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Abstract

Elevated levels of FGF23 in individuals with chronic kidney disease (CKD) are associated

with adverse health outcomes, such as increased mortality, large vessel disease, and

reduced white matter volume, cardiovascular and cerebrovascular events. Apart from the

well-known link between cardiovascular (CV) risk factors, especially diabetes and hyperten-

sion, and cerebrovascular damage, elevated FGF23 is also postulated to be associated with

cerebrovascular damage independently of CKD. Elevated FGF23 predisposes to vascular

calcification and is associated with vascular stiffness and endothelial dysfunction in the gen-

eral population with normal renal function. These factors may lead to microangiopathic

changes in the brain, cumulative ischemia, and eventually to the loss of white matter fibers.

The relationship between FGF23 and brain integrity in individuals without CKD has hitherto

not been investigated. In this study, we aimed to determine the association between

FGF23, and white matter integrity in a cohort of 50 participants with varying degrees of CV

risk burden, using high resolution structural human brain connectomes constructed from

MRI diffusion images. We observed that increased FGF23 was associated with axonal loss

in the frontal lobe, leading to a fragmentation of white matter network organization. This

study provides the first description of the relationship between elevated levels of FGF23,

white matter integrity, and brain health. We suggest a synergistic interaction of CV risk fac-

tors and FGF23 as a potentially novel determinant of brain health.

Introduction

Fibroblast growth factor-23 (FGF23) is an osteocyte derived phosphaturic hormone that regu-

lates calcium-phosphate and vitamin D metabolism by activating the FGF receptor-α-klotho

complex in the kidney[1]. FGF23 induces phosphaturia by decreasing renal reabsorption of

phosphate in the proximal tubule, and inhibiting calcitriol (hormonally active metabolite of

vitamin D) synthesis[1, 2]. Calcitriol functions to increase calcium and phosphate levels in the

blood by increasing kidney and gastrointestinal absorption, and increasing calcium and
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phosphate release from bone into the blood through bone resorption. Calcitriol inhibition by

FGF23 induces calcium deficiency resulting in even more production of calcium from the

bone. Excess circulating calcium eventually leads to arterial and vascular calcification[3].

Chronic Kidney Disease (CKD) is possibly the most common cause of elevated FGF23, which

has been implicated in increased cardiovascular mortality of CKD patients. Elevated FGF23 is

also associated with cardiovascular disease, left ventricular hypertrophy [4, 5], and is a putative

indicator of Cardiovascular (CV) risk factors [6]. Apart from CKD, high phosphorous diet

stimulates FGF23 production, leading to elevated levels of FGF23 [7]. Even among individuals

without CKD, elevated levels of FGF23 have been postulated to increase the risk of stroke [8].

Nonetheless, the effects of elevated FGF23 on brain health in non-stroke individuals have not

fully been determined. Compared with brain gray matter, white matter is significantly more

susceptible to small vessel ischemic injury because it receives less perfusion when adjusting for

metabolic demands, due to lower collateral blood supply to deep white matter [9]. Moreover,

the maintenance of structural integrity of medium to long range axonal projections is metabol-

ically demanding. For these reasons, we postulated that FGF23 would lead to white matter

compromise particularly within the brain areas with long cortico-cortical, or cortico-subcorti-

cal axonal projections, such as the frontal lobes.

We therefore aimed to identify the effects of FGF23 independent of kidney disease by

studying a prospective cohort with normal kidney function, but with CV risk factors that

included diabetes, hypertension, and hyperlipidemia. We employed the novel neuroimaging

method of the high-resolution human brain connectome to fully map white matter networks

across the entire brain. We aimed to determine the relationship between FGF23 and neuronal

network integrity, with the goal of elucidating the mechanistic aspects related to the impact of

FGF23 on brain health. We postulated a synergistic interaction of CV risk factors and FGF23

as a determinant of brain health.

