
GPU Accelerated Multilevel Lagrangian Carotid Strain Imaging

Nirvedh H. Meshram, M.S. [Student Member, IEEE] and Tomy Varghese, PH.D. [Senior
Member, IEEE]
Department of Medical Physics, University of Wisconsin School of Medicine and Public Health,
Madison, WI-53706

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison,
WI-53706 nmeshram@wisc.edu, tvarghese@wisc.edu

Abstract

A multi-level Lagrangian carotid strain imaging algorithm is analyzed to identify computational

bottlenecks for implementation on a Graphics Processing Unit (GPU). Displacement tracking

including regularization was found to be the most computationally expensive aspect of this strain

imaging algorithm taking about 2.2 hours for an entire cardiac cycle. This intensive displacement

tracking was essential to obtain Lagrangian strain tensors. However, most of the computational

techniques used for displacement tracking are parallelizable and hence GPU implementation is

expected to be beneficial. A new scheme for sub-sample displacement estimation referred to as a

multi-level global peak finder (MLGPF) was also developed since the Nelder–Mead simplex

optimization technique used in the CPU implementation was not suitable for GPU

implementation. GPU optimizations to minimize thread divergence, utilization of shared and

texture memory were also implemented. This enables efficient use of the GPU computational

hardware and memory bandwidth. Overall, an application speedup of 168.75X was obtained

enabling the algorithm to finish in about 50 secs for a cardiac cycle. Lastly, comparison of GPU

and CPU implementations demonstrated no significant difference in the quality of displacement

vector and strain tensor estimation with the two implementations upto a five percent inter frame

deformation. Hence, a GPU implementation is feasible for clinical adoption and opens opportunity

for other computationally intensive techniques.

Keywords

elastography; carotid strain imaging; GPU; CUDA; ultrasound

I. Introduction

ULTRASOUND strain imaging [1] is a modality which provides information about

mechanical properties of tissues. This modality has been used for several non-invasive

clinical diagnostic applications over the last decade. For example, quasi static breast strain

imaging has been used to both detect and discriminate between benign and malignant breast

lesions [2]. Several researchers have also shown the usefulness of carotid strain imaging in
vivo as it can predict plaque vulnerability [3–9].

HHS Public Access
Author manuscript
IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019
August 01.

Published in final edited form as:
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 August ; 65(8): 1370–1379. doi:10.1109/TUFFC.
2018.2841346.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Carotid strain imaging is implemented using the natural cardiac pulsation of the carotid

arteries as stimuli. Along longitudinal views the effect is such that motion of the near wall

and far wall of the artery are in opposite directions as the artery expands and contracts. This

inherent discontinuous motion makes the task of estimating the displacement map for

carotid strain imaging a challenging one[10]. In addition, there may be additional

physiological motion which causes both walls to move differently.

Recently, Graphics Processor Units (GPUs) have been used in strain imaging to allow for

faster computational and processing efficiency. NVIDIA (Santa Clara, CA) has introduced

CUDA (Compute Unified Device Architecture) which is a parallel programming platform

allowing easy programming of GPUs. Idzenga et al. [11] identified that about 90% of their

strain imaging algorithm computation time was spent in performing Normalized Cross

Correlation (NCC) computations and hence implemented NCC on a GPU using CUDA.

Verma and Doyley[12] used a GPU to perform beam forming and two-dimensional (2D)

cross correlation and achieved frame rates 400 times faster than conventional methods.

Rosenzweig et al. [13] implemented acoustic radiation force impulse (ARFI) imaging on

GPU, to improve the efficiency of cubic spline interpolation and Loupas 2-D autocorrelator

[14]. Yang et al. [15] implemented a hybrid CPU-GPU strain imaging algorithm using 1D

cross correlation where median filtering of displacement estimates and strain estimation was

done on the CPU for a previous frame while the remaining compute intensive calculations

were done on GPU for the current frame in parallel. Recently, Peng et al. [16] implemented

a 3D coupled sub-sample estimation algorithm for breast elastography using GPU. This was

accomplished by using a K20 NVIDIA GPU to obtain a 3D cross-correlation map which

was up-sampled using spline interpolation with marching-cube algorithm [17] and then

fitted to an ellipsoidal model to estimate the final displacements [18, 19].

Lagrangian carotid strain imaging is generally performed using the following steps. First, a

cumulative displacement vector map obtained based on the inter-frame displacements

estimated is generated. Second, accumulated displacement vectors are obtained prior to the

estimation of the corresponding accumulated strain tensors. Then, the gradient of the

displacement vectors is used for calculating the local strain tensors. The first step can be

viewed as a deformable registration problem and possible solutions are block matching

methods [20, 21]. In these methods blocks of data are matched between consecutive frames

using a similarity measure such as NCC. To form the displacement map accurately, Shi et al.

[10] used a multi-level pyramid scheme where coarser blocks of data are used to initialize

search regions for higher levels that use finer blocks to improve spatial resolution. Multilevel

block matching has allowed for accurate calculation of discontinuous displacement maps.

Here strain calculated at lower levels can be used to scale the data at higher levels to reduce

signal decorrelation and enhance accuracy of displacement estimation [22, 23]. Block

matching methods however do not utilize global information and hence can be susceptible to

signal decorrelation and peak hopping errors. In order to address this problem, McCormick

et al. [24] used a Bayesian regularization approach where displacement estimates from

neighboring blocks are used as a prior to aid accurate displacement estimation. The amount

of deformation per frame can be small and micrometer precision is desired, hence subsample

displacement estimation is necessary. McCormick et al. [25] used a 2D windowed sinc

interpolator to enable accurate and precise subsample displacement vector estimation. The

Meshram and Varghese Page 2

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

techniques developed in [10, 22–25] have been combined together in [6] and have

successfully shown to quantify carotid plaque instability.

