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Abstract

A multi-level Lagrangian carotid strain imaging algorithm is analyzed to identify computational 

bottlenecks for implementation on a Graphics Processing Unit (GPU). Displacement tracking 

including regularization was found to be the most computationally expensive aspect of this strain 

imaging algorithm taking about 2.2 hours for an entire cardiac cycle. This intensive displacement 

tracking was essential to obtain Lagrangian strain tensors. However, most of the computational 

techniques used for displacement tracking are parallelizable and hence GPU implementation is 

expected to be beneficial. A new scheme for sub-sample displacement estimation referred to as a 

multi-level global peak finder (MLGPF) was also developed since the Nelder–Mead simplex 

optimization technique used in the CPU implementation was not suitable for GPU 

implementation. GPU optimizations to minimize thread divergence, utilization of shared and 

texture memory were also implemented. This enables efficient use of the GPU computational 

hardware and memory bandwidth. Overall, an application speedup of 168.75X was obtained 

enabling the algorithm to finish in about 50 secs for a cardiac cycle. Lastly, comparison of GPU 

and CPU implementations demonstrated no significant difference in the quality of displacement 

vector and strain tensor estimation with the two implementations upto a five percent inter frame 

deformation. Hence, a GPU implementation is feasible for clinical adoption and opens opportunity 

for other computationally intensive techniques.
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I. Introduction

ULTRASOUND strain imaging [1] is a modality which provides information about 

mechanical properties of tissues. This modality has been used for several non-invasive 

clinical diagnostic applications over the last decade. For example, quasi static breast strain 

imaging has been used to both detect and discriminate between benign and malignant breast 

lesions [2]. Several researchers have also shown the usefulness of carotid strain imaging in 
vivo as it can predict plaque vulnerability [3–9].
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Carotid strain imaging is implemented using the natural cardiac pulsation of the carotid 

arteries as stimuli. Along longitudinal views the effect is such that motion of the near wall 

and far wall of the artery are in opposite directions as the artery expands and contracts. This 

inherent discontinuous motion makes the task of estimating the displacement map for 

carotid strain imaging a challenging one[10]. In addition, there may be additional 

physiological motion which causes both walls to move differently.

Recently, Graphics Processor Units (GPUs) have been used in strain imaging to allow for 

faster computational and processing efficiency. NVIDIA (Santa Clara, CA) has introduced 

CUDA (Compute Unified Device Architecture) which is a parallel programming platform 

allowing easy programming of GPUs. Idzenga et al. [11] identified that about 90% of their 

strain imaging algorithm computation time was spent in performing Normalized Cross 

Correlation (NCC) computations and hence implemented NCC on a GPU using CUDA. 

Verma and Doyley[12] used a GPU to perform beam forming and two-dimensional (2D) 

cross correlation and achieved frame rates 400 times faster than conventional methods. 

Rosenzweig et al. [13] implemented acoustic radiation force impulse (ARFI) imaging on 

GPU, to improve the efficiency of cubic spline interpolation and Loupas 2-D autocorrelator 

[14]. Yang et al. [15] implemented a hybrid CPU-GPU strain imaging algorithm using 1D 

cross correlation where median filtering of displacement estimates and strain estimation was 

done on the CPU for a previous frame while the remaining compute intensive calculations 

were done on GPU for the current frame in parallel. Recently, Peng et al. [16] implemented 

a 3D coupled sub-sample estimation algorithm for breast elastography using GPU. This was 

accomplished by using a K20 NVIDIA GPU to obtain a 3D cross-correlation map which 

was up-sampled using spline interpolation with marching-cube algorithm [17] and then 

fitted to an ellipsoidal model to estimate the final displacements [18, 19].

Lagrangian carotid strain imaging is generally performed using the following steps. First, a 

cumulative displacement vector map obtained based on the inter-frame displacements 

estimated is generated. Second, accumulated displacement vectors are obtained prior to the 

estimation of the corresponding accumulated strain tensors. Then, the gradient of the 

displacement vectors is used for calculating the local strain tensors. The first step can be 

viewed as a deformable registration problem and possible solutions are block matching 

methods [20, 21]. In these methods blocks of data are matched between consecutive frames 

using a similarity measure such as NCC. To form the displacement map accurately, Shi et al. 