Methods

Participants

We recruited 51 older participants, (40 females, mean age 55.3 ± 8.6 years) without a history of

neurological or psychiatric diseases from the local community through advertisement. All par-

ticipants were self-reported cognitively normal adults. There were 23 African American and 28

white participants. Twenty-eight participants did not have a history of cardiovascular risk fac-

tors, while 23 participants had previously been diagnosed with at least one CV risk factor (CV

group): diabetes (11 participants), hyperlipidemia (15 participants), and hypertension (16 par-

ticipants). Six participants had been diagnosed with all CV risk factors. These diagnoses were

obtained through medical chart review. The Charlson Comorbidity Index[10] (CCI) was calcu-

lated for all participants, including a diagnosis of hypertension and hyperlipidemia at a score of

one each to the overall score. BMI and smoking history were not available for all participants

and therefore not included in the analyses. Participants were stratified into two groups: CV risk

factor and normal controls based on a previous diagnosis of a cardiovascular disease. One par-

ticipant had chronic kidney disease and was therefore excluded from further analysis. All partic-

ipants included in the analysis had normal renal function. The study was approved by the

Institutional Review Boards at the Medical University of South Carolina. Written informed con-

sent was obtained from all participants, as approved by our institutions’ IRB.

FGF23 acquisition

Circulating FGF23 was measured using the Human FGF23 ELISA kit from Millipore

(EZHFGF23-32K). Samples were collected in EDTA containing tubes and centrifuged at 2-3K
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to obtain the plasma. Samples were prepared as described by the manufacturer and the con-

centrations of FGF23 were determined from the standards provided. FGF23 is presented as

pg/ml of plasma.

Image acquisition

Imaging was performed on a Siemens 3T TIM trio MRI scanner located at the Medical Univer-

sity of South Carolina. We used volumetric T1-weighted and Diffusion images collected from

each participant. T1 parameters: MPRAGE sequence with 1 mm isotropic voxels, 256x256

matrix size, and a 9-degree flip angle. We used a 192-slice sequence with TR = 2250 ms,

T1 = 925 ms, and TE = 4.11 ms. DTI parameters: twice-refocused echo-planar imaging b = 0,

1000, 30 diffusion encoding directions, TR = 8500 ms, TE = 98 ms, FOV = 222 x 222 mm2,

matrix = 74 x 74, 3 mm slice thickness, and 40 axial slices.

Structural connectome construction

Each participant’s individual high-resolution structural connectome was built from structural

T1 and diffusion tensor imaging (DTI) neuroimaging data using the following steps: 1.T1

weighted images were spatially registered into standard space and segmented into probabilistic

grey and white matter maps using SPM12’s unified segmentation-normalization; 2.Each indi-

vidual’s grey matter map was divided into 1358 approximately evenly sized regions using the

Atlas of Intrinsic Connectivity of Homotopic Areas (AICHA) brain atlas [11]; 3.The grey mat-

ter parcellation maps were then non-linearly registered into the diffusion imaging (DTI)

space, and pairwise probabilistic DTI fiber tracking was computed for all possible pairs of grey

matter regions 4. The weight of each pairwise connectivity link was determined based on the

number of probabilistic streamlines connecting the grey matter region pair, corrected by dis-

tance travelled by each streamline and by the total volume of the connected regions. Finally,

a weighted adjacency matrix M of size 1358 x 1358 was constructed for each participant with

Mi,j representing the weighted link between region of interest (ROI) i and ROI j. Tractography

was estimated through the software FSL FMRIB’s Diffusion Toolbox (FDT), including eddy

current correction, motion correction[12], and probabilistic method [13] with BEDPOST

being used to assess default distributions of diffusion parameters at each voxel, and probabilis-

tic tractography was performed using FDT’s probtrackX (parameters: 5000 individual path-

ways drawn through the probability distributions on principal fiber direction, curvature

threshold set at 0.2, 200 maximum steps, step length 0.5mm, and distance correction). The

weighted connectivity between the regions i and j was defined as the number of probabilistic

streamlines arriving at j region when i was seeded, averaged with the number of probabilistic

streamlines arriving at i region when j was seeded.