Since, the strain imaging algorithm described in [6] is a combination of techniques

developed over the years, the improved quality observed in the strain maps formed comes at

the cost of significantly increased computation time. Moreover, for carotid strain imaging,

displacements accumulated over an entire cardiac cycle and corresponding accumulated

strain estimation are required to characterize plaque vulnerability. Here around 25 frames of

data over a cardiac cycle have to be processed which takes around two hours with the current

algorithm on a single-threaded CPU [6]. In this work, we implement the algorithm presented

in [6] on a GPU to allow for faster processing and hence making this approach feasible for

clinical adoption.

This work reports on two main contributions. First, we quantify computation time for the

different techniques which have been incorporated to our strain imaging algorithm. Second,

we implement these algorithms on a GPU without loss of image quality and demonstrate the

speedup in processing time making the algorithm feasible in a clinical setting. In this process

we redesigned algorithms to make them suitable for GPU computing and explored standard

optimizations for the same.

II. Materials And Methods

An Intel(R) Xeon(R) CPU E5–2640 v4 @ 2.40GHz was used to run the algorithm. The GPU

used was a Tesla K40c which belongs to the Kepler architecture with compute capability

3.5. The original algorithm was implemented in C++ using the Insight Toolkit (ITK) library

[26]. CPU multithreading was not used. Table I presents the different stages used in the

original algorithm which will be discussed in the following paragraphs.

Computational bottlenecks in the original implementation by McCormick et al. [27] were

first identified. A timing analysis for a single inter-frame displacement calculation with this

algorithm is presented in Fig. 1. These inter-frame displacement computation stages take a

total of 317.25 secs per frame pair. The next step is displacement accumulation and strain

tensor calculation. This is done after plaque segmentation and hence the time taken for this

step varies depending on the plaque size. Our timing analysis on a carotid wall segmentation

versus a large plaque segmentation shows that this took between 2.38 secs and 3.07 secs per

frame pair respectively. This time includes the time spent in writing out the data to files with

each plaque pixel location and corresponding strain values. However, this is very small

compared to the 317.25 secs taken for displacement estimation and hence we focus on

speeding up the displacement estimation process.

We use the term current image and next image to describe the initial and second frame that

is used in inter-frame displacement estimation respectively. The Up-sample and Prepare

Multi-level Data (UPMD) stage calculates the current and next images that will be used by

the three levels of the multi-level displacement estimation algorithm. Note that these images

are sampled differently for each level. First a windowed sinc interpolator is used to up-

sample the original current and next image by a factor of 2 in both the axial and lateral

Meshram and Varghese Page 3

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

direction. Following this up sampling the decimation factors presented in Table II are

applied since the lower levels are operated at a coarser granularity to improve computational

speed and reduce erroneous displacement tracking. Higher decimation is allowed in the axial

direction after conversion to envelope signals (to satisfy Nyquist criterion) since we have

higher resolution in that direction. Following the decimation Gaussian smoothing is applied

which allows for derivative operations to be applied without singularities.

The Data Update (DU) stage is used to load the appropriate current and next image before

proceeding to further stages for a given level. The Affine Transform (AT) stage is used only

for level 2 and level 3 where the current image blocks are scaled according to strain

observed in previous levels as discussed in [22, 23]. The Correlation Helper (CH) and the

normalized cross-correlation (NCC) stages perform NCC of data blocks from current image

to search regions in the next image. For performing NCC, the mean and variances of data

block being cross-correlated are required. These values are calculated in the CH stage and

hence it is a helper to the NCC stage. The radius and size of the data blocks formed from the

current images along with the search region ratios and resulting NCC matrix sizes are shown

in Table III. The data block size is calculated as 2∗radius+1. The NCC matrix sizes are

calculated as 2 ∗ ceil(search ratio ∗ radius)+ 1. The last column determines the number of

NCC operations performed of the current image data block to different offsets of the same

sized block in the next image. The essence of multi-level tracking is having large data block

sizes at the lower levels accompanied with a large search region as one is less likely to

generate false positives with a large data block size. However, the resolution of displacement

vectors generated is low with large blocks. Hence the displacement vectors from the lower

levels are simply used to guide the search region initialization of the higher levels which

perform NCC at smaller block sizes to achieve high spatial resolution for the displacement

vectors.

The RC stage performs a Bayesian regularization process on the NCC matrices and is

described in detail in [24]. The key process is, given a NCC matrix, use corresponding

values from left, right, top and bottom NCC matrices to remove noisy NCC values in the

given matrix. This is an iterative process and three iterations have been found to be sufficient

to reduce noise in the estimation. Following this the regularized NCC matrices were used to

form the displacement vectors. To accurately estimate the displacement vector, subsample

displacement calculation (SDC) [25, 28] is done using interpolation. A simple parabolic

interpolation is used for the level 1 and level 2 while the final level uses a 2D windowed sinc

interpolation; a reconstructive method that does not have a closed form expression for the

peak, but provides unbiased and accurate subsample estimates. The CPU implementation for

sinc interpolation uses a Nelder-Mead simplex optimization to find this peak [25].

A. GPU Version 1

To implement this algorithm on a GPU, we first identified bottlenecks of the original ITK

algorithm. Figure 1 illustrates that Bayesian regularization was the main bottleneck. The

next bottleneck being the CH and NCC stage together. We initially implemented these three

stages on the GPU with the frames copied to the GPU before the CH stage and the

regularized matrices copied back to the CPU after the RC stage. The improved

Meshram and Varghese Page 4

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computational results were presented at a conference where Meshram et al. .()[29] reported

an application speedup of 13.75X. In this paper we implement all the remaining stages of the

algorithm on the GPU and hence achieve a significantly faster implementation with higher

speedup.