[10] used a multi-level pyramid scheme where coarser blocks of data are used to initialize 

search regions for higher levels that use finer blocks to improve spatial resolution. Multilevel 

block matching has allowed for accurate calculation of discontinuous displacement maps. 

Here strain calculated at lower levels can be used to scale the data at higher levels to reduce 

signal decorrelation and enhance accuracy of displacement estimation [22, 23]. Block 

matching methods however do not utilize global information and hence can be susceptible to 

signal decorrelation and peak hopping errors. In order to address this problem, McCormick 

et al. [24] used a Bayesian regularization approach where displacement estimates from 

neighboring blocks are used as a prior to aid accurate displacement estimation. The amount 

of deformation per frame can be small and micrometer precision is desired, hence subsample 

displacement estimation is necessary. McCormick et al. [25] used a 2D windowed sinc 

interpolator to enable accurate and precise subsample displacement vector estimation. The 
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techniques developed in [10, 22–25] have been combined together in [6] and have 

successfully shown to quantify carotid plaque instability.

Since, the strain imaging algorithm described in [6] is a combination of techniques 

developed over the years, the improved quality observed in the strain maps formed comes at 

the cost of significantly increased computation time. Moreover, for carotid strain imaging, 

displacements accumulated over an entire cardiac cycle and corresponding accumulated 

strain estimation are required to characterize plaque vulnerability. Here around 25 frames of 

data over a cardiac cycle have to be processed which takes around two hours with the current 

algorithm on a single-threaded CPU [6]. In this work, we implement the algorithm presented 

in [6] on a GPU to allow for faster processing and hence making this approach feasible for 

clinical adoption.

This work reports on two main contributions. First, we quantify computation time for the 

different techniques which have been incorporated to our strain imaging algorithm. Second, 

we implement these algorithms on a GPU without loss of image quality and demonstrate the 

speedup in processing time making the algorithm feasible in a clinical setting. In this process 

we redesigned algorithms to make them suitable for GPU computing and explored standard 

optimizations for the same.

II. Materials And Methods

An Intel(R) Xeon(R) CPU E5–2640 v4 @ 2.40GHz was used to run the algorithm. The GPU 

used was a Tesla K40c which belongs to the Kepler architecture with compute capability 

3.5. The original algorithm was implemented in C++ using the Insight Toolkit (ITK) library 

[26]. CPU multithreading was not used. Table I presents the different stages used in the 

original algorithm which will be discussed in the following paragraphs.

Computational bottlenecks in the original implementation by McCormick et al. [27] were 

first identified. A timing analysis for a single inter-frame displacement calculation with this 

algorithm is presented in Fig. 1. These inter-frame displacement computation stages take a 

total of 317.25 secs per frame pair. The next step is displacement accumulation and strain 

tensor calculation. This is done after plaque segmentation and hence the time taken for this 

step varies depending on the plaque size. Our timing analysis on a carotid wall segmentation 

versus a large plaque segmentation shows that this took between 2.38 secs and 3.07 secs per 

frame pair respectively. This time includes the time spent in writing out the data to files with 

each plaque pixel location and corresponding strain values. However, this is very small 

compared to the 317.25 secs taken for displacement estimation and hence we focus on 

speeding up the displacement estimation process.

We use the term current image and next image to describe the initial and second frame that 

is used in inter-frame displacement estimation respectively. The Up-sample and Prepare 

Multi-level Data (UPMD) stage calculates the current and next images that will be used by 

the three levels of the multi-level displacement estimation algorithm. Note that these images 

are sampled differently for each level. First a windowed sinc interpolator is used to up-

sample the original current and next image by a factor of 2 in both the axial and lateral 
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direction. Following this up sampling the decimation factors presented in Table II are 

applied since the lower levels are operated at a coarser granularity to improve computational 

speed and reduce erroneous displacement tracking. Higher decimation is allowed in the axial 

direction after conversion to envelope signals (to satisfy Nyquist criterion) since we have 

higher resolution in that direction. Following the decimation Gaussian smoothing is applied 

which allows for derivative operations to be applied without singularities.

