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Abstract

Digital tracking of human motion offers the potential to monitor a wide range of activities 

detecting normal versus abnormal performance of tasks. We examined the ability of a wearable 

conformal, sensor system, fabricated from stretchable electronics with contained accelerometers 

and gyroscopes, to specifically detect, monitor and define motion signals and “signatures,” 

associated with tasks of daily living activities. The sensor system was affixed to the dominant hand 

of healthy volunteers (n = 4) who then completed four tasks. For all tasks examined, motion data 

could be captured, monitored continuously, uploaded to the digital cloud, and stored for further 

analysis. Acceleration and gyroscope data were collected in the x, y, and z-axes, yielding unique 

patterns of component motion signals for each task studied. Upon analysis, low frequency (< 10 

Hz) tasks (walking, drinking from a mug, and opening a pill bottle), showed low inter-subject 

variability (< 0.3 G difference) and low inter-repetition variability (< 0.1 G difference) when 

comparing the acceleration of each axis for a single task. High frequency (≥ 10 Hz) activity 

(brushing teeth) yielded low inter-subject variability of peak frequencies in acceleration of each 

axis. Each motion task was readily distinguishable and identifiable (with ≥ 70% accuracy) by 

independent observers from motion signatures alone, without the need for direct visual 

observation. Stretchable electronic technologies offer the potential to provide wireless capture, 

tracking and analysis of detailed directional components of motion for a wide range of individual 

activities and functional status.
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Introduction

Motion and mobility are vital components of human existence.1 Whole body human 

movement, as well as movement of specific body elements, i.e. arms, legs, and head, occur 

as part of a wide range of activities – extending from personal care, to work and employment 

tasks, as well as recreation and sport pursuits. The extent of motion associated with these 

activities, in terms of range, reproducibility and frequency of movement, varies with the 

overall state of an individual, often increasing with training and conditioning, and conversely 

declining with aging, injury or disease.

Human motion parameters are also important indicators of an individual’s overall health.2–5 

Recently there has been an emergence of interest and devices aimed at tracking human 

motion, particularly in the form of easy-to-use, wireless, discrete wearable constructs for 

consumer, athletic and general purpose use, beyond those for healthcare professionals. This 

has been driven largely by a convergence of advances in electronics, accelerated diffusion of 

the smartphone, development of “wearable “ technologies, coupled with emergence of the 

“digitized self,” and an increasing motivation with aging “baby boomers,” for sustained and 

improved health with aging.6–10 Up to this point, detailed tracking of motion parameters, i.e. 

range, duration or components of motion, has largely remained a laboratory-based process 

relying predominantly on complex and expensive visual tracking methods.11–13 More 

recently, personal motion tracking has progressed with the advent of small sensors, yielding 

wearable systems such as the Fitbit™, JawBone™, or the Apple Watch™. While these 

devices have advanced personal motion tracking, they still measure overall body translation, 

e.g. number of steps taken, without resolution of details of body component movement.14–19 

Human motion is complex in that overall motion, or limb motion, in free space has six 

degrees of freedom, i.e. x, y, z pitch, yaw and roll components. A wearable sensor system 

that is able to track, measure and support the analysis of these more granular details of 

motion would be a valuable advance to further quantitate the description and understanding 

of human motion in health and disease.20

Recently, a wearable, conformal, skin-adherent motion sensor was developed, based on 

stretchable electronics with incorporated tri-axial accelerometers and gyroscopes – the 

BioStampRC™, (MC10 Inc.)21 (Figure 1 A, B). Herein we hypothesize that composite 

purposeful movements and motions associated with specific tasks of activities of daily living 

could be successfully captured, monitored and defined regarding directional components 

utilizing the BioStampRC™. Further, we posit that a given task set of motions will yield an 

identifiable “signature” as defined by the motion signals, allowing pattern recognition and 

identification of the motion activity without direct visualization. First, human volunteers 

with affixed BioStampRC™s, were asked to perform specific motion tasks including: 

walking, brushing teeth, drinking from a mug, and opening pill bottle and motions signals 

were captured, monitored and defined as to their constituent directional components. Next, 

to address whether resultant motion data created an identifiable “signature”, we employed 

both qualitative and quantitative measures through broad visual assessment of signals, 

single-blinded comparison studies, and quantification of signal frequency and amplitude for 

each task and subject. Finally, identification of a series of sequential motion tasks, from 

signals alone, without the benefit of visual information was performed.
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Methods