Fig 1 provides a workflow of the connectome construction process and network analysis.

Modular organization detection

The integrity of neuronal network architecture can be assessed through the quantification of

the modular parcellation of the network (modularity). Modularity provides a measurement of

the balance between segregation and integration of the network in its entirety, or within

regional sub-networks. This balance is known to be a fundamental principle in biological net-

work organization, including neuronal networks [14]. Our analysis was based on the modular

organization of each brain region for every participant. For each participant the whole brain

connectome was divided into the left and right frontal, temporal, parietal, and occipital lobe

sub-networks. The lobe sub-networks were assessed regarding their modularity using New-

man’s modularity algorithm [15] implemented in the Brain Connectivity Toolbox [16], (e.g.

FGF23 and the brain

PLOS ONE | https://doi.org/10.1371/journal.pone.0203460 September 7, 2018 3 / 11

https://doi.org/10.1371/journal.pone.0203460


FGF23 and the brain

PLOS ONE | https://doi.org/10.1371/journal.pone.0203460 September 7, 2018 4 / 11

https://doi.org/10.1371/journal.pone.0203460


[Ci,Q] = modularity_und(W), where W is the weighted undirected connectivity matrix;

gamma was maintained at the default: gamma = 1).

Statistical analyses

For each group (CV risk factor and healthy controls), we performed general linear regression

analysis to examine the relationship between brain integrity and FGF23, adjusting for key

covariates–sex, race, and CCI. Linear regressions were modelled for each group separately to

minimize noise inherent in the healthy control group, and to avoid type II error. Brain integ-

rity measured via modularity was set as the dependent variable, and FGF23, sex, race and CCI

as the predictor variables. We used this model to determine the association between FGF23,

and the integrity of each brain region (modularity scores for the frontal, temporal, parietal and

occipital regions) for both left and right hemispheres. Linear correlations were evaluated using

a two-tailed Pearson correlation coefficient. We evaluated the association between FGF23 and

modularity of the left and right frontal hemispheres. Correlation was performed independently

on the CV risk factor group and the control group.

We further assessed the overall connectivity of the frontal lobe by calculating the density; a

measure of axonal integrity; as the number of all connections present. We then determined the

relationship between FGF23 and fiber density of the left and right hemisphere frontal regions.

Of the 22 participants with CV risk factors, 17 had serum creatinine scores from the latest

available comprehensive metabolic panel obtained from the hospital. We re-calculated the

Pearson correlation for these participants, with partial correlations accounting for the creati-

nine score. Natural log transformed FGF23 scores were used in all analyses. All statistical anal-

yses were performed using MATLAB. The statistical significance was set at p� 0.05.

Results

To account for possible confounding by age, sex and race, we determined the association

between these factors and FGF23. Pearson analysis revealed no correlation between age and

FGF23 (r = 0.13, p = 0.17), and student’s t-test revealed no differences in FGF23 levels between

female and male participants two-sample t(48) = 0.91, p = 0.37, or between African American

and Caucasian participants two-sample t(48) = 0.53, p = 0.6. There was also no significant dif-

ference in FGF23 levels between the control and CV risk factor groups, two-sample t(48) =

0.69, p = 0.49.

Relationship between modularity and FGF23

Our model revealed that FGF23 was associated with left hemisphere frontal lobe modularity in

the CV risk factor group: F(4,22) = 4.2, p = 0.015, adjusted R2 = 0.38 (Table 1). FGF23 was not

associated with brain integrity among individuals without CV risk factors. In that group, brain

integrity was associated with sex, race and CCI (Table 2). A model of only FGF23 (predictor

variable) and left hemisphere frontal lobe modularity (dependent variable) revealed that

FGF23 levels alone accounted for about 29% of brain integrity in the left hemisphere frontal

lobe of participants with CV risk factors: F(1,22) = 9.46, p = 0.006, adjusted R2 = 0.29, while

the same was not observed in the control group: F(1,22) = 0.6, p = 0.45, adjusted R2 = 0.015.