Data movement between GPU and CPU memory in the final implementation is as follows.

The current and next frames are copied to the GPU memory before the computational stages.

After the end of SDC stage in each level displacement estimates are copied back to CPU

memory and used to initialize offsets for the NCC search region for the next level. These

offsets are copied to the GPU memory from the CPU memory at the beginning of each NCC

stage. For the final level the displacement estimates generated are the final results for the

given frame pair and the algorithm moves on to the next frame pair. The GPU

implementation of the UPMD stage performs up sampling using windowed sinc

interpolation. Following this it performs the appropriate decimation and smoothening of the

images and stores the resulting images for all three levels in GPU memory. The DU stage

was not required for GPU implementation and hence was removed.

RF data from the Siemens S2000 system is stored in a signed short format which is a 2-byte

format. However, in order to reduce any quantization errors in the up sampling stage we

moved to a single precision floating point format which is a 4-byte format. This makes the

GPU NCC stage more computationally expensive when compared to the corresponding CPU

stage.

The current GPU images are then used as input for the AT stage for level 2 and level 3 which

generates, transformed current image data blocks based on the strain computed in prior

levels. The data blocks are formed from the original current image for level 1. The size of

these data blocks are presented in column 3 of Table III. The CH stage is now used only for

setting up offsets for search regions based on displacements computed in prior levels. The

CH stage was relieved of calculating the mean and variances of data blocks as this is now

done in the NCC stage itself. The NCC stage forms the NCC matrices which are stored in

GPU memory. The size of the NCC matrices formed is presented in column 5 of Table III.

The NCC matrices are then regularized in the RC stage. Following this a parallel reduction

operation is performed on the regularized NCC matrices to find the maximum NCC value.

An optimized GPU based reduction algorithm presented by Harris [30] was used for this

purpose. For level 1 and 2 parabolic interpolation was performed using the maximum NCC

value and its neighbors [28]. For level 3, the CPU implementation used the Nelder-Mead

simplex optimization to interpolate the peak in the NCC matrix using 2D windowed sinc

interpolation. Although this process can be done in parallel for each NCC matrix, enough

data blocks do not exist to make this approach suitable for CUDA. Hence an alternate

approach that works efficiently on a GPU namely a multi-level global peak finder (MLGPF)

was implemented.

MLGPF starts with finding the maximum or peak NCC value. Following this we set a region

around this maximum which ranges from the matrix element prior to the maximum and ends

at matrix element after the maximum. When done in 2D this approach forms a rectangular

Meshram and Varghese Page 5

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

region. A grid is formed in this region and a 2D windowed sinc interpolator is utilized to

compute in parallel with multiple threads as shown by red points in Fig. 2. Figure 2 shows

how this process was performed with 64 threads. Our initial attempt with MLGPF used 1024

threads to generate a finer grid. Following this, we again use the Harris [30] reduction

approach to find the maximum of all grid points. After this, the process is repeated with a

smaller region around the new interpolated maximum. For the first step where the sampling

distance is large we use a relaxed shrinking factor shown in green in Fig. 2 for the new

region because the actual global peak may be closer to another grid point than the one we

calculated as the maximum to avoid any jitter errors. However, once we have a small search

region we are less likely to miss the global peak and hence we can use a tighter shrinking

factor shown in blue. Thus, relaxed shrinking was used only for the first iteration and tighter

shrinking used for further iterations. Five iterations of the algorithm with 1024 samples in

each iteration were found to match or exceed the subsample peak computed using the

Nelder-Mead simplex optimization approach. If we consider the distance between

neighboring values in the estimation/ interpolation matrix as a single unit. The relaxed

shrinking factor denotes two units (one unit in each direction) and the tight shrinking factor

represents one unit (half unit in each direction).

The intermediate results with GPU Version 1 are presented in Appendix A.

B. GPU Version 2

Speedup for level 3 of the SDC stage was just 4.67X, which was quite low indicating that

the current configuration of the MLGPF algorithm utilizing 1024 grid points with 1024

threads was not optimal. SDC was not a notable part of the timing analysis in Fig. 1

however; it does become a notable component in GPU Version 1. The new bottlenecks for

GPU Version 1 are the RC stage and CH+NCC stage. Hence, we further optimize RC, CH

+NCC and SDC stages.

For both the RC and CH+NCC stages the NCC matrices sizes for level 1 through 3

respectively are 67×81 (5427), 41×59 (2419), 23×41 (943). These NCC matrices sizes are

the optimal CUDA block size to use for the respective levels since if we use these block

sizes, a unique thread can operate on each NCC matrix element. However, CUDA block

sizes are limited to 1024 and sizes above these are not supported. Hence, the sizes used for

level 1, level 2 and level 3 for both these stages were 32×32. 32×32 and 16×32 respectively

and the same threads stepped through multiple NCC value calculation. This appears to be

reasonable but is inefficient use of hardware. The problem requires understanding of the

execution model on the GPU.

The execution model can be thought of as launching multiple CUDA blocks where each

block has multiple threads. Execution of threads happens in the form of CUDA warps which

are groups of 32 threads that run in lock-step fashion. If all 32 threads in each warp are not

always performing useful calculations, it results in inefficient use of the GPU hardware.

GPU Version 1 suffers from this issue and an example of this would be if we consider how

warp 0 of level 1 in the RC or NCC stage would function. The threads ids in the form of

(lateral, axial) or (X,Y) for warp 0 would be (0, 0), (1, 0), ….. (31,0). After doing the

computation for the same offset as the thread ids these threads would step ahead to calculate

Meshram and Varghese Page 6

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for offsets (32,0), (33, 0), …. (63, 0). Next, they would step to (64, 0), (65, 0), …. (95, 0).