The Data Update (DU) stage is used to load the appropriate current and next image before 

proceeding to further stages for a given level. The Affine Transform (AT) stage is used only 

for level 2 and level 3 where the current image blocks are scaled according to strain 

observed in previous levels as discussed in [22, 23]. The Correlation Helper (CH) and the 

normalized cross-correlation (NCC) stages perform NCC of data blocks from current image 

to search regions in the next image. For performing NCC, the mean and variances of data 

block being cross-correlated are required. These values are calculated in the CH stage and 

hence it is a helper to the NCC stage. The radius and size of the data blocks formed from the 

current images along with the search region ratios and resulting NCC matrix sizes are shown 

in Table III. The data block size is calculated as 2∗radius+1. The NCC matrix sizes are 

calculated as 2 ∗ ceil(search ratio ∗ radius)+ 1. The last column determines the number of 

NCC operations performed of the current image data block to different offsets of the same 

sized block in the next image. The essence of multi-level tracking is having large data block 

sizes at the lower levels accompanied with a large search region as one is less likely to 

generate false positives with a large data block size. However, the resolution of displacement 

vectors generated is low with large blocks. Hence the displacement vectors from the lower 

levels are simply used to guide the search region initialization of the higher levels which 

perform NCC at smaller block sizes to achieve high spatial resolution for the displacement 

vectors.

The RC stage performs a Bayesian regularization process on the NCC matrices and is 

described in detail in [24]. The key process is, given a NCC matrix, use corresponding 

values from left, right, top and bottom NCC matrices to remove noisy NCC values in the 

given matrix. This is an iterative process and three iterations have been found to be sufficient 

to reduce noise in the estimation. Following this the regularized NCC matrices were used to 

form the displacement vectors. To accurately estimate the displacement vector, subsample 

displacement calculation (SDC) [25, 28] is done using interpolation. A simple parabolic 

interpolation is used for the level 1 and level 2 while the final level uses a 2D windowed sinc 

interpolation; a reconstructive method that does not have a closed form expression for the 

peak, but provides unbiased and accurate subsample estimates. The CPU implementation for 

sinc interpolation uses a Nelder-Mead simplex optimization to find this peak [25].

A. GPU Version 1

To implement this algorithm on a GPU, we first identified bottlenecks of the original ITK 

algorithm. Figure 1 illustrates that Bayesian regularization was the main bottleneck. The 

next bottleneck being the CH and NCC stage together. We initially implemented these three 

stages on the GPU with the frames copied to the GPU before the CH stage and the 

regularized matrices copied back to the CPU after the RC stage. The improved 
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computational results were presented at a conference where Meshram et al. .()[29] reported 

an application speedup of 13.75X. In this paper we implement all the remaining stages of the 

algorithm on the GPU and hence achieve a significantly faster implementation with higher 

speedup.

Data movement between GPU and CPU memory in the final implementation is as follows. 

The current and next frames are copied to the GPU memory before the computational stages. 

After the end of SDC stage in each level displacement estimates are copied back to CPU 

memory and used to initialize offsets for the NCC search region for the next level. These 

offsets are copied to the GPU memory from the CPU memory at the beginning of each NCC 

stage. For the final level the displacement estimates generated are the final results for the 

given frame pair and the algorithm moves on to the next frame pair. The GPU 

implementation of the UPMD stage performs up sampling using windowed sinc 

interpolation. Following this it performs the appropriate decimation and smoothening of the 

images and stores the resulting images for all three levels in GPU memory. The DU stage 

was not required for GPU implementation and hence was removed.

RF data from the Siemens S2000 system is stored in a signed short format which is a 2-byte 

format. However, in order to reduce any quantization errors in the up sampling stage we 

moved to a single precision floating point format which is a 4-byte format. This makes the 

GPU NCC stage more computationally expensive when compared to the corresponding CPU 

stage.

