packages.

Data Input

Input requirements for EAV data are similar to dis-
play requirements. It is desirable to create the illusion
of an orthodox database design. The ‘‘forms’’ design
components of commercial database packages are in
fact geared toward such a design, with one editable
form object (e.g., text box, check box) corresponding
to one column in a table. Because each fact describing
a patient is stored as a separate row in an EAV table
(with all attributes and values in the same conceptual
columns), the EAV design is not well matched for
straightforward form-based data entry per se.

Two approaches have been used to address this prob-
lem. In one, protocol- or department-specific orthodox
tables are the basis of forms for data entry. Such tables
may also serve the purpose of operational use within
a department. The information thus supplied is then
translated through custom-designed (but straightfor-
ward) programs into EAV form for storage at a remote
(typically, an institution-wide) repository. The second
approach, in effect, allows direct data entry and ed-
iting of the EAV data.

ACT/DB’s Form Generation Architecture. ACT/DB
uses the second approach. The protocol designer spec-
ifies what facts are to be gathered in a form. (The de-
signer does this by editing the data dictionary con-



144 NADKARNI ET AL., Managing Clinical Trials Data

tents through forms that are accessible to users with
design privileges.) ACT/DB uses tables that reside
only on the Access client to transiently capture EAV
data from the server for an event and present it to the
user in a ‘‘flattened’’ (i.e., orthodox) view. These tables
are viewed through the generated forms.

One such table is used for the main form, and up to
five tables can be used for subforms that are embed-
ded in the main form. Subforms are used for groups
of parameters that may be repeated a definite or in-
definite number of times in a single case report form.
For example, in a cancer therapy protocol when we
record ‘‘past therapy,’’ we may wish to record multi-
ple instances of past surgery, past radiotherapy, and
past chemotherapy, with details specific to each. Each
of these is entered in its own subform, because a given
patient may have zero or more instances of a partic-
ular form of therapy. Another example is a pharma-
cokinetic study where blood samples are collected at
a fixed number of intervals, the actual number and
timing of the samples depending on the study pro-
tocol.

These client tables have fields with a simple naming
convention: a single letter indicating their datatype
and two numbers indicating a sequential number.
(Thus, the second string field has the name S02.) For
a given form, the mapping between individual pa-
rameters to be entered or viewed on the form, and the
fields on the client that will transiently hold the pa-
rameter values, is generated automatically during
form creation. (This mapping is stored in a server ta-
ble.) When new clinical data are added or edited, the
mapping allows the flattened data in the file to be
translated into EAV form and sent to the server. When
existing clinical data are to be viewed, EAV data are
translated, again through the mapping, into flattened
data that are transiently captured in the client tables.

ACT/DB allows the protocol designer to generate a
form with a single button click after the parameters
for that form, and the order in which they are to be
presented, have been specified. These forms have
standard GUI components (text boxes with vertical
scrolling, check boxes, pull-down menus, subforms),
are reasonably esthetic, and have a consistent appear-
ance. Furthermore, the default fonts, character sizes,
and colors for form titles, form section headers, labels,
and text boxes can be altered (by interactive editing
of entries in a ‘‘preferences’’ table) if the user so de-
sires. The forms should require modest, if any, cos-
metic alteration before they can be used in simulation
or production mode. If necessary, they can be altered
using Microsoft Access form design tools.

A limitation of our approach is that the number of
objects on the form that correspond to parameters is
limited to the maximal number of fields that an Ac-
cess table can hold, which is 255. (In practice, this is
significantly less: for example, the ‘‘main form’’ table
can store up to sixty integer parameters but only three
BLOB parameters and ten long-text parameters.) This
is not a significant limitation, because all forms map
to the same display tables, and there is no limit to the
number of forms per study.

Part of a form, and the mapping between fields on the
form and records in the EAV tables, are illustrated in
Figure 2.