The problem now is offsets from (67, 0) to (96, 0) do not exist and the threads working with

these offsets are not doing useful work. This issue is called thread divergence. One solution

is to simply change the block dimensions used. Thus, for level 1 since NCC size is 67×81,

we launch CUDA blocks with size (67,15) using 1005 threads that still do not exceed 1024

threads. Therefore, the threads no longer iterate through the X or lateral dimension but only

in the Y or axial dimension. Here the last warp is always divergent since the execution

model will still use 1024 threads. However, all the other warps have non-divergent execution

in the common case except for the last iteration which may have divergence for one warp

computing the bottom rightmost offsets.

Further optimizations include use on chip shared memory and the texture cache which is a

read only data cache. Shared memory can be thought of a cache managed by the

programmer. Shared memory is especially useful with data reuse and we want this data to be

loaded in shared memory before the threads start using it. Hence the threads typically load

data in parallel then synchronize and start using the loaded data. This works great for the

current image data block for NCC. However, since the search region is quite large for level 1

and level 2 the search region does not fit in the shared memory or it brings down occupancy

of the implementation. Hence, we use texture cache for this which is very easy to use in

compute capability 3.5 by simply giving compiler directives or intrinsics to mark the data to

be loaded in texture cache. This can only be done if the data is read and never written to. For

the RC stage although shared memory helps, there is not enough shared memory to load data

from every neighboring NCC matrix into separate locations. Hence, the GPU

implementation first loaded each neighbor synchronized threads, performed the

computations, synchronized threads, overwrote the shared memory with a new neighbor,

synchronized threads and then performed the next computation. Doing this with texture

memory achieved the same effect without any synchronization overhead and hence provided

better performance for the RC stage.

Next, we attempt to improve the performance of the MLGPF scheme. The motivation behind

using 1024 threads was to use fewer numbers of iterations for the scheme to converge. This

assumed that the 2D interpolation using windowed sinc function was computationally

inexpensive. To test this assumption, we evaluate the difference between computational

times with an implementation where the interpolator is removed. Of course, this produces

incorrect results. The correct implementation takes 0.176 secs while after removing

interpolation it only takes 0.004 secs. This shows that the windowed sinc function was the

bottleneck in this scheme. Hence the next goal was to converge while performing fewer

number of interpolations even if it meant increasing the number of iterations. Ignoring the

relaxed shrinking factor, in every iteration we performed 1024 calculations to converge by a

factor of 1/32 in each dimension. However, if we used just 64 threads and implemented

shrinking of 1/8 in each iteration, we get a shrinking factor of 1/64 in two iterations while

performing only 128 calculations. Hence, the number of threads used was changed to 64

instead of 1024. Nine iterations were needed instead of five iterations with 1024 threads. We

also needed to use relaxed shrinking factors for the first four iterations. However, the scheme

now takes 0.019 secs instead of 0.176 required with 1024 threads.

Meshram and Varghese Page 7

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

C. Comparison of GPU and CPU Performance

Lastly, we compare the quality of estimates generated by the CPU and final GPU

implementations respectively. To achieve this we use the SNRe metric as reported in [25, 28]

for the GPU and CPU implementation:

SNRe =
me
se

where me and se are the mean and standard deviation respectively of the resulting strain

estimates. We also present strain maps from both implementations to provide a qualitative

visualization. The SNRe study followed the same protocol used in McCormick et al. [25]

with a uniform tissue-mimicking (TM) phantom undergoing precise deformation achieved

using a motion table. Ten independent realizations were used to obtain statistically

significant results.

Pointwise strain comparison on the TM phantom was also performed. To quantify the

accuracy of the algorithm we report on the expected and observed strains by the CPU and

GPU algorithms on the phantom. Finally, we report on the strain value difference in a human

in vivo acquisition.

III. Results

Performance comparison results are reported for radiofrequency (RF) data acquired using a

Siemens S2000 system (Siemens Ultrasound, Mountain View, CA), using an 18L6HD

transducer operated at center frequency of 11.4 MHz. The dimensions of the acquired

frames and the decimated sizes for different levels are presented in Table IV. Table V lists

the number of data blocks that were required at different levels. No overlap between data

blocks was used. As mentioned in [6], overlap is not used because guidance is already

provided by higher levels for the final level and independent matching blocks are ideal for

Bayesian regularization. Note that both CPU and GPU implementations are flexible for any

frame size, up sampling ratios, decimation factors, search region ratios and desired amount

of overlap between blocks. The configuration specified in Tables II through V is that used in

our carotid plaque patient studies [3–5, 31–33]. GPU speedups and optimization can vary

depending on the configuration and hence the configuration that was successfully used in

our previous analysis on human subjects was optimized.

Table VI and VII show the effect of different optimizations for the CH+NCC and RC stage

respectively. The second column presents the computational time for Version 1 which does

not include these optimizations. In the third column we changed the CUDA block

dimensions to 67×15, 41×24 and 23×41 for level 1 through 3 respectively and both stages

completed faster. The shared memory and/or the texture cache configuration that worked

best is shown in the last columns and is used in the final version.

Computation time taken by both the GPU implementations to complete the different stages

is presented in Fig. 3. Detailed GPU implementation timing analysis of the final version is

presented in Fig. 4. The speedups for all levels and the different stages and net speedups are

Meshram and Varghese Page 8

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

shown in Table VIII. Finally, the time taken by the different implementations and the

associated speedup for a frame pair is shown in Table IX.