The current GPU images are then used as input for the AT stage for level 2 and level 3 which 

generates, transformed current image data blocks based on the strain computed in prior 

levels. The data blocks are formed from the original current image for level 1. The size of 

these data blocks are presented in column 3 of Table III. The CH stage is now used only for 

setting up offsets for search regions based on displacements computed in prior levels. The 

CH stage was relieved of calculating the mean and variances of data blocks as this is now 

done in the NCC stage itself. The NCC stage forms the NCC matrices which are stored in 

GPU memory. The size of the NCC matrices formed is presented in column 5 of Table III.

The NCC matrices are then regularized in the RC stage. Following this a parallel reduction 

operation is performed on the regularized NCC matrices to find the maximum NCC value. 

An optimized GPU based reduction algorithm presented by Harris [30] was used for this 

purpose. For level 1 and 2 parabolic interpolation was performed using the maximum NCC 

value and its neighbors [28]. For level 3, the CPU implementation used the Nelder-Mead 

simplex optimization to interpolate the peak in the NCC matrix using 2D windowed sinc 

interpolation. Although this process can be done in parallel for each NCC matrix, enough 

data blocks do not exist to make this approach suitable for CUDA. Hence an alternate 

approach that works efficiently on a GPU namely a multi-level global peak finder (MLGPF) 

was implemented.

MLGPF starts with finding the maximum or peak NCC value. Following this we set a region 

around this maximum which ranges from the matrix element prior to the maximum and ends 

at matrix element after the maximum. When done in 2D this approach forms a rectangular 

Meshram and Varghese Page 5

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



region. A grid is formed in this region and a 2D windowed sinc interpolator is utilized to 

compute in parallel with multiple threads as shown by red points in Fig. 2. Figure 2 shows 

how this process was performed with 64 threads. Our initial attempt with MLGPF used 1024 

threads to generate a finer grid. Following this, we again use the Harris [30] reduction 

approach to find the maximum of all grid points. After this, the process is repeated with a 

smaller region around the new interpolated maximum. For the first step where the sampling 

distance is large we use a relaxed shrinking factor shown in green in Fig. 2 for the new 

region because the actual global peak may be closer to another grid point than the one we 

calculated as the maximum to avoid any jitter errors. However, once we have a small search 

region we are less likely to miss the global peak and hence we can use a tighter shrinking 

factor shown in blue. Thus, relaxed shrinking was used only for the first iteration and tighter 

shrinking used for further iterations. Five iterations of the algorithm with 1024 samples in 

each iteration were found to match or exceed the subsample peak computed using the 

Nelder-Mead simplex optimization approach. If we consider the distance between 

neighboring values in the estimation/ interpolation matrix as a single unit. The relaxed 

shrinking factor denotes two units (one unit in each direction) and the tight shrinking factor 

represents one unit (half unit in each direction).

The intermediate results with GPU Version 1 are presented in Appendix A.

B. GPU Version 2

Speedup for level 3 of the SDC stage was just 4.67X, which was quite low indicating that 

the current configuration of the MLGPF algorithm utilizing 1024 grid points with 1024 

threads was not optimal. SDC was not a notable part of the timing analysis in Fig. 1 

however; it does become a notable component in GPU Version 1. The new bottlenecks for 

GPU Version 1 are the RC stage and CH+NCC stage. Hence, we further optimize RC, CH

+NCC and SDC stages.

For both the RC and CH+NCC stages the NCC matrices sizes for level 1 through 3 

respectively are 67×81 (5427), 41×59 (2419), 23×41 (943). These NCC matrices sizes are 

the optimal CUDA block size to use for the respective levels since if we use these block 

sizes, a unique thread can operate on each NCC matrix element. However, CUDA block 

sizes are limited to 1024 and sizes above these are not supported. Hence, the sizes used for 

level 1, level 2 and level 3 for both these stages were 32×32. 32×32 and 16×32 respectively 

and the same threads stepped through multiple NCC value calculation. This appears to be 

reasonable but is inefficient use of hardware. The problem requires understanding of the 

execution model on the GPU.

The execution model can be thought of as launching multiple CUDA blocks where each 

block has multiple threads. Execution of threads happens in the form of CUDA warps which 

are groups of 32 threads that run in lock-step fashion. If all 32 threads in each warp are not 

always performing useful calculations, it results in inefficient use of the GPU hardware. 