Wireless Motion Capture

Four healthy volunteers (3 for single motion tasks, and 1 for the motion series) participated 

in this study (2 male, 2 female, ages 22-24). A single BioStampRC™, (Figure 1 C), was 

applied and adhered, via affixed tape backing, to the dominant hand of each subject between 

the index finger and thumb. Figure 1 D depicts the timeline of events for motion capture 

with the BioStampRC™ system. In brief, a motion study event was created through the 

MC10 Investigator Portal, allowing for selection of components (accelerometer and 

gyroscope), sampling frequency (100 Hz), and amplitudes (± 4 G and ± 2000 degrees/s) 

needed for the study. The BioStampRC™ was then connected via Bluetooth to a tablet 

(Samsung Galaxy) through the MC10 Discovery Application. Once connected, motion data 

signals from the BiostampRC™ could be visualized in real-time on the tablet and assigned 

for recording to a motion activity previously created through the MC10 Investigator Portal. 

To clearly define the motion event and establish a baseline subject orientation, all subjects 

were asked to be motionless for the first and last 5 seconds of recording. Following 

completion of the motion tasks, recording was stopped, and motion data was uploaded via 

Bluetooth to the Samsung Tablet and then synced via WiFi to the MC10 Investigator Portal.

Specific Motion Protocols for Activities of Daily Living

Following informed consent, volunteers performed specific motion tasks as outlined in the 

following protocols, with each task performed in triplicate per subject: Protocols performed 

included: 1) gross translation (walking): Each volunteer was asked to walk at a self-defined, 

comfortable pace for 30 meters, then stop, turn around, and walk back 30 meters at the same 

pace. A length of 30 meters was pre-determined and marked by cones for visualization. 2) 

hygiene (brushing teeth): Each volunteer was asked to grab a toothbrush from the sink 

counter with their dominant hand, imitate the placement of toothpaste on the tooth brush 

with their non-dominant hand, and then proceed to brush their teeth in a self-defined, 

comfortable way for 30 seconds. 3) hydration (drinking from a mug): Each volunteer began 

the motion in a sitting position with both hands, palms down on each knee. Each volunteer 

was then asked to reach out with the dominant hand, grab the mug by the handle, and then 

bring it to their lips, as if drinking, and then place the mug back on the table and then return 

to starting position. 4) medication compliance (opening a pill bottle): Each volunteer began 

the motion in a sitting position with both hands, palms down on each knee. Each volunteer 

was then asked to reach out with their non-dominant hand to grab a push-and-twist pill 

bottle from a table, bring the pill bottle in front of them and then push-and-twist the lid using 

dominant hand. Once lid was removed, volunteers separated hands for a brief pause before 

putting the lid back on, and returning the bottle to table.

Motion Capture Analysis

Motion data were downloaded from the MC10 digital cloud and analyzed visually or 

computationally using MATLAB (Mathworks, Inc.), as described below. All motion signals 

(accelerometer and gyroscope) were assessed as raw signals, without additional filtering or 

adjustment in the x, y, and z axes of the BioStampRC™.
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Qualitative—A qualitative analysis was completed by visually comparing each subject’s 

motion signals and signature in the x, y, and z-axes with regard to signal appearance, 

presence of patterns, frequency of patterns and signal amplitude. In order to establish the 

efficacy of visual identification and distinguishing of motion signals and patterns, a single-

blinded analysis approach was utilized in which labeled signatures of motion patterns for 

each of the motion tasks were given to 10 volunteers. The volunteers were asked to use the 

labeled signals and signatures as a reference and match them to a string of un-labeled motion 

signatures generated from a series of daily routine activities. Accuracy in matching the 

motion patterns was assessed as % accuracy for each of the four motion tasks.

Semi-Quantitative—A semi-quantitative analysis was completed by analyzing the degree 

of overlap of signals – as to shape, height and signal envelope, between subjects performing 

the same activity. Motion signals for a given task of a given subject, were traced on Mylar 

sheets. The degree of similarity between subjects was then assessed via determining the 

degree of overall signal envelope congruence – defined as comparative likeness and overlap 

– employing a 1-5 score of overlap (1 = no overlap with 5 = complete overlap). This analysis 

was completed for each of the four activities. These results were then categorized based on 

their respective likeness. An activity labeled “identical” yielded an overlap score of ≥ 4 

between volunteers, an activity labeled “similar” yielded an overlap of > 2 and < 4, and an 

activity labeled “dissimilar” yielded an overlap of ≤ 2.