Quantitative comparison of the strain SNRe with the CPU and final GPU implementations

are shown in Fig. 5 for a uniform TM phantom for 10 independent realizations. Note that the

two implementations have very similar performance and the GPU version performs slightly

better at increased deformation of 7% and 3.5% in the axial and lateral direction

respectively.

Figure 6 presents the median strain value obtained in the same uniformly elastic TM

phantom. The expected strain is plotted with the estimated CPU and GPU strain. The

average median value with error bars indicating the standard error is shown in Fig. 6. Note

that there is excellent agreement between the CPU and GPU estimates with the expected

strain upto 5 percent uniaxial deformation. However, when the uniaxial deformation is

increased to 7 percent the CPU algorithm provides a worse performance when compared to

the GPU also seen in the SNRe results in Fig. 5. To quantify differences between GPU and

CPU implementations a pixel-to-pixel absolute difference of the corresponding strain maps

were computed and the median and maximum absolute differences obtained shown in Fig. 7.

Note that the absolute differences are nearly zero upto a 5% applied deformation but the

CPU performs poorly for the 7% uniaxial deformation. In a similar manner the absolute

difference in maximum strain observed for an in vivo plaque, was 6×10−4, 6×10−4 and

4×10−4 for accumulated axial, lateral and shear strain respectively between the CPU and

GPU implementations.

As mentioned previously we use a 4-byte single precision floating point format for storing

the up-sampled RF data for the GPU whereas the CPU used a 2-byte format. This leads to

minor differences in values computed with the algorithm for low to moderate strains.

However, as observed for the 7% axial strain case in Figs. 5–7 the GPU provides better

estimation than the CPU.

Finally, a qualitative comparison is presented in Fig. 8 on an in vivo acquisition on a human

patient with carotid plaque in the longitudinal view. The two approaches identify similar

areas in plaque with high strains.

IV. Discussion And Conclusion

Note that the largest speedups were obtained for the regularization step in our algorithm.

Bayesian regularization is a computationally intensive process with a high amount of data

reuse leading to the high speedups. Data reuse is defined as same or contiguous data

elements used by threads running in parallel. Algorithm with high data reuse have high

speedups because it is typically more computationally expensive to fetch data. The GPU

execution model enables performance of more computations with less fetches if there is

good data reuse. NCC stage speedups are slightly lower as we go to higher stages, with

smaller data block sizes and hence the amount of data reuse is less when compared to lower

stages.

Meshram and Varghese Page 9

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Many researchers have described implementations of NCC on GPU’s previously. Idzenga et

al. [11] noted that approximately 90% of their computational time was spent performing

NCC in their CPU implementation. In comparison, in our approach we spent 15.08% of our

computational time on NCC, excluding the DU stage. Most of the time 77.35%, was spent

on Bayesian regularization. The remaining 8% was spent on up-sampling, affine

transformations and SDC using a 2D windowed sinc function for interpolation.

For NCC, after accounting for MATLAB to C/C++ transfer speedup, Idzenga et al. reported

speedups of 67.33X for large cross correlation block sizes of 256×9 and speedup of 10.25X

for smaller cross correlation block sizes of 16×9 using a NVIDIA K20 GPU. Peng et al. [16]

also used NCC for threedimensional (3D) cross correlation estimation and reported speedups

in the range of 120.21X to 107.69X for block sizes of 61×11×3 to 61×7×3, respectively.

These speedups are comparable that reported in our paper of 75.54X to 35.47X for larger

and smaller blocks respectively for NCC with the NVIDIA K40 GPU. In addition, literature

reports also corroborate that smaller blocks have lower speedups because of lower data

reuse.

However, only NCC computations have been previously reported with parallel computing

implementations to the best of our knowledge. Thus implementing Bayesian regularization,

2D windowed sinc-interpolation which was used for up sampling, affine transformations and

sub-sample estimation and the MLGPF scheme in parallel are unique contributions of this

work. For SDC Peng et al. [16] used a matching cube and ellipsoid model for 3D coupled

estimation and this took 27 ms with a NVIDIA K20 GPU. Our 2D windowed

sincinterpolation based on the MLGPF scheme for sub-sample estimation took 19 ms for the

final level. Both approaches are comparable in their computational times.

Overall the GPU implementation of displacement tracking provided a 168.75X speedup.

However, this speedup considers a single-threaded CPU implementation. The DU stage

which was used in the CPU does not provide any advantage and was removed in the CPU as

well. After removing the DU stage from the CPU version we obtained a speedup of 151.53X

with the GPU. Thus if we were to use a multi-threaded optimized CPU version it would

need to run at least 152 threads in order to perform better than the GPU. If we assume that

each core could run 2 threads without slowing down either of the threads, we would need a

76 core CPU. In fact, even with such a powerful CPU it would be unlikely that the CPU

could match the performance because perfect thread to speedup scaling is never achieved

due to intricate issues like false sharing [34], i.e. when two threads write into neighboring

memory locations and cause a cache miss. There may also be memory bandwidth

bottlenecks, load balancing, and core resource availability issues in such a CPU

implementation.

Transferring the computation from CPU to GPU allowed for speedups in the displacement

calculation. The strategies that helped in achieving this were, first identifying the

computational bottlenecks and then working towards removing those with GPU

implementation. This approach follows Amdahl [35] and is famously known as the

Amdahl’s law in computer science. Secondly, we focused on minimizing data movement

between the CPU and GPU as this is expensive. Finally, we explored GPU optimizations

Meshram and Varghese Page 10

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which focused on making the most efficient use of the GPU cores and memory bandwidth.

The NVIDIA Visual Profiler (nvvp) was found to be a useful tool to implement all the above

strategies.