GPU Version 1 suffers from this issue and an example of this would be if we consider how 

warp 0 of level 1 in the RC or NCC stage would function. The threads ids in the form of 

(lateral, axial) or (X,Y) for warp 0 would be (0, 0), (1, 0), ….. (31,0). After doing the 

computation for the same offset as the thread ids these threads would step ahead to calculate 
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for offsets (32,0), (33, 0), …. (63, 0). Next, they would step to (64, 0), (65, 0), …. (95, 0). 

The problem now is offsets from (67, 0) to (96, 0) do not exist and the threads working with 

these offsets are not doing useful work. This issue is called thread divergence. One solution 

is to simply change the block dimensions used. Thus, for level 1 since NCC size is 67×81, 

we launch CUDA blocks with size (67,15) using 1005 threads that still do not exceed 1024 

threads. Therefore, the threads no longer iterate through the X or lateral dimension but only 

in the Y or axial dimension. Here the last warp is always divergent since the execution 

model will still use 1024 threads. However, all the other warps have non-divergent execution 

in the common case except for the last iteration which may have divergence for one warp 

computing the bottom rightmost offsets.

Further optimizations include use on chip shared memory and the texture cache which is a 

read only data cache. Shared memory can be thought of a cache managed by the 

programmer. Shared memory is especially useful with data reuse and we want this data to be 

loaded in shared memory before the threads start using it. Hence the threads typically load 

data in parallel then synchronize and start using the loaded data. This works great for the 

current image data block for NCC. However, since the search region is quite large for level 1 

and level 2 the search region does not fit in the shared memory or it brings down occupancy 

of the implementation. Hence, we use texture cache for this which is very easy to use in 

compute capability 3.5 by simply giving compiler directives or intrinsics to mark the data to 

be loaded in texture cache. This can only be done if the data is read and never written to. For 

the RC stage although shared memory helps, there is not enough shared memory to load data 

from every neighboring NCC matrix into separate locations. Hence, the GPU 

implementation first loaded each neighbor synchronized threads, performed the 

computations, synchronized threads, overwrote the shared memory with a new neighbor, 

synchronized threads and then performed the next computation. Doing this with texture 

memory achieved the same effect without any synchronization overhead and hence provided 

better performance for the RC stage.

Next, we attempt to improve the performance of the MLGPF scheme. The motivation behind 

using 1024 threads was to use fewer numbers of iterations for the scheme to converge. This 

assumed that the 2D interpolation using windowed sinc function was computationally 

inexpensive. To test this assumption, we evaluate the difference between computational 

times with an implementation where the interpolator is removed. Of course, this produces 

incorrect results. The correct implementation takes 0.176 secs while after removing 

interpolation it only takes 0.004 secs. This shows that the windowed sinc function was the 

bottleneck in this scheme. Hence the next goal was to converge while performing fewer 

number of interpolations even if it meant increasing the number of iterations. Ignoring the 

relaxed shrinking factor, in every iteration we performed 1024 calculations to converge by a 

factor of 1/32 in each dimension. However, if we used just 64 threads and implemented 

shrinking of 1/8 in each iteration, we get a shrinking factor of 1/64 in two iterations while 

performing only 128 calculations. Hence, the number of threads used was changed to 64 

instead of 1024. Nine iterations were needed instead of five iterations with 1024 threads. We 

also needed to use relaxed shrinking factors for the first four iterations. However, the scheme 

now takes 0.019 secs instead of 0.176 required with 1024 threads.
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C. Comparison of GPU and CPU Performance

Lastly, we compare the quality of estimates generated by the CPU and final GPU 

implementations respectively. To achieve this we use the SNRe metric as reported in [25, 28] 

for the GPU and CPU implementation:

SNRe =
me
se

where me and se are the mean and standard deviation respectively of the resulting strain 

estimates. We also present strain maps from both implementations to provide a qualitative 

visualization. The SNRe study followed the same protocol used in McCormick et al. [25] 

with a uniform tissue-mimicking (TM) phantom undergoing precise deformation achieved 

using a motion table. Ten independent realizations were used to obtain statistically 

significant results.

Pointwise strain comparison on the TM phantom was also performed. To quantify the 

accuracy of the algorithm we report on the expected and observed strains by the CPU and 

GPU algorithms on the phantom. Finally, we report on the strain value difference in a human 

in vivo acquisition.