Fig 1. Connectome generation and network analysis. In A, the T1 image is normalized, and segmented (into CSF, gray and white matter). The gray

matter is parcellated into 1358 regions of interest (ROI). The T1 is warped into diffusion space where fiber tracking occurs, finding the connections

between each pair of ROIs, generating a connectome, or network of connectivity between all brain regions. C is an example of whole brain modular

partition into modules using Newman’s modularity algorithm, which groups ROIs that are more closely associated by their white matter networks and

relatively segregated from surrounding groups (each module is represented by the same color).

https://doi.org/10.1371/journal.pone.0203460.g001
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Linear correlations revealed that left hemisphere frontal lobe modularity was significantly

correlated with FGF23 (Fig 2A left panel) in participants with CV risk factors, such that higher

modularity was associated with higher FGF23 levels (r = 0.57, p = 0.006). This association was

also significant when controlling for creatinine levels (n = 17) (partial correlation controlling

for creatinine: r = 0.48, p = 0.03). In the control group, the left hemisphere frontal lobe modu-

larity was not associated with FGF23 levels (Fig 2A right panel, r = 0.05, p = 0.4).

The right hemisphere frontal lobe was not associated with FGF23 in the CV risk factor

group (r = 0.22, p = 0.33) or control group (r = 0.12, p = 0.55). Correcting for multiple compar-

isons (0.05/8), the left hemisphere frontal lobe modularity was still significantly correlated

with FGF23.

Relationship between density and FGF23

Frontal lobe. There was a significant correlation between the left frontal lobe density and

FGF23 (Fig 2B left panel) in participants with CV risk factors such that participants with ele-

vated FGF23 had fewer fiber connections in their left frontal lobe (r = -0.42, p = 0.05). We fur-

ther calculated correlation on 17 participants with creatinine scores (partial correlation

Table 1. Multiple linear regression models for modularity in participants with cardiovascular risk factors.

Outcome Model Variables

FGF23 Gender

Female vs male

Race

White vs black

CCI

LH frontal

Adj.R2 = 0.38 B (SE) 0.03 (0.01) -0.06 (0.03) -0.01 (0.03) 0.02 (0.01)

F = 4.20 β 0.52� -0.43� -0.10 0.31

RH frontal

Adj.R2 = 0.21 B (SE) 0.02 (0.02) -0.05 (0.04) 0.01 (0.04) 0.04 (0.02)

F = 2.40 β 0.17 -0.26 0.05 0.55�

LH parietal

Adj.R2 = 0.12 B (SE) -0.02 (0.02) -0.01 (0.04) 0.09 (0.04) -0.01 (0.02)

F = 1.72 β -0.25 -0.07 0.57� -0.10

RH parietal

Adj.R2 = 0.03 B (SE) -0.01 (0.02) -0.05 (0.03) 0.03 (0.03) 0.01 (0.01)

F = 1.19 β -0.18 -0.36 0.23 0.14

LH temporal

Adj.R2 = -0.12 B (SE) -0.00 (0.01) -0.02 (0.02) -0.01 (0.02) 0.01 (0.01)

F = 0.44 β -0.07 -0.22 -0.10 0.30

RH temporal

Adj.R2 = 0.12 B (SE) 0.01 (0.01) -0.05 (0.03) 0.01 (0.03) 0.01 (0.03)

F = 1.70 β 0.11 -0.44 0.04 0.34

LH occipital

Adj.R2 = 0.22 B (SE) -0.01 (0.01) -0.02 (0.03) 0.07 (0.03) 0.01 (0.01)

F = 2.49 β -0.21 -0.18 0.55� 0.10

RH occipital

Adj.R2 = -0.10 B (SE) 0.01 (0.01) -0.01 (0.03) 0.02 (0.03) 0.01 (0.01)

F = 0.51 β 0.12 -0.07 0.20 0.12

�p < .05.

��p < .01.