Ad Hoc Query

Closely coupled to the task of EAV data display is ad
hoc query. No existng package seems to support ad
hoc query of EAV data on arbitrary, complex Boolean
criteria. This is understandable, because query of EAV
data is not very efficient compared to query of tables
in orthodox columnar form. Because facts on multiple
parameters are stored in a single table or structurally
similar tables, Boolean searches that combine multiple
parameters must perform numerous self-joins on the
EAV tables through relatively expensive row-based
set unions, intersections, and differences for the And,
Or, and Not operations respectively. These operations
have not received much support, let alone efforts at
optimization, among commercial database engines.
Keyword support for intersection and differences was
added to the SQL standard only in SQL-92.23 Among
mainstream database engines, there is very limited
support for all three operators: even Oracle 7 uses dif-
ferent keywords for intersection and difference.24

We are currently working on an ad hoc query module
for ACT/DB. This module is currently in prototype
stage, and it is too early to tell whether our efforts
will be entirely successful. Our approach is based on
a GUT rather than a query language. (While poten-
tially less powerful than a language, GUIs are simpler
to implement.) The interface lets the user query the
EAV data as though they were a single orthodox table
with a very large number of columns. The system con-
verts the user’s complex Boolean operators into the
appropriate set operators, with each clause in the
query being converted into a SELECT on the EAV ta-
ble corresponding to the parameter in the clause.

There are numerous complications in the ad hoc
query of EAV data. For example, semantic correctness
of queries must be ensured by restricting relational or
aggregate operators to those appropriate to a given
parameter’s datatype, and a query generator usually



Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 145

F i g u r e 2 Two-way mapping between the fields on a form and the EAV tables in the database. The top half shows
part of a form (in Form Design mode, without data). The lower half shows the data that will be created when the
fields are populated. Note that 1) The study and patient ID are known because they have been specified in advance
from a previous form. 2) This cluster has two groups (GenExam and PhysExam) because they reflect different clinical
events, which may be carried out by different persons (e.g., nurse and physician) on different days. 3) Fields in the
form map to EAV tables as follows: R01..R03 map to the EAV Real table, I01..I04 to the Integer table, S01..S03 to the
String table. Attribute, group, cluster, and study names are shown for simplicity, but unique integer identifiers are
actually stored in these places. Also, the information is actually stored in at least three different tables: one for the
cluster, one for events within the cluster, and one or more in the attribute-value tables themselves. For simplicity, the
three have been combined in the diagram into a single view. 4) The fields EV01 and EV02 store the date/time stamp
for the GenExam and PhysExam events, respectively. (In the data shown, these are 1/2/96 and 1/3/96.) 5) Only non-
null values are stored in the database. In the example, under General Examination, general appearance and results of
the eyes/ENT examination were normal, so the only abnormality to be described was for the Head. Therefore, only
the S02 field is populated.

needs to create intermediate temporary tables to pro-
cess highly complex queries. These issues are beyond
the scope of this paper.

Data Management in ACT/DB

We now describe how ACT/DB manages different
kinds of data, as well as controlled vocabularies and
the contents of its data dictionary.

Management of Enumerated Data and Controlled
Vocabularies

Many clinical parameters are coded or scored for ease
of subsequent analysis. For example, a blood product
transfusion may be classified as whole blood, plasma,
RBC, WBC, platelet, or other. A study designer might

choose to codify severity of pain as absent, mild, mod-
erate, or severe. In each case, each identifying phrase
is associated with an integer (for example, the codes
on the pain scale might be 0, 1, 2, and 3, respectively).
‘‘Blood transfusion type’’ is a nominal parameter (in-
dividual codes can only be compared with test if they
are the same or different), whereas ‘‘pain severity’’ is
ordinal (codes can also be compared for relative mag-
nitude). While numeric codification is useful, it is gen-
erally preferable, in the interests of transcription ac-
curacy, to let data-entry persons view and select
descriptive phrases.

ACT/DB lets the user designate ‘‘choice sets.’’ Each
member of a choice set has two components, a nu-
meric code and a descriptive phrase. A choice set can



146 NADKARNI ET AL., Managing Clinical Trials Data

be associated by the designer with a parameter. Dur-
ing form generation, ACT/DB creates a pull-down
menu (‘‘combo box’’ in MS Access parlance) for that
parameter. When the pull-down arrow is clocked, the
list of descriptive phrases appears and the user can
select any one. (This list is dynamic and initialized
through a SQL query. If the list is subsequently mod-
ified after the form has been created, the list of values
appearing when the form is used is current.) The de-
signer can control whether codes and phrases, or only
phrases, are displayed in the pull-down menus.

When ACT/DB generates reports, the user has the op-
tion of looking at enumerated values as either integer
codes or descriptive phrases. The latter are easier to
understand, whereas the former more suitable for sta-
tistical analysis.