III. Results

Performance comparison results are reported for radiofrequency (RF) data acquired using a 

Siemens S2000 system (Siemens Ultrasound, Mountain View, CA), using an 18L6HD 

transducer operated at center frequency of 11.4 MHz. The dimensions of the acquired 

frames and the decimated sizes for different levels are presented in Table IV. Table V lists 

the number of data blocks that were required at different levels. No overlap between data 

blocks was used. As mentioned in [6], overlap is not used because guidance is already 

provided by higher levels for the final level and independent matching blocks are ideal for 

Bayesian regularization. Note that both CPU and GPU implementations are flexible for any 

frame size, up sampling ratios, decimation factors, search region ratios and desired amount 

of overlap between blocks. The configuration specified in Tables II through V is that used in 

our carotid plaque patient studies [3–5, 31–33]. GPU speedups and optimization can vary 

depending on the configuration and hence the configuration that was successfully used in 

our previous analysis on human subjects was optimized.

Table VI and VII show the effect of different optimizations for the CH+NCC and RC stage 

respectively. The second column presents the computational time for Version 1 which does 

not include these optimizations. In the third column we changed the CUDA block 

dimensions to 67×15, 41×24 and 23×41 for level 1 through 3 respectively and both stages 

completed faster. The shared memory and/or the texture cache configuration that worked 

best is shown in the last columns and is used in the final version.

Computation time taken by both the GPU implementations to complete the different stages 

is presented in Fig. 3. Detailed GPU implementation timing analysis of the final version is 

presented in Fig. 4. The speedups for all levels and the different stages and net speedups are 
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shown in Table VIII. Finally, the time taken by the different implementations and the 

associated speedup for a frame pair is shown in Table IX.

Quantitative comparison of the strain SNRe with the CPU and final GPU implementations 

are shown in Fig. 5 for a uniform TM phantom for 10 independent realizations. Note that the 

two implementations have very similar performance and the GPU version performs slightly 

better at increased deformation of 7% and 3.5% in the axial and lateral direction 

respectively.

Figure 6 presents the median strain value obtained in the same uniformly elastic TM 

phantom. The expected strain is plotted with the estimated CPU and GPU strain. The 

average median value with error bars indicating the standard error is shown in Fig. 6. Note 

that there is excellent agreement between the CPU and GPU estimates with the expected 

strain upto 5 percent uniaxial deformation. However, when the uniaxial deformation is 

increased to 7 percent the CPU algorithm provides a worse performance when compared to 

the GPU also seen in the SNRe results in Fig. 5. To quantify differences between GPU and 

CPU implementations a pixel-to-pixel absolute difference of the corresponding strain maps 

were computed and the median and maximum absolute differences obtained shown in Fig. 7. 

Note that the absolute differences are nearly zero upto a 5% applied deformation but the 

CPU performs poorly for the 7% uniaxial deformation. In a similar manner the absolute 

difference in maximum strain observed for an in vivo plaque, was 6×10−4, 6×10−4 and 

4×10−4 for accumulated axial, lateral and shear strain respectively between the CPU and 

GPU implementations.

As mentioned previously we use a 4-byte single precision floating point format for storing 

the up-sampled RF data for the GPU whereas the CPU used a 2-byte format. This leads to 

minor differences in values computed with the algorithm for low to moderate strains. 

However, as observed for the 7% axial strain case in Figs. 5–7 the GPU provides better 

estimation than the CPU.

Finally, a qualitative comparison is presented in Fig. 8 on an in vivo acquisition on a human 

patient with carotid plaque in the longitudinal view. The two approaches identify similar 

areas in plaque with high strains.

IV. Discussion And Conclusion

Note that the largest speedups were obtained for the regularization step in our algorithm. 