Quantitative—For low frequency motion signatures (< 10 Hz), a quantitative analysis was 

performed by averaging the signal amplitude of each subject’s motion in the x, y, and z-axes 

for each activity. The amplitudes were calculated by offsetting each signal from their 

baseline orientational forces. For high frequency motion signals (≥ 10 Hz) a quantitative 

analysis was performed through Fast Fourier Transform of the signal. All signals were 

statistically compared for inter-subject similarities using MATLAB to calculate the Pearson 

correlation coefficients between the signals of each subject.

Results

For all tasks studied, and in all subjects evaluated, the BioStampRC™ effectively captured 

motion data that was uploadable to the cloud and analyzable, yielding defined x, y, z motion 

data component information (see Figure 2 as example). Further, motion data collected for a 

specific motion task yielded a unique acceleration and gyroscope signature.

Figure 2 shows motion data collected during gross translation (walking) from three separate 

subjects. From visual analysis of the walking signals, the acceleration signatures between 

subjects were labeled as similar (Table I). The motion of walking produced a signal with 

only small discrepancies in acceleration amplitude (< 0.06 G difference) (Figure S1), and 

motion pattern, between the three subjects. Furthermore, correlation analysis of the signals 

revealed high correlation between subjects, with coefficients between 0.86 (subject 1 versus 

2) and 0.92 (subject 2 versus 3). One of the distinct differences observed between subjects 

was the variability in gyroscopic velocity detected during motion associated with swinging 

of arms as they walked. For example, subject 2 exhibited a higher angular velocity (−150 to 

150 degrees/s) around the x-axis compared to subjects 1 and 3 (−100 to 100 degrees/s; −25 
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to 25 degrees/s) (Figure 2 B, D, and F), suggesting that subject 2 swung their arms faster 

while walking. Despite these differences, the walking pattern was able to be accurately 

identified 100% of the time in our single-blinded study (Table II). In contrast, the motion of 

brushing teeth displayed more distinct differences between subject motion signatures (Figure 

3), creating a signal that is dissimilar between volunteers (Table I), and had lower correlation 

between subjects, with coefficients ranging between 0.62 (subject 1 versus 3) and 0.68 

(subject 2 versus 3). This is likely due to the preferential differences in how the subject 

chose to brush their teeth, i.e. starting with the top row of teeth as opposed to the bottom 

row. However, unlike walking, the motion signature of brushing teeth is a high frequency (> 

10 Hz) motion, which made it easily distinguishable 100% of the time (Table II) and when 

quantified, showed similar accelerative frequency patterns between the three volunteers 

(Figure S2).

Lower frequency motion signals generated from drinking from a mug or opening and 

closing a pill bottle, are shown in figures 4 and 5, respectively. These motions produced 

motion signatures that were considered similar and identical, respectively, from the 

perspective of inter-subject pattern variability (Table I). As to the identifiability of the 

motion signatures by trained subjects they were identifiable at the 80% and 70% rate for, 

drinking from a mug and opening and opening and closing a pill bottle respectively (Table 

II). Motion signatures from these categories, specifically the acceleration, (Figure 4 A, C, 

and E and Figure 5 A, C, and E) show more granular details of the motion with low inter-

subject variability, i.e. acceleration force difference less than 0.3 G for both motion tasks 

(Figure S3 and S4). Furthermore, drinking from a mug accelerative signals were highly 

correlated between subjects, with correlation coefficients between 0.85 (subject 2 versus 3) 

and 0.89 (subject 1 versus 2). However, opening pill bottle accelerative signals were less 

correlated, with coefficients between 0.72 (subject 1 versus 3) and 0.76 (subject 1 versus 2). 

The decline in correlation and ability of blinded observers to correctly identify the signal 

could largely be attributed to erroneous behavior exhibited by subject 3, who had a difficult 

time opening the pill bottle on the third repetition. When examining gyroscopic motion for 

the same activities (Figure 4 B, D, and F and Figure 5 B, D, and F), there were small 

qualitative differences in the angular velocity that could reflect each subject’s ability or 

preference for twisting open the pill bottle and lifting the mug to their mouth.