GPU implementation makes it feasible for the algorithm to be clinically adopted since a

cardiac cycle with 25 frames would now take about 50 secs whereas the original

implementation would have taken 2.2 hours. Moreover, this opens up the opportunity for

more computationally intensive approaches such as further up sampling of the data in the

lateral dimension since ultrasound acquisitions have poor lateral resolution.

One should also note that there is scope for further speedup of the algorithm. With a speedup

of NCC and RC stages as these are still our main bottlenecks as shown in Fig. 6. This is

possible if we divide our data block calculation between multiple GPUs as we have enough

data blocks for this to scale well. Lastly it is important to note that the Tesla k40c GPU used

in this work is now three generations old as it belongs to the Kepler architecture (2012).

Since then we have had Maxwell (2014), Pascal (2016) and Volta (expected) (2018)

architectures. The newer generations will enable the GPU implementation to run even faster

on these platforms.

Acknowledgements

We would like to gratefully acknowledge Dr. Carol Mitchell, Ph.D for acquiring and segmenting the human data set
used in the paper.

We would also like to express our deepest thanks to Dr. Robert Dempsey. M.D. and Dr. Stephanie Wilbrand, Ph.D
for leading and facilitating respectively the IRB approved plaque study at UW Madison for the human subject
study.

This research was funded in part by National Institutes of Health grants R01 NS064034 and 2R01 CA112192. We
gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this
research. Support for this research was also provided by the Office of the Vice Chancellor for Research and
Graduate Education (VCRGE) at the University of Wisconsin–Madison with funding from the Wisconsin Alumni
Research Foundation for the development of the GPU based strain estimation algorithm.

This research was funded in part by National Institutes of Health grants R01 NS064034 and 2R01 CA112192.

Appendix A

A timing analysis for GPU Version 1 is shown in Fig. A1. The NCC and RC stages become

the main computational bottlenecks in GPU Version 1. To provide a clear comparison

between GPU Version 1 and the CPU implementation a log plot comparing the timing is

presented in Fig. A2. Log plot better represents the low computational times obtained with

the GPU.

Meshram and Varghese Page 11

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. A1.
Timing Analysis for GPU Version 1

Fig. A2.
Comparison of GPU Version 1 to CPU on a log plot

Meshram and Varghese Page 12

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Biography

Nirvedh H. Meshram, M.S. (S’16) received his B.Tech. in Electronics engineering from

Veermata Jijabai Technological Institute (VJTI), Mumbai, India in 2014 and MS in electrical

engineering in 2016 from the University of Wisconsin-Madison. Currently he is pursuing his

PhD at University of Wisconsin-Madison in electrical engineering. His current research

interests include elastography, ultrasound imaging, GPU computing and medical image

analysis.

Tomy Varghese, Ph.D (S’92-M’95-SM’00) received the B.E. degree in Instrumentation

Technology from the University of Mysore, India in 1988, and the M.S. and Ph.D in

electrical engineering from the University of Kentucky, Lexington, KY in 1992 and 1995,

respectively. From 1988 to 1990 he was employed as an Engineer in Wipro Information

Technology Ltd. India. From 1995 to 2000, he was a post-doctoral research associate at the

Ultrasonics laboratory, Department of Radiology, University of Texas Medical School,

Houston, TX. He is currently a Professor in the Department of Medical Physics at the

University of Wisconsin-Madison, Madison, WI. His current research interests include

elastography, ultrasound imaging, quantitative ultrasound, detection and estimation theory,

statistical pattern recognition and signal and image processing applications in medical

imaging. Dr. Varghese is a fellow of the American Institute of Ultrasound in Medicine

(AIUM), Senior member of the IEEE, and a member of the American Association of

Physicists in Medicine (AAPM) and Eta Kappa Nu.

References

[1]. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, and Li X, “Elastography: a quantitative method for
imaging the elasticity of biological tissues,” Ultrasonic imaging,vol. 13, pp. 111–134, 1991.
[PubMed: 1858217]

[2]. Regner DM, Hesley GK, Hangiandreou NJ, Morton MJ, Nordland MR, Meixner DD, et al.,
“Breast Lesions: Evaluation with US Strain Imaging–Clinical Experience of Multiple Observers
1,” Radiology,vol. 238, pp. 425–437, 2006. [PubMed: 16436810]

Meshram and Varghese Page 13

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[3]. Dempsey RJ, Varghese T, Jackson DC, Wang X, Meshram NH, Mitchell CC, et al., “Carotid
atherosclerotic plaque instability and cognition determined by ultrasound-measured plaque strain
in asymptomatic patients with significant stenosis,” Journal of Neurosurgery,pp. 1–9, 2017.

[4]. Wang X, Jackson DC, Mitchell CC, Varghese T, Wilbrand SM, Rocque BG, et al., “Classification
of Symptomatic and Asymptomatic Patients with and without Cognitive Decline Using Non-
invasive Carotid Plaque Strain Indices as Biomarkers,” Ultrasound in medicine & biology,vol. 42,
pp. 909–918, 2016. [PubMed: 26778288]

[5]. Wang X, Jackson DC, Varghese T, Mitchell CC, Hermann BP, Kliewer MA, et al., “Correlation of
cognitive function with ultrasound strain indices in carotid plaque,” Ultrasound in medicine &
biology,vol. 40, pp. 78–89, 2014. [PubMed: 24120415]

[6]. McCormick M, Varghese T, Wang X, Mitchell C, Kliewer M, and Dempsey R, “Methods for
robust in vivo strain estimation in the carotid artery,” Physics in Medicine & Biology,vol. 57, p.
7329, 2012. [PubMed: 23079725]