Managing Large Vocabularies. Designer-defined choice
sets are adequate when the list of values is reasonably
small. However, a pull-down menu interface is nei-
ther ergonomic nor efficient over a network when the
list of possible values is very large and is derived from
an existing controlled vocabulary such as COSTART
or SNOMED. To permit the user to search such vo-
cabularies through the data-entry form, ACT/DB lets
the designer associate a ‘‘search’’ button on the form
with a generic routine.

This routine activates a standard predefined form
through which the user can search any controlled vo-
cabulary table or view based on keywords in the de-
scriptive text associated with the code. The user can
search for words beginning with or containing a
phrase; searches can be combined in complex Boolean
fashion using the And, Or, and Not operators. (The
user’s choices result in generation of SQL that is sent
to the server to retrieve matching entries. The code
foundation for this routine is based partly on a pro-
gram developed by the first author called Concept Lo-
cator, which was originally built to search the UMLS
Metathesaurus.25)

Computed Parameters

The designer can designate parameters whose value
is set through a computation based on other fields and
define formulae for such parameters. For example,
body surface area, used widely in medical oncology
for chemotherapy dosing, is a function of height and
weight. The designer is given assistance in formula
construction (through scrolling lists of available pa-
rameters). Nonetheless, specifying such a formula re-
quires some knowledge of Visual Basic programming
syntax (even though the ‘‘program’’ is a single-line
expression), because the formula is inserted verbatim
into the computed field in the generated form. For
example, exponentiation in Visual BASIC uses the

caret rather than the double asterisk of FORTRAN.
This is the one of the rare instance in ACT/DB where
the designer may need programmer assistance.

There are times when a value must be computed
through a complex subroutine involving branching
and looping logic (although we have not encountered
such a situation in our present protocols). Microsoft
Access is fully orthogonal in that there are no restric-
tions on the function that may be used in a computed
field. Arbitrarily complex functions can be used in a
field’s formula or even as expressions in queries.

The designer may also allow direct data entry for such
parameters. This is a useful alternative when data are
being transcribed into the electronic form from an ex-
isting, filled-out paper case report. Here, the com-
puted value might have already been entered on a
paper case report, but one or more of the parameters
required for the computation are missing from the pa-
per form. For example, body surface area is com-
monly computed at the patient’s bedside through
nomograms and entered directly on paper.

Laboratory Data and Ranges

As part of its schema, ACT/DB stores information on
laboratory tests employed within Yale and the normal
values (occasionally stratified by age and sex) for re-
sults of each test. These data were gathered from the
Yale Clinical Pathology System for work that has been
previously described by Kannry et al.,26 and is used
in two circumstances:

n During form generation, ACT/DB creates status bar
text, a data entry aid, for each form object repre-
senting a parameter. (This text appears on the bot-
tom line of the screen whenever the cursor is in that
object.) For most parameters this text is specified by
the designer through the data dictionary. For labo-
ratory test parameters, however, ACT/DB gener-
ates the text automatically. This text summarizes
the units and range of normal values (for male and
female subjects). If the normal range varies with age
and sex, the maximal and minimal values over the
entire range are computed. The status bar text then
displays this range and indicates that the range var-
ies with age and sex.

n Based on the age and sex of individual patients (age
being computed from date of birth), ACT/DB can
generate a report that identifies values that lie
within and beyond the normal range.

Our current handling of laboratory values is some-
what limited. For example, normal values may de-
pend on physiologic conditions such as pregnancy
and lactation, which are not accounted for by our sys-



Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 147

tem. Further, the range of normal values depends to
some extent on the laboratory where a test was done
(a value of ‘‘upper normal’’ in one lab may mean
‘‘high’’ in another). The Columbia MED employs an
object inheritance mechanism whereby tests per-
formed by different labs are different entities within
the database, but related entities share a common par-
ent (a ‘‘generic’’ prostatic acid phosphatase, for ex-
ample). We have not yet had to deal with this level of
complexity, but we may have to if ACT/DB ever
scales up to handle collaborative interinstitutional
trials.