Discussion

In the present study, we report on the ability of a wearable, conformal, stretchable electronic 

sensor system to capture, track and monitor motion associated with specific tasks of daily 

living activities, that upon data analysis yields motion content information with regard to x, 

y and z components. Further, in examining the signals generated from contained sensor 

gyroscopes and accelerometers, defined signal patterns or “motion signatures” are evident 

and emerge. This study reveals that these activity signatures are noticeably distinct for the 

activities tested. Further, we show that sequential signatures patterns are readily identified 

and interpretable by a range of individual examiners with a high degree of accuracy, 

allowing non-visual identification of motion tasks over time. We specifically chose the four, 

albeit complex, motion tasks studied as we envision one particular utility of our approach is 
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as a means of monitoring individuals remotely as to performance of a daily routine, 

particularly in situations where direct visual observation by a caregiver may not be possible.

Published motion studies to date have largely focused on capturing information from single 

ambulatory motions, i.e. walking, sitting, or standing. These studies typically employ video 

and visual cues to capture motion.22–25 Our study goes beyond qualitative imaging to 

quantitative detection of motion and its vectorial and elemental components. Video 

capturing, while effective for monitoring complex motion, presently is cumbersome, 

generally bulky and requires placement of cameras at some distance from the monitored 

individual, thus not lending itself to convenient “on board” monitoring of individuals. 

Further, visual analysis raises privacy issues and requires the movement of the subject to be 

limited to within the field of view of the camera or sensor.

Prior studies utilizing accelerometers have employed systems that are bulky, requiring the 

subject to be tethered to the motion capture sensor.26 Previous wearable sensors have been 

heavy enough to adversely affect the motion itself, producing a signal that does not 

accurately represent the motion. The BioStampRC™ has shown great efficacy for use in 

wireless patient monitoring as a result of its lightweight, wireless, stretchable, conformable, 

and water-resistant design,27 allowing the subject to wear it on any location of the body for 

over a 24-hour period without interference as to daily routine activities or sacrifice of the 

subject’s privacy and desired sense of independence.

The present sensor additionally provides both accelerometer and gyroscopic signals over six 

degrees of freedom, allowing for detailed spatial and rotation information of the wearer’s 

motion. The utility of one sensor type over the other for motion identification is dependent 

upon the type of motion to be studied. Accelerometers afford the ability to capture detailed 

aspects of motion. Even without movement, accelerometers capture gravitational force, 

providing information as to the orientation of the sensor or limb, though obscuring 

acceleration force due to motion in the sensitive axis. The sensitivity to axis orientation 

furthermore makes it difficult to integrate acceleration data with velocity and spatial position 

information without significant accumulation of error or drift or complex filtering and signal 

processing.28 Hence, the human motion captured with an accelerometer must have a 

significant acceleration component to create an identifiable pattern. Alternatively, the 

gyroscope is not influenced by gravitational force, with all angular velocity measured local 

to the sensor. However, attention to orientation and placement of the sensor in relation to the 

body segment of interest is essential as rotation about the sensitive axis can easily shift with 

human motion. Although not specifically examined in this study, it is recognized that 

gyroscopes are comparatively less sensitive to error accumulation than accelerometers and 

can be integrated to provide angular information with minimal drift over small time points.29

Due to the aforementioned sensitivity, placement of the BioStampRC™ was carefully 

chosen to be on the dominant hand with minimal variation between subjects. The hand 

location afforded the ability of the accelerometer to capture fine motor details, and the 

gyroscope to record rotation about the entire arm segment. From our study it was apparent 

that the motion signatures generated from with the BioStampRC™ at this location recorded 

enough acceleration force for the accelerometer to create identifiable motion patterns (up to 
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70% of the time). However, it is clear that the ability to accurately define these patterns is 

dependent on the motion performed and the sensor utilized (accelerometer or gyroscope). 

Gyroscope data for lower frequency motions is less identifiable than patterns generated from 

accelerometers. The accelerometer’s ability to capture high frequency, detailed motions 

allowed some motion patterns to be identified simply via their high frequency characteristics 

(walking, brushing teeth). However, having both types of sensors on board in the 

BioStampRC™ was important for the identification of both torsional and spatial movement 

of the subject as well as for accurate identification and matching of signatures.