[7]. Shi H, Mitchell CC, McCormick M, Kliewer MA, Dempsey RJ, and Varghese T, “Preliminary in
vivo atherosclerotic carotid plaque characterization using the accumulated axial strain and
relative lateral shift strain indices,” Physics in medicine and biology,vol. 53, p. 6377, 2008.
[PubMed: 18941278]

[8]. Hansen HH, de Borst GJ, Bots ML, Moll FL, Pasterkamp G, and de Korte CL, “Validation of
noninvasive in vivo compound ultrasound strain imaging using histologic plaque vulnerability
features,” Stroke,vol. 47, pp. 2770–2775, 2016. [PubMed: 27686104]

[9]. Huang C, Pan X, He Q, Huang M, Huang L, Zhao X, et al., “Ultrasound-Based Carotid
Elastography for Detection of Vulnerable Atherosclerotic Plaques Validated by Magnetic
Resonance Imaging,” Ultrasound in medicine & biology,vol. 42, pp. 365–377, 2016. [PubMed:
26553205]

[10]. Shi H and Varghese T, “Two-dimensional multi-level strain estimation for discontinuous tissue,”
Physics in medicine and biology,vol. 52, p. 389, 2007. [PubMed: 17202622]

[11]. Idzenga T, Gaburov E, Vermin W, Menssen J, and De Korte C, “Fast 2-D ultrasound strain
imaging: the benefits of using a GPU,” IEEE transactions on ultrasonics, ferroelectrics, and
frequency control,vol. 61, pp. 207–213, 2014.

[12]. Verma P and Doyley MM, “Synthetic aperture elastography: A GPU based approach,” in Medical
imaging 2014: Ultrasonic imaging and tomography, 2014, p. 90401A.

[13]. Rosenzweig S, Palmeri M, and Nightingale K, “GPU-based real-time small displacement
estimation with ultrasound,” IEEE transactions on ultrasonics, ferroelectrics, and frequency
control,vol. 58, 2011.

[14]. Loupas T, Powers J, and Gill RW, “An axial velocity estimator for ultrasound blood flow
imaging, based on a full evaluation of the Doppler equation by means of a two-dimensional
autocorrelation approach,” IEEE transactions on ultrasonics, ferroelectrics, and frequency
control,vol. 42, pp. 672–688, 1995.

[15]. Yang X, Deka S, and Righetti R, “A hybrid CPU-GPGPU approach for real-time elastography,”
IEEE transactions on ultrasonics, ferroelectrics, and frequency control,vol. 58, pp. 2631–2645,
2011.

[16]. Peng B, Wang Y, Hall TJ, and Jiang J, “A GPU-Accelerated 3-D Coupled Subsample Estimation
Algorithm for Volumetric Breast Strain Elastography,” IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control,vol. 64, pp. 694–705, 2017.

[17]. Lorensen WE and Cline HE, “Marching cubes: A high resolution 3D surface construction
algorithm,” in ACM siggraph computer graphics, 1987, pp. 163–169.

[18]. Meunier J and Bertrand M, “Ultrasonic texture motion analysis: theory and simulation,” IEEE
transactions on medical imaging,vol. 14, pp. 293–300, 1995. [PubMed: 18215833]

[19]. Jiang J and Hall TJ, “A coupled subsample displacement estimation method for ultrasound-based
strain elastography,” Physics in medicine and biology,vol. 60, p. 8347, 2015. [PubMed:
26458219]

[20]. Varghese T, Konofagou E, Ophir J, Alam S, and Bilgen M, “Direct strain estimation in
elastography using spectral cross-correlation,” Ultrasound in medicine & biology,vol. 26, pp.
1525–1537, 2000. [PubMed: 11179627]

Meshram and Varghese Page 14

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[21]. Chen L, Housden RJ, Treece GM, Gee AH, and Prager RW, “A hybrid displacement estimation
method for ultrasonic elasticity imaging,” IEEE transactions on ultrasonics, ferroelectrics, and
frequency control,vol. 57, pp. 866–882, 2010.

[22]. Chaturvedi P, Insana MF, and Hall TJ, “2-D companding for noise reduction in strain imaging,”
IEEE transactions on ultrasonics, ferroelectrics, and frequency control,vol. 45, pp. 179–191,
1998.

[23]. Varghese T and Ophir J, “Enhancement of echo-signal correlation in elastography using temporal
stretching,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control,vol. 44, pp.
173–180, 1997.

[24]. McCormick M, Rubert N, and Varghese T, “Bayesian regularization applied to ultrasound strain
imaging,” IEEE Transactions on Biomedical Engineering,vol. 58, pp. 1612–1620, 2011.
[PubMed: 21245002]

[25]. McCormick MM and Varghese T, “An approach to unbiased subsample interpolation for motion
tracking,” Ultrasonic imaging,vol. 35, pp. 76–89, 2013. [PubMed: 23493609]

[26]. Johnson HJ, McCormick M, and Ibanez L, “The ITK software guide,” Kitware, Inc.,2013.

[27]. McCormick M, Varghese T, Wang X, Mitchell C, Kliewer M, and Dempsey R, “Methods for
robust in vivo strain estimation in the carotid artery,” Physics in medicine and biology,vol. 57, p.
7329, 2012. [PubMed: 23079725]

[28]. Céspedes I, Huang Y, Ophir J, and Spratt S, “Methods for estimation of subsample time delays of
digitized echo signals,” Ultrasonic imaging,vol. 17, pp. 142–171, 1995. [PubMed: 7571208]

[29]. Meshram NH and Varghese T, “Fast multilevel Lagrangian carotid strain imaging with GPU
computing,” in Ultrasonics Symposium (IUS), 2017 IEEE International, 2017, pp. 1–4.