Data Dictionary Management

The ACT/DB data dictionary, which contains the def-
initions of study protocols, the clusters, and the in-
dividual parameters, is constantly consulted during
almost every one of ACT/DB’s operations. Therefore,
in order to scale up to handle a large number of stud-
ies across the institution (which implies reuse of ex-
isting parameters and forms as far as possible), it
must come with tools for management. Our approach
is that the data dictionary tables are another vocabu-
lary and therefore should be managed in the same
way as external vocabularies. The vocabulary searcher
described earlier is used in multiple ways—to iden-
tify parameter descriptions containing one or more
keywords, all form clusters containing a parameter,
and so on.

Further, each cluster is associated with one or more
user-defined keywords (which we call classifiers) that
are used to categorize the cluster. There are no restric-
tions on what a classifier might be. For now, the clas-
sifiers table mostly contains the names of clinical
fields (to identify forms that are field-specific, like
‘‘oncology’’), subject names (like ‘‘chemistry’’) or
terms such as ‘‘general.’’ When setting up a new
study, reuse of existing clusters is facilitated by letting
the designer narrow down to a list of clusters de-
scribed by one or more classifier keywords.

Managing Time-oriented Data

Most clinical databases attach one or more time
stamps to every fact entering the database. One kind
of time stamp, which is system-generated, records
when the fact was entered into the database. Another
kind of time stamp, which is user-supplied, records
the date/time when the event described by the fact
occurred. (In some databases, the fact may be tagged
with an additional time stamp that records when the
event ended.)

Currently ACT/DB does not meet the definition of a
time-oriented database, but it has the basic data struc-

tures on which such features may be built. As men-
tioned above, attributes are aggregated into groups
when they apply to the same clinical event. These
groups are tagged with start and end date/times. In
the data dictionary entry for the group, the protocol
designer specifies whether the event recorded is a pe-
riod event (both start and end times) or an instant
event (start time only; end time is null). For example,
a radiotherapy course is a period event. Through a
view linking the group with individual parameters in
the group, every clinically related fact in an EAV table
is, in effect, time stamped. This allows straightforward
generation of a chronologic report for a single patient
by sorting all events on start and end date/times.

The protocol designer also specifies the prompts for
the starting (and, optionally, the ending) date/times
for the group and the format of the events—date and
time, or date only. This information is used by ACT/
DB when generating forms. Either one or two text
boxes (depending on the type of event) are created
with these labels for date/time entry.

For questionnaire-based outcomes research, as op-
posed to long-term clinical trials, time stamps as de-
fined here are often not needed on many data items
(e.g., ‘‘smoking history’’), and prompts for their entry
on a generated form do not serve any purpose. ACT/
DB therefore lets a designer indicate, for individual
groups, that no date/time information should be as-
sociated with them. No prompts for time stamps will
be generated for such groups during form creation.
(In the database, nulls will be stored against both
starting and ending event date/times.) For clinical
studies, the use of groups without time stamp infor-
mation should, in general, be kept to a minimum.

ACT/DB currently lacks support for time-oriented
operators and joins, like those described for Das and
Musen’s CHRONUS system.27,28 Certainly, adding
support for time-based ad hoc queries on EAV data
(as opposed to the non-EAV data in CHRONUS) will
pose an additional challenge.

Managing BLOB Data

BLOB data, such as histopathology images, are im-
portant in patient records and clinical trials: it is con-
venient to have data online for reference or publica-
tion. ACT/DB manages BLOB data display and
editing through the object-linking mechanism.29 For a
given BLOB attribute, the protocol designer specifies
the application that will handle the BLOB by speci-
fying the file extension to be appended to BLOBs
downloaded from the server. (A single BLOB attribute
is therefore limited to a single kind of BLOB data. This
limitation is not serious.)



148 NADKARNI ET AL., Managing Clinical Trials Data

BLOBs are uploaded to the server by pasting them
into ‘‘object frames,’’ which are areas in a form for
displaying and editing the BLOB. However, it is in-
advisable to send the bytes in the frame itself to the
server. Instead, dramatic savings in storage require-
ments are achieved by locating the BLOB’s original
file and sending the bytes in this file to the server. This
is because disk files storing multimedia BLOB data
usually use highly efficient compression techniques
(e.g., Joint Photographic Experts Group, or JPEG, im-
ages often use compression ratios of 30:1 or more).