B = parameter estimate, SE = standard error, β = standardized estimate, CCI = Charlson Comorbidity Index, LH = left hemisphere, RH = right hemisphere

https://doi.org/10.1371/journal.pone.0203460.t001
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controlling for creatinine: r = -0.40, p = 0.07). An association was not observed in the left

frontal hemisphere of participants without CV risk factors (r = -0.04, p = 0.58, Fig 2B right

panel).

Discussion

In this study, we aimed to determine the relationship between CV risk factors, FGF23 levels,

integrity of axonal fibers, and white matter network topological organization. We employed

high resolution structural connectomes constructed from diffusion imaging to measure indi-

vidual network integration and segregation via modularity. We hypothesized that elevated

FGF23 levels would be associated with the reduction of white matter fiber connections, and

loss of organization (fragmentation) of white matter networks. We demonstrated a relation-

ship between FGF23 and left frontal lobe network integrity, and showed that in participants

with CV risk factors, FGF23 levels accounted for up to 29% of left hemisphere frontal lobe net-

work integrity, meaning that participants with elevated FGF23 levels and CV risk factor bur-

den had higher modularity scores, indicating a disruption of the brain network organization.

Table 2. Multiple linear regression models for modularity in healthy controls.

Outcome Model Variables

FGF23 Gender

Female vs male

Race

White vs black

CCI

LH frontal

Adj.R2 = 0.38 B (SE) 0.03 (0.01) -0.06 (0.03) -0.01 (0.03) 0.02 (0.01)

F = 4.20 β 0.52 -0.43 -0.10 0.31

RH frontal

Adj.R2 = 0.32 B (SE) 0.02 (0.01) 0.08 (0.04) 0.10 (0.03) 0.02 (0.01)

F = 4.12 β 0.17 0.29 0.62�� 0.20

LH parietal

Adj.R2 = 0.23 B (SE) -0.01 (0.02) 0.10 (0.06) 0.11 (0.04) 0.03 (0.02)

F = 2.97 β -0.04 0.31 0.52�� 0.27

RH parietal

Adj.R2 = 0.15 B (SE) 0.01 (0.02) 0.12 (0.07) 0.11 (0.04) 0.03 (0.02)

F = 2.21 β 0.06 0.32 0.47 0.22

LH temporal

Adj.R2 = 0.49 B (SE) 0.02 (0.01) 0.02 (0.03) 0.08 (0.02) 0.04 (0.01)

F = 7.48 β 0.20 0.08 0.57�� 0.50��

RH temporal

Adj.R2 = 0.06 B (SE) 0.01 (0.01) 0.01 (0.04) 0.05 (0.02) 0.01 (0.01)

F = 1.45 β 0.18 0.07 0.40 0.18

LH occipital

Adj.R2 = 0.31 B (SE) -0.01 (0.01) 0.06 (0.03) 0.03 (0.02) 0.03 (0.01)

F = 4.08 β -0.20 0.37� 0.24 0.49��

RH occipital

Adj.R2 = 0.23 B (SE) 0.01 (0.01) -0.02 (0.03) 0.05 (0.02) 0.02 (0.01)

F = 3.07 β 0.16 -0.12 0.47� 0.24

�p < .05.

��p < .01.

B = parameter estimate, SE = standard error, β = standardized estimate, CCI = Charlson Comorbidity Index, LH = left hemisphere, RH = right hemisphere

https://doi.org/10.1371/journal.pone.0203460.t002
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Sex, race, and CCI explained a further 9% of left frontal lobe integrity. FGF23 was not signifi-

cantly associated with brain integrity in participants without CV risk factors, although race,

sex and CCI were significantly associated with brain integrity in this group.