[30]. Harris M, “Optimizing cuda,” SC07: High Performance Computing With CUDA,2007.

[31]. Wang X, Mitchell C, Varghese T, Jackson D, Rocque B, Hermann B, et al., “Improved correlation
of strain indices with cognitive dysfunction with inclusion of adventitial layer with carotid
plaque,” Ultrasonic imaging,vol. 38, pp. 194–208, 2016. [PubMed: 26025578]

[32]. Berman SE, Wang X, Mitchell CC, Kundu B, Jackson DC, Wilbrand SM, et al., “The relationship
between carotid artery plaque stability and white matter ischemic injury,” NeuroImage:
Clinical,vol. 9, pp. 216–222, 2015. [PubMed: 26448914]

[33]. Meshram N, Varghese T, Mitchell C, Jackson D, Wilbrand S, Hermann B, et al., “Quantification
of carotid artery plaque stability with multiple region of interest based ultrasound strain indices
and relationship with cognition,” Physics in Medicine & Biology,vol. 62, p. 6341, 2017.
[PubMed: 28594333]

[34]. Torrellas J, Lam H, and Hennessy JL, “False sharing and spatial locality in multiprocessor
caches,” IEEE Transactions on Computers,vol. 43, pp. 651–663, 1994.

[35]. Amdahl GM, “Validity of the single processor approach to achieving large scale computing
capabilities,” in Proceedings of the April 18–20, 1967, spring joint computer conference, 1967,
pp. 483–485.

Meshram and Varghese Page 15

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Timing analysis of original CPU implementation

Meshram and Varghese Page 16

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Illustration of multi-level global peak finding (MLGF) scheme for SDC

Meshram and Varghese Page 17

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Timing comparison of GPU Version 1 and 2

Meshram and Varghese Page 18

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Timing analysis for GPU Version 2

Meshram and Varghese Page 19

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Axial and Lateral SNR for the uniform phantom

Meshram and Varghese Page 20

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Expected and observed strain in a uniformly elastic TM phantom

Meshram and Varghese Page 21

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Pointwise absolute difference between CPU and GPU strain maps

Meshram and Varghese Page 22

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Axial (a), lateral (b) and shear (c) strain for original CPU Implementation. In a similar

manner (d), (e) and (f) represent the same strain tensor for GPU Version 2.

Meshram and Varghese Page 23

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meshram and Varghese Page 24

Table I.

Abbreviations of Computation stages

Abbreviation Stage Name

UPMD Upsample and Prepare Multilevel Data

DU Data Update

AT Affine Transform

CH Correlation Helper

NCC Normalized Cross-Correlation

RC Regularization Calculation

SDC Subsample Displacement Calculation

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meshram and Varghese Page 25

Table II.

Decimation Factors

Level Lateral Decimation Axial Decimation

1 2 3

2 1 2

3 1 1

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meshram and Varghese Page 26

Table III.

Block Sizes [Lateral, Axial]

Level Block Radius Block Size Search Ratio NCC Matrix Size

1 [15,28] [31,57] [2.2,1.4] [67, 81]

2 [12,23] [25,47] [1.65,1.25] [41,59]

3 [10,18] [21,37] [1.1, 1.1] [23,41]

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meshram and Varghese Page 27

Table IV.

Frame Sizes with Siemens RF data, [Lateral, Axial]

Type Frame Size

Read [456,2076]

Up sampled [912,4156]

Level 1 [456, 1384]

Level 2 [912, 2076]

Level 3 [912,4156]

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meshram and Varghese Page 28

Table V.

Number of blocks, [Lateral, Axial]

Level Number of blocks

1 [14,24]

2 [37,44]

3 [45,114]

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meshram and Varghese Page 29

Table VI.

Shared Memory and Texture Cache for NCC (time in seconds)

Levels VI Basic
Optimizations to VI

 Current Image
in Shared Memory

All possible on
Shared Memory

Texture memory
For Next Image

Texture for Next Image in
Level 1 and 2 and shared for

level 3 Next Image

1 0.32 0.23 0.19 0.19** 0.16 0.16

2 0.52 0.38 0.32 0.33* 0.27 0.27

3 0 54 0.36 0.33 0.27 0.28 0.27

*
Theoretical occupancy is below 50% due to shared memory bottleneck

**
Next Image doesn't fit in shared memory

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meshram and Varghese Page 30

Table VII.

Shared Memory and Texture Cache for RC (time in seconds)

Levels VI Basic Optimizations to VI Shared Memory Texture Cache

1 0.46 0.39 0.36* 0.16

2 0.59 0.51 0.27 0.26

3 0.95 0.73 0.43 0.39

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meshram and Varghese Page 31

Table VIII.

Speed ups for Final GPU Version

Level UPMD AT CH+ NCC RC SDC

1 NA NA 75.54 287.96 216.41

2 NA 89.40 56.31 263.69 23.21

3 NA 73.78 35.47 270.58 37.185

Net 85.69 77.06 50.61 271.89 36.47

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meshram and Varghese Page 32

Table IX.

Application wide speed up and Time taken for a frame pair

Time (secs) Cumulative speed up

CPU 317.25 NA

GPU Version 1 3.91 81.13

GPU Version 2 1.88 168.75

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 August 01.

	Abstract
	Introduction
	Materials And Methods
	GPU Version 1
	GPU Version 2
	Comparison of GPU and CPU Performance

	Results
	Discussion And Conclusion
	Appendix A
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Table I.
	Table II.
	Table III.
	Table IV.
	Table V.
	Table VI.
	Table VII.
	Table VIII.
	Table IX.