BLOB data can also be viewed in the columnar report.
This requires viewing the file through Microsoft Excel
97 (which is also commonly used for simple statistical
analysis and graphing). When the user includes a
BLOB parameter among the list of parameters to be
viewed, ACT/DB downloads all BLOB data into a se-
ries of sequentially numbered files into a temporary
directory. Within the text file itself, each cell repre-
senting a BLOB data item contains a formula that uses
the hyperlink function to link to the pathname rep-
resenting the corresponding file. (This function can
also link to Web URLs in a similar fashion.) An illus-
tration of BLOB data in a form is shown in Figure 3.

Forms Library Management

In an institution-wide clinical trials database, the
forms (data-entry screens) can number several hun-
dred, making them unmanageable without automated
assistance. Forms must be stored within the Microsoft
Access client application in order to be used in an
application. Because forms are developed for use
within individual departments, an individual client
machine needs to store only those forms actively be-
ing used on that machine. Still, there must be a central
repository for all forms, especially if forms have been
modified with developer assistance. Individual forms
may exist in multiple versions, and a version-control
system is needed to track these versions.

ACT/DB uses Visual SourceSafe, Microsoft’s source
code control system, to maintain a forms library on a
network-accessible Windows machine that acts as a
forms server. (Access 97 is the first version of Access
to have hooks to a version-control package.) When a
developer needs to change a form, the form is checked
out from the server, altered, and checked back in.
When an individual client is configured, it can incor-
porate the current versions of the forms that are
needed. (Currently, this process is manual and cannot
be done through program code. Fortunately, it needs
to be done very infrequently.) Visual SourceSafe also
manages version control for program modules, facil-
itating coordination between multiple developers
working on ACT/DB.

Streamlining Client-Server Communication

Certain tables in ACT/DB exist only on the client, and
certain tables exist only on the server, while certain
server tables of modest size that change very rarely
are replicated on the client. The mechanism to coor-
dinate client and server interaction uses a subroutine
and template library called SQLGEN,30 which was
originally created to facilitate Sybase (server) and
Macintosh 4th Dimension client development.

Two components of SQLGEN are particularly impor-
tant for ACT/DB. One is an upsizing tool that auto-
matically converts an existing Access schema to an
operational Oracle schema. (Microsoft distributes an
Access-to-SQL server upsizing tool, but one for Oracle
is not, as far as we know, commercially available.) Our
tool goes somewhat beyond Microsoft’s in function-
ality. For example, ACT/DB makes heavy use of se-
quentially generated long-integer unique identifiers
(UIs) as primary keys for most tables. (Microsoft Ac-
cess has a field data type called ‘‘autonumber,’’ which
increments automatically for each new record.) To
port such tables, ACT/DB creates an insert trigger on
each table. This trigger fetches and uses the next avail-
able sequence number whenever a new record is
added. ACT/DB also automatically generates refer-
ential integrity constraints.

SQLGEN also facilitates searching of data through a
query-by-form (QBF) interface, where the user fills in
one or more criteria matching the desired data. The
appropriate SQL is then generated and sent to the
server. (Microsoft Access’s built-in QBF is powerful
but not oriented to client–server or networked oper-
ation. This is because for every field in the form, a set
of unique values is composed by a search of the data to
be made available through pull-down menus. This can
consume a considerable amount of server capacity as
well as network bandwidth.) The details of the
SQLGEN QBF facility are described by Nadkarni et al.30

Use of Enabling Technology

Many of the interesting features of ACT/DB are pos-
sible because of enabling technology that has become
available only recently. To cite only a partial list:

n ACT/DB generates forms with GUI components
whose visibility and appearance can be program-
matically controlled, and associates form compo-
nent events (e.g., double-clicking) with developer-
defined routines. This was not possible with early
versions of Microsoft Access.

n For generating standard reports, transformation of
EAV server data (irrespective of data type) into cli-



Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 149

F i g u r e 3 A sample data-
entry form showing a BLOB
data field (an echocardio-
graphic still image) along
with fields for related de-
scriptive parameters. (Echo-
cardiogram obtained from
Dr. Ira Cohen of the West
Haven, CT, Veterans Ad-
ministration Medical Cen-
ter.)

ent arrays that represent an orthodox columnar
view of data is simplified by the availability of the
‘‘variant’’ datatype,17 which can store any kind of
data except BLOB. Variants have become available
only recently in several languages on the Microsoft
Windows platform. Their availability provides the
‘‘typeless’’ convenience that LISP and Smalltalk
programmers have long taken for granted.

n Object linking makes it feasible to store, display,
and edit efficiently any kind of BLOB data without
knowledge of their format or the hardware/soft-
ware codecs (compression–decompression mod-
ules) required to manipulate them. It is possible to
operate programmatically on the contents of such
objects if the object’s parent application has been
designed for programmatic manipulation through
an OLE client. We do not intend to do this within
ACT/DB, but freedom to do so might prove im-
portant in specialized applications for handling
particular kinds of BLOB data.