Our results complement and help explain previous findings suggesting that elevated FGF23

is associated with stroke and small vessel disease (SVD) independent of CKD. SVD is routinely

observed in normal ageing or individuals with CV risk factors and discovered incidentally on

routine MRIs by white matter hyperintensities (WMH). The Northern Manhattan study

(NOMAS) prospectively assessed 2,525 individuals from a racially diverse population and con-

cluded that elevated FGF23 conferred an overall risk of stroke and intracerebral hemorrhage

independent of CKD[8]. In a subset of the same cohort, (n = 1170), they also showed that ele-

vated FGF23 was associated with WMH, demonstrating a link between FGF23 and SVD in the

Fig 2. A) Left panel–correlation between left hemisphere frontal lobe modularity and FGF23 in the CV risk factor group. Right panel–correlation between left

hemisphere frontal lobe modularity and FGF23 in the control group. B) Left panel—correlation between left hemisphere frontal lobe density and FGF23 in the CV risk

factor group. Right panel–correlation between left hemisphere frontal lobe density and FGF23 in the control group.

https://doi.org/10.1371/journal.pone.0203460.g002
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absence of CKD[17]. The Professional Follow-up Study (n = 1261) further showed elevated

FGF23 in individuals with established CV risk factors and higher dietary phosphate intake.

Our study builds on this previous literature by employing an approach that quantifies net-

work integrity; and may detect subclinical structural compromise; to assess the tripartite asso-

ciation between CV risk factors, FGF23, and white matter integrity. We employed a fine-

grained atlas to improve our statistical power, and for a more detailed connectome; we did not

assess the effect of using functionally relevant atlases, although whole brain tractography did

yield functionally relevant modules (Fig 1 panel C)

We observed reduced network density, and a disorganization of the left frontal hemisphere

network topology related to elevated FGF23, exclusively in participants with CV risk factors.

Importantly, we showed that FGF23 is an independently associated with brain integrity in par-

ticipants diagnosed with CV risk factors. Since FGF23 is a modifiable risk factor, understand-

ing this association may be an important step in reducing stroke incidences, stroke severity,

and improving outcome after stroke. Brain integrity of normal ageing individuals was still

explained by age and comorbidity (captured by CCI), sex, and race, although with the current

limited sample size, we cannot conclusively draw any conclusions on the significance of sex

and race.

The frontal hemisphere supports several cognitive processes including problem solving,

memory, language, judgement, social behavior and impulse control. Therefore, the association

between FGF23 and compromised structural integrity of the frontal lobe further provides an

interesting first step towards understanding the impact of FGF23 on cognition. The fiber loss

localized to the left hemisphere, indicating that the relationship between FGF23 and network

fragmentation is restricted to the dominant hemisphere (all participants except 1in the CV

group were right handed). This observation may indicate a more pronounced susceptibility to

injury in the dominant hemisphere.

The limitations of this study are: 1) we did not assess the association between white matter

network integrity and behavioral function since a comprehensive assessment of neuropsycho-

logical performance was not available in this cohort. We believe that this would be an impor-

tant future direction, specifically testing the impact of FGF23 on cognitive control and

executive function, which are frontal lobe dependent measures. 2) This is an initial pilot study

with a relatively small sample size. Furthermore, the multiple linear regression models were

not controlled for multiple comparisons, even though we did account for multiple confound-

ers. 3) BMI and smoking history are important CV risk factors that were not included in the

analyses. 4) Our cohort is made up of 80% women and is therefore not a not representative

sample of the general population.

Based on the findings of this study, we believe that there are important possible future

directions to continue to elucidate the impact of FGF23 on brain health, namely 1) the assess-

ment of the cognitive impact of FGF23, and whether FGF23 leads to subclinical yet quantifi-

able cognitive compromise, particularly in frontal lobe functions; 2) the evaluation of the

continuum between the impact of FGF23 on brain health across the spectrum ranging from

normal kidney function to end-state CKD; 3) the assessment of the synergistic effects of

FGF23 with other CV, electrolyte and kidney function biomarkers; and 4) the concurrent eval-

uation of connectome with other measures of brain integrity, including T2 weighted microan-

giopathic lesion burden.

In summary, we demonstrated the association between elevated serum FGF23, fiber loss

and network disintegration in the frontal region of the left hemisphere. This relationship

between FGF23 and brain integrity was noted in individuals without CKD, but with CV risk

factors. We postulate a synergistic interaction of CV risk factors and FGF23 as a potentially

novel determinant of brain health.
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