Bayesian regularization is a computationally intensive process with a high amount of data 

reuse leading to the high speedups. Data reuse is defined as same or contiguous data 

elements used by threads running in parallel. Algorithm with high data reuse have high 

speedups because it is typically more computationally expensive to fetch data. The GPU 

execution model enables performance of more computations with less fetches if there is 

good data reuse. NCC stage speedups are slightly lower as we go to higher stages, with 

smaller data block sizes and hence the amount of data reuse is less when compared to lower 

stages.
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Many researchers have described implementations of NCC on GPU’s previously. Idzenga et 

al. [11] noted that approximately 90% of their computational time was spent performing 

NCC in their CPU implementation. In comparison, in our approach we spent 15.08% of our 

computational time on NCC, excluding the DU stage. Most of the time 77.35%, was spent 

on Bayesian regularization. The remaining 8% was spent on up-sampling, affine 

transformations and SDC using a 2D windowed sinc function for interpolation.

For NCC, after accounting for MATLAB to C/C++ transfer speedup, Idzenga et al. reported 

speedups of 67.33X for large cross correlation block sizes of 256×9 and speedup of 10.25X 

for smaller cross correlation block sizes of 16×9 using a NVIDIA K20 GPU. Peng et al. [16] 

also used NCC for threedimensional (3D) cross correlation estimation and reported speedups 

in the range of 120.21X to 107.69X for block sizes of 61×11×3 to 61×7×3, respectively. 

These speedups are comparable that reported in our paper of 75.54X to 35.47X for larger 

and smaller blocks respectively for NCC with the NVIDIA K40 GPU. In addition, literature 

reports also corroborate that smaller blocks have lower speedups because of lower data 

reuse.

However, only NCC computations have been previously reported with parallel computing 

implementations to the best of our knowledge. Thus implementing Bayesian regularization, 

2D windowed sinc-interpolation which was used for up sampling, affine transformations and 

sub-sample estimation and the MLGPF scheme in parallel are unique contributions of this 

work. For SDC Peng et al. [16] used a matching cube and ellipsoid model for 3D coupled 

estimation and this took 27 ms with a NVIDIA K20 GPU. Our 2D windowed 

sincinterpolation based on the MLGPF scheme for sub-sample estimation took 19 ms for the 

final level. Both approaches are comparable in their computational times.

Overall the GPU implementation of displacement tracking provided a 168.75X speedup. 

However, this speedup considers a single-threaded CPU implementation. The DU stage 

which was used in the CPU does not provide any advantage and was removed in the CPU as 

well. After removing the DU stage from the CPU version we obtained a speedup of 151.53X 

with the GPU. Thus if we were to use a multi-threaded optimized CPU version it would 

need to run at least 152 threads in order to perform better than the GPU. If we assume that 

each core could run 2 threads without slowing down either of the threads, we would need a 

76 core CPU. In fact, even with such a powerful CPU it would be unlikely that the CPU 

could match the performance because perfect thread to speedup scaling is never achieved 

due to intricate issues like false sharing [34], i.e. when two threads write into neighboring 

memory locations and cause a cache miss. There may also be memory bandwidth 

bottlenecks, load balancing, and core resource availability issues in such a CPU 

implementation.

Transferring the computation from CPU to GPU allowed for speedups in the displacement 

calculation. The strategies that helped in achieving this were, first identifying the 

computational bottlenecks and then working towards removing those with GPU 

implementation. This approach follows Amdahl [35] and is famously known as the 

Amdahl’s law in computer science. Secondly, we focused on minimizing data movement 

between the CPU and GPU as this is expensive. Finally, we explored GPU optimizations 
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which focused on making the most efficient use of the GPU cores and memory bandwidth. 

The NVIDIA Visual Profiler (nvvp) was found to be a useful tool to implement all the above 

strategies.

GPU implementation makes it feasible for the algorithm to be clinically adopted since a 

cardiac cycle with 25 frames would now take about 50 secs whereas the original 

implementation would have taken 2.2 hours. Moreover, this opens up the opportunity for 

more computationally intensive approaches such as further up sampling of the data in the 

lateral dimension since ultrasound acquisitions have poor lateral resolution.

One should also note that there is scope for further speedup of the algorithm. With a speedup 

of NCC and RC stages as these are still our main bottlenecks as shown in Fig. 6. This is 

possible if we divide our data block calculation between multiple GPUs as we have enough 

data blocks for this to scale well. Lastly it is important to note that the Tesla k40c GPU used 

in this work is now three generations old as it belongs to the Kepler architecture (2012). 