Status Report

Currently ACT/DB has data for seven studies span-
ning the domains of oncology, cardiothoracic surgery,
and cardiology: there are about 750 attributes across
all studies, with the number of attributes per study
ranging from 50 to 150. Protocols have been defined

and tested for several additional studies that are due
to begin soon. We plan shortly to incorporate proto-
cols for multicenter studies conducted by the YCC
and affiliated medical institutions in southern Con-
necticut. This should provide a good test of ACT/
DB’s capabilities in a wide-area–network scenario. We
must emphasize that ACT/DB is in the early stages
of deployment, and our data and concurrency loads
are modest. There are undoubtedly some inefficiencies
in our code, and stressing the system over a wide-
area–network will force us to optimize operation.

For the users of ACT/DB, however, efficiency is less
important than ease of use, and it is important for us
to consider how we can continually enhance ACT/
DB’s usability. ACT/DB is operated at several user
levels. At the simplest (data entry and retrieval) level,
clinical data can be added, displayed, and edited
through forms or reports. At the intermediate (pro-
tocol designer) level, new protocols can be defined,
and forms to support these protocols can be generated
and customized. The highest (developer/administra-
tor) level permits anything, including code develop-
ment and schema changes.

Learning to operate ACT/DB at the data-entry level
takes only a few hours of training. Learning to operate
it at the designer level takes considerably longer to
learn. The reasons for this, and the related issues that
arise, are as follows:



150 NADKARNI ET AL., Managing Clinical Trials Data

n The designer must learn how to translate paper
forms into electronic forms in the most expeditious
way. Well-designed electronic forms can be an im-
provement on, rather than a mere replica of, paper
forms because of such facilities as choice lists and
default values. As with any package, there is more
than one way to do things, and one way may be
better (or worse) than another, depending on the
circumstances.

n The designer must learn how to explore the data
dictionary to maximize reuse of existing data ele-
ments. This skill involves understanding how to
use complex Boolean logic, and acquiring it is sim-
ilar to learning how to use a facility such as MED-
LINE. It also involves acquiring something of a
compulsive mindset. Before creating a new param-
eter, one must make a serious effort to search the
dictionary to see whether an existing parameter
can, in fact, be reused.

The potential advantages of letting designers create
their own parameters are high design throughput and
instant feedback through automatic generation of
forms that are ready for data entry or iterative refine-
ment. Our currently limited manpower resources
have forced us to take this route. In the future, how-
ever, we may choose to designate a data librarian to
work with individual designers, because ‘‘pollution’’
of a dictionary through redundant data items is sig-
nificantly easier to prevent than undo. A lackadaisical
attitude can result in a situation similar to the well-
known data-warehousing catastrophe, in which a na-
tional pharmacy chain had 20 different spellings or
codes for the preparation category ‘‘lozenge’’ in their
sales database, making it impossible to consolidate
data for analysis without extensive manual cleanup.31

n Since ACT/DB’s data organization is based on data
types, the designer must learn enough about them
to be able to designate the appropriate data type
for a parameter. The pitfalls of using inappropriate
data types (e.g., designating phone numbers as nu-
meric instead of alphanumeric) are well known.

n Finally, the designer must learn about operating
Microsoft Access. To avoid reinventing the wheel,
we have used existing Access facilities, which are
provided through menus, toolbars, and right
mouse-button clicks, instead of programming our
own alternative user interfaces. For example, Ac-
cess provides a ‘‘binocular’’ icon to search fields for
patterns as well as icons for sorting columns in as-
cending or descending order, but the user must
know how to use such icons productively.