The results of our study suggest expanded utility of these sensors and of our approach to 

motion analysis for a wide variety of applications. Future potential applications include 

wireless subject and/or patient monitoring in the hospital, in a care facility or at home - as to 

the conduct of activities of daily living, medication compliance, fall detection, and general 

hygiene/self-care, particularly when direct observation by a caregiver is not possible. 

Although not presented in this study, motion signatures could alternatively be used to track 

onset, progression or recovery from diseases impacting mobility, rehabilitation, or training 

and progression of fitness and athletic performance. Beyond direct human applications these 

systems and analysis approach may be applied to veterinary as well as robotic applications 

as well. Independent of application, it is becoming increasingly evident that improving 

methods of human motion capture, analysis and interpretation, as presented in this study, has 

widespread translational applicability for monitoring and improving outcomes in a variety of 

industries.

Study Limitations

The current study displays the motion signatures from a single BiostampRC™ placed on the 

dominant hand. While one sensor was adequate to identify motion patterns for the tasks 

examined, its scope is necessarily limited to the applied body location and segment. The use 

of multiple sensors would provide additional information regarding whole-body motion of 

the user and allow for the ability to capture motion activities that may require body segments 

other than the wearer’s dominant hand. The BioStampRC™ system has the capability to 

record motion from multiple sensors simultaneously. Future studies are planned to explore 

this extended range potential.

Coupling motion signatures with computer-generated pattern recognition software would 

enable more autonomous monitoring and analysis, for identification of motions and for 

detection of changes or progression in motion signatures. To expand the utility of this 

system and approach for population monitoring will require additional studies to gather and 

analyze motion signatures from a wide range of subjects, examining subpopulations 

accounting for ranges of age distribution, gender, ethnicity and other demographic variables.

Other studies have utilized networks of a variety of sensor types to monitor patient health 

through measurement of additional health parameters such as ECG,30 heart rate and body 

temperature,31 and blood pressure.32 Creating a network of sensors and sensor types, able to 

collect acceleration and gyroscopic data, would allow for an integration of multiple data 

types, better defining from multiple perspectives, the wide variety of activities of a subject.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. BioStampRC™ Wireless Motion Capture System
(A) Front of BioStampRC™ wearable sensor (B) Back of BioStampRC™ wearable sensor 

(C) Axes orientation for BioStampRC™ motion (D) Placement of sensor on subject’s 

dominant hand for duration of daily routine activities (E) Series of steps for motion data 

collection with BioStampRC™ system.
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Figure 2. Motion Signature for Gross Translation
Tri-axial acceleration (A,C,E) and gyroscope (B, D, F) motion from three subjects walking 

30 meters.
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Figure 3. Motion Signature for Hygiene
Tri-axial acceleration (A,C,E) and gyroscope (B, D, F) motion from three subjects brushing 

their teeth.
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Figure 4. Motion Signature for Hydration
Tri-axial acceleration (A,C,E) and gyroscope (B, D, F) motion from three subjects drinking 

from a mug.

Garlant et al. Page 13

ASAIO J. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Motion Signature for Medication Compliance
Tri-axial acceleration (A,C,E) and gyroscope (B, D, F) motion from three subjects opening 

and closing a pill bottle.
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Figure 6. Motion Signature for Series of Daily Routine Tasks
(A) Timeline of motions performed by subject during series of tasks. (B) Tri-axial 

acceleration and (C) gyrosocope motion from one subject performing task series.
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Table I

Percent Overlap of Motion Signatures

Motion Pattern Walking Brushing Teeth Opening and Closing Pill Bottle Drinking from Mug

Overlap Score* 3 2 3 4

Pattern Identifier Based on Overlap % Similar Dissimilar Similar Identical

*
Overlap Score (Scale of 1-5): 1 = no overlap of signal, 5 = complete overlap of signal
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Table II

Percent Accuracy of Matching Motion Signatures

Motion Pattern Walking Brushing Teeth Opening and Closing Pill Bottle Drinking from Mug

% Participants Correctly Matched Motion 
Patterns 100% 100% 80% 70%
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