Since then we have had Maxwell (2014), Pascal (2016) and Volta (expected) (2018) 

architectures. The newer generations will enable the GPU implementation to run even faster 

on these platforms.
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Appendix A

A timing analysis for GPU Version 1 is shown in Fig. A1. The NCC and RC stages become 

the main computational bottlenecks in GPU Version 1. To provide a clear comparison 

between GPU Version 1 and the CPU implementation a log plot comparing the timing is 

presented in Fig. A2. Log plot better represents the low computational times obtained with 

the GPU.
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Fig. A1. 
Timing Analysis for GPU Version 1

Fig. A2. 
Comparison of GPU Version 1 to CPU on a log plot
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Fig. 1. 
Timing analysis of original CPU implementation
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Fig. 2. 
Illustration of multi-level global peak finding (MLGF) scheme for SDC
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Fig. 3. 
Timing comparison of GPU Version 1 and 2
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Fig. 4. 
Timing analysis for GPU Version 2
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Fig. 5. 
Axial and Lateral SNR for the uniform phantom
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Fig. 6. 
Expected and observed strain in a uniformly elastic TM phantom
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Fig. 7. 
Pointwise absolute difference between CPU and GPU strain maps
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Fig. 8. 
Axial (a), lateral (b) and shear (c) strain for original CPU Implementation. In a similar 

manner (d), (e) and (f) represent the same strain tensor for GPU Version 2.
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Table I.

Abbreviations of Computation stages

Abbreviation Stage Name

UPMD Upsample and Prepare Multilevel Data

DU Data Update

AT Affine Transform

CH Correlation Helper

NCC Normalized Cross-Correlation

RC Regularization Calculation

SDC Subsample Displacement Calculation
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Table II.

Decimation Factors

Level Lateral Decimation Axial Decimation

1 2 3

2 1 2

3 1 1
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Table III.

Block Sizes [Lateral, Axial]

Level Block Radius Block Size Search Ratio NCC Matrix Size

1 [15,28] [31,57] [2.2,1.4] [67, 81]

2 [12,23] [25,47] [1.65,1.25] [41,59]

3 [10,18] [21,37] [1.1, 1.1] [23,41]

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meshram and Varghese Page 27

Table IV.

Frame Sizes with Siemens RF data, [Lateral, Axial]

Type Frame Size

Read [456,2076]

Up sampled [912,4156]

Level 1 [456, 1384]

Level 2 [912, 2076]

Level 3 [912,4156]
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Table V.

Number of blocks, [Lateral, Axial]

Level Number of blocks

1 [14,24]

2 [37,44]

3 [45,114]
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Table VI.

Shared Memory and Texture Cache for NCC (time in seconds)

Levels VI Basic
Optimizations to VI

 Current Image 
in Shared Memory

All possible on 
Shared Memory

Texture memory 
For Next Image

Texture for Next Image in 
Level 1 and 2 and shared for 

level 3 Next Image

1 0.32 0.23 0.19 0.19** 0.16 0.16

2 0.52 0.38 0.32 0.33* 0.27 0.27

3 0 54 0.36 0.33 0.27 0.28 0.27

*
Theoretical occupancy is below 50% due to shared memory bottleneck

**
Next Image doesn't fit in shared memory
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Table VII.

Shared Memory and Texture Cache for RC (time in seconds)

Levels VI Basic Optimizations to VI Shared Memory Texture Cache

1 0.46 0.39 0.36* 0.16

2 0.59 0.51 0.27 0.26

3 0.95 0.73 0.43 0.39
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Table VIII.

Speed ups for Final GPU Version

Level UPMD AT CH+ NCC RC SDC

1 NA NA 75.54 287.96 216.41

2 NA 89.40 56.31 263.69 23.21

3 NA 73.78 35.47 270.58 37.185

Net 85.69 77.06 50.61 271.89 36.47
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Table IX.

Application wide speed up and Time taken for a frame pair

Time (secs) Cumulative speed up

CPU 317.25 NA

GPU Version 1 3.91 81.13

GPU Version 2 1.88 168.75
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