While the ACT/DB designer’s manual is being con-
tinually revised, our experience is typical of most soft-
ware developers; that is, most people do not read
manuals. We have found it necessary to actually walk
individual designers through the process of translat-
ing protocols and entering real or test data. This helps
them become familiar with the processes of protocol
analysis and iterative design refinement. Because we
are, in effect, letting the designer create a custom da-
tabase (with reusable elements), organizing the pro-
tocol is similar to (though less difficult than) normal-
izing a database design. Such a skill is not difficult to
acquire, but one must learn to ask the right questions
of the data in terms of many-to-one relationships or
dependencies.

Discussion and Future Directions

ACT/DB’s innovation is in demonstrating the feasi-
bility of partitioning EAV data by data type and in
managing BLOB data in the same regular fashion as
other EAV data. The ability to index values should
speed up value-based queries: Certain recent ad-
vances in indexing techniques,32,33 though not yet
commercially available, should benefit such an archi-
tecture. Our innovation should be considered evolu-
tionary rather than revolutionary.

There are several design issues that we have not ad-
dressed, but which may become important in large-
scale production use. Issues related to software engi-
neering rather than research include bulk import of
data from laboratory systems (possibly through HL-
7) and machine-readable forms, and partial access
through the Web rather than through Access clients.

An important research issue is the creation of a robust
audit-trail mechanism. We have postponed doing this
partly because the vendor tools for audit trails will
get progressively more powerful, making our task sig-
nificantly simpler. For example, the specifications of
the language TSQL2 (Temporal SQL)34 include the
designation of transaction tables. Records in a trans-
action table are automatically time-stamped when cre-
ated. Furthermore, instead of being altered or deleted
by SQL’s UPDATE and DELETE statements, respec-
tively, they are merely tagged as ‘‘obsolete’’ and time-
stamped when the change or deletion occurs. In this
way, a complete history of all the changes to a row is
available.

We have already mentioned the problem of ad hoc
query of EAV data in arbitrarily complex Boolean
fashion. Complicating the query problem are support
of temporal primitives and the imposition of a hier-
archy or network mechanism (as in the Columbia



Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 151

MED) to make the query mechanism more powerful
by interrelating data elements. Our current represen-
tation of data is simple and pragmatic but ‘‘shallow,’’
because semantic interrelationships between param-
eters are not stored. At this stage it is too early to
predict whether a deeper and richer representation,
such as that described by Campbell et al.,35 will
strengthen the query process.

Dr. Vincent de Vita, Director of the Yale Comprehensive Cancer
Center, took the initiative in defining the need for an institu-
tional database for clinical trials. The authors thank Dr. Colin
Begg, Danny Wu, and Collette Houston of the Department of
Biostatistics at the Sloan-Kettering Memorial Hospital.

The ACT/DB schema (as an SQL definition) and Developer’s
Guide (MS-Word format) are available through
^ftp://paella.med.yale.edu/pub/chr12/ACTDB.zip&

References n

1. Rector A. Art and science: problems and solutions (edito-
rial). Methods Inf Med. 1996;35(3):181–4.

2. Cappelleri J, Ioannidis J, Schmid C, et al. Large trials vs
meta-analysis of smaller trials: how do their results com-
pare? (review). JAMA. 1996;276(16):1332–8.

3. Pampallona S. A model to control data flow in multicenter
clinical trials. Methods Inf Med. 1995;34(3):283–8.

4. Sim IGR. A trial bank model for the publication of clinical
trials. Proc 19th Annu Symp Comput App Med Care. Phil-
adelphia, PA: Hanley & Belfus, 1995:863–7.

5. Blumenstein B. Verifying keyed medical research data. Stat
Med. 1993;12(17):1535–42.

6. The Inter-company Clinical Quality Assurance Working
Group. Computer validation: methods at investigator sites.
Appl Clin Trials. 1997;July:36–40.

7. Stokes T. Computer systems validation, part 6: a survive-
and-thrive approach to audits and inspections. Appl Clin
Trials. 1997;Aug:40–4.

8. Marshall B, Hoffman S, Babadzhov V, Babadzhov M,
McCallum R. The Automatic Patient Symptom Monitor
(APSM): a voice mail system for clinical research. Proc 17th
Annu Symp Comput App Med Care. New York: McGraw-
Hill, 1993:32–6.

9. Carlson R, Tu S, Lane N, et al. Computer-based screening
of patients with HIV/AIDS for clinical-trial eligibility. On-
line J Curr Clin Trials. 1995;Mar 28:Doc 179.

10. Pradhan E, Katz J, LeClerq S, West KJ. Data management
for large community trials in Nepal. Control Clin Trials.
1994;15(3).

11. Othman R. Interactive database management (IDM). Com-
put Methods Programs Biomed. 1995;47(3):221–7.

12. ClinTrials Inc. ClinTrials. A brief product description is
available from the Web site ^http://www.clintrialsresearch.
com&, 1997.

13. Oracle Clinical Version 3.0: User’s Guide. Redwood Shores,
CA: Oracle Corporation, 1996.

14. Huff SM, Haug DJ, Stevens LE, Dupont CC. A PT.HELP the
next generation: a new client–server architecture. Proc 18th

Symp Comput App Med Care. Philadelphia, PA: Hanley &
Belfus, 1994:271–5.

15. Friedman C, Hripcsak G, Johnson S, Cimino J, Clayton P. A
generalized relational schema for an integrated clinical pa-
tient database. Proc 14th Symp Comput App Med Care.
Washington, DC: IEEE Computer Society Press, 1990:335–
9.

16. Chueh HC, Barnett GO. Client–server, distributed database
strategies in a healthcare record system for a homeless pop-
ulation. J Am Med Inform Assoc. 1994;1(2):186–98.

17. Niedner C. Use of SQL with an entity–attribute–value da-
tabase. MUG Quarterly. 1991;21(3):40–5.

18. Dwight J, Erwin M (eds). Using CGI (special edition). In-
dianapolis, IN: Que Corporation, 1996.

19. Cimino JJ, Clayton PD, Hripcsak G, Johnson SB. Knowl-
edge-based approaches to the maintenance of a large con-
trolled medical terminology. J Am Med Inform Assoc. 1994;
1:35–50.

20. Johnson S, Cimino J, Friedman C, Hripcsak G, Clayton P.
Using metadata to integrate medical knowledge in a clinical
information system. Proc 14th Symp Comput App Med
Care. Washington, DC: IEEE Computer Society Press, 1990:
340–4.

21. Celko J. Everything you know is wrong. DBMS Magazine.
1996;9(9):18–20.

22. Kimball R. The data Warehousing Toolkit. New York: John
Wiley & Sons, 1997.

23. Melton J, Simon AR. Understanding the new SQL: a com-
plete guide. San Mateo, CA: Morgan Kaufman, 1993.

24. Oracle Corporation. Oracle Version 7: PL-SQL Program-
mer’s Guide. Redwood Shores, CA: Oracle Corporation,
1995.

25. Nadkarni PM. Concept locator: a client–server application
for retrieval of UMLS Metathesaurus concepts through
complex Boolean query. Comput Biomed Res. 1997; in
press.

26. Kannry JL, Wright L, Shifman M, Silverstein S, Miller PL.
Portability issues for a structured clinical vocabulary: map-
ping from Yale to the Columbia Medical Entities Dictionary.
J Am Med Inform Assoc. 1996;3:66–78.

27. Das AK, Musen MA. A temporal query system for protocol-
directed decision support. Meth Inform Med. 1994;33(4):
358–70.

28. Das AK, Musen MA. A comparison of the temporal expres-
siveness of three database query methods. Proc 19th Annu
Symp Comput App Med Care. Philadelphia, PA: Hanley &
Belfus, 1995:331–7.

29. Microsoft Access 97 User’s Guide. Redmond, WA: Microsoft
Corporation, 1997.

30. Nadkarni PM, Cheung KH. SQLGEN: an environment for
rapid client–server database application development.
Comput Biomed Res. 1995;28(12):479–99.

31. Kimball R. Dealing with dirty data: the science of maintain-
ing clean data in your warehouse, and why nobody talks
about it. DBMS Magazine. 1996;9(10):55–6.

32. O’Neil P, Graefe G. Multi-table joins through bitmapped
join indices. SIGMOD Record. 1995;24(3).

33. Bontempo CJ, Saracco CM. Accelerated indexing tech-
niques. Database Programming and Design. 1996;9(July):
36–43.

34. Snodgrass RT, Ahn I, Ariav G, et al. TSQL2 language spec-
ification. ACM SIGMOD Record 1994;23(1):65–86.

35. Campbell KE, Das AK, Musen MA. A logical foundation for
representation of clinical data. J Am Med Inform Assoc.
1994;1(3):218–32.


