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ABSTRACT

BACKGROUND AND PURPOSE: The limitations inherent in the current methods of diagnosing mild cognitive impairment have con-
strained the use of early therapeutic interventions to delay the progression of mild cognitive impairment to dementia. This study
evaluated whether quantifying enlarged perivascular spaces observed on MR imaging can help differentiate those with mild cognitive
impairment from cognitively healthy controls and, thus, have an application in the diagnosis of mild cognitive impairment.

MATERIALS AND METHODS: We automated the identification of enlarged perivascular spaces in brain MR Images using a custom
quantitative program designed with Matlab. We then quantified the densities of enlarged perivascular spaces for patients with mild
cognitive impairment (n � 14) and age-matched cognitively healthy controls (n � 15) and compared them to determine whether the
density of enlarged perivascular spaces can serve as an imaging surrogate for mild cognitive impairment diagnosis.

RESULTS: Quantified as a percentage of volume fraction (v/v%), densities of enlarged perivascular spaces were calculated to be 2.82 �

0.40 v/v% for controls and 4.17 � 0.57 v/v% for the mild cognitive impairment group in the subcortical brain (P � .001), and 2.74 � 0.57 v/v%
for the controls and 3.90 � 0.62 v/v% for the mild cognitive impairment cohort in the basal ganglia (P � .001). Maximum intensity
projections exhibited a visually conspicuous difference in the distributions of enlarged perivascular spaces for a patient with mild cognitive
impairment and a control patient. By means of receiver operating characteristic curve analysis, we determined the sensitivity and
specificity of using enlarged perivascular spaces as a differentiating biomarker between mild cognitive impairment and controls to be
92.86% and 93.33%, respectively.

CONCLUSIONS: The density of enlarged perivascular spaces was found to be significantly higher in those with mild cognitive impairment
compared with age-matched healthy control subjects. The density of enlarged perivascular spaces, therefore, may be a useful imaging
biomarker for the diagnosis of mild cognitive impairment.

ABBREVIATIONS: AD � Alzheimer disease; aMCI � amnestic mild cognitive impairment; EPVS � enlarged perivascular spaces; MCI � mild cognitive impairment;
PVS � perivascular spaces; v/v % � percentage of volume fraction

Perivascular spaces (PVS) are cavities filled with cerebrospinal

and interstitial fluids that lie between the perforating blood

vessels of the brain and the pia mater.1,2 They act as conduits for

the drainage of interstitial fluid and solutes from the brain.3 These

spaces can become dilated and are termed enlarged perivascular

spaces (EPVS) when large enough to be visible on imaging.4 The

presence of EPVS has been shown to be increased in a variety of

physiologic and pathologic neurologic conditions, such as aging,

hypertension, arteriosclerosis, dementia, mild cognitive impair-

ment (MCI), Alzheimer disease (AD), and Parkinson disease.5-8

Current research suggests that MCI can be a harbinger of AD

development, with annual rates of progression variably reported

to be 10%–15%.9-12 Individuals with MCI exhibit cognitive im-

pairment beyond that expected for their age, a feature shared with

AD, with no overt impact on their activities of daily living.13 The

MCI population is of particular clinical interest because it is hy-

pothesized that early therapeutic interventions can be used to

delay or even thwart their deterioration to AD.14 The challenge

lies in detecting MCI early enough for such interventions to be

successful. Several assessment tools, such as the Mini-Mental
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State Examination,15 are used by physicians to clinically assess

MCI. However, a failure to detect the condition, especially in its

early stages, is an important limitation of these tools11,16,17 and

underscores an emergent need for more quantitative diagnostic

approaches.

Aided by a discovery of several sensitive and specific imaging

biomarkers, including the EPVS, MR imaging continues to find

increasing utility in the diagnosis of AD.18 Logically, these bio-

markers hold the most promise for becoming indicators of MCI

as well.19,20 Owing to the difficulties involved in their quantifica-

tion, EPVS are a relatively understudied biomarker.21 Current

evaluation of their properties, such as their shape, size, and num-

ber, remains a subjective process.22 Development of objective

methods for quantifying these properties is, thus, highly desirable,

with a great potential for clinical utility.

A quantitative method for mapping brain PVS in the MR im-

ages of healthy patients and those with AD acquired on a 7T

whole-body MR imaging scanner has previously been reported by

Cai et al.23 Using a train of algorithms, including a pixel-wise

spatial gradient, we segmented the hyperintense PVS and calcu-

lated their density as a percentage of volume fraction (v/v%). The

initial results demonstrated that the PVS density is significantly

higher in patients with AD compared with healthy controls.23

In this retrospective study based on brain imaging datasets

collected previously for other research purposes,24 we aimed to

evaluate whether the quantitative EPVS MR imaging at the clini-

cally prevalent 3T can help differentiate subjects with MCI from

age-matched healthy controls. We tested our method on patients

diagnosed with amnestic MCI (aMCI), 1 of the 2 main subtypes of

MCI; the other is nonamnestic MCI. Individuals with aMCI have

memory impairment as their predominant symptom and have a

higher risk of conversion to AD than individuals with nonamnes-

tic MCI, who present with a decline in cognitive domains other

than memory and convert more frequently to other dementia

forms, such as Lewy body dementia.25,26

MATERIALS AND METHODS
Subjects
The subjects, 15 controls and 14 patients who met the Petersen

criteria for aMCI, were recruited from the Penn Memory Center/

Alzheimer Disease Center at the University of Pennsylvania be-

tween 2011 and 2014.27

To be included, all subjects required the following: age of

55– 89 years, at least 2 years postmenopausal or surgically sterile if

female, fluent in English, 6 grades of education or sufficient work

experience to exclude mental retardation, in good health without

any diseases that could interfere with the study, visual and audi-

tory acuity to allow neuropsychological testing, a geriatric depres-

sion scale of �6, and willing and able to complete all the required

study procedures. Additional inclusion criteria for patients were a

diagnosis of probable aMCI and a Mini-Mental State Examina-

tion score between 24 and 30. Exclusion criteria were neurologic

diseases other than aMCI or AD; the presence of devices contra-

indicated for MR imaging; a history of major depression, bipolar

disorder, schizophrenia, substance abuse or dependency within

the past 2 years; illnesses or medical conditions that could lead to

difficulty complying with the study protocol; anxiety disorders;

and pregnancy.

The mean age for controls and the patients with aMCI was

66.3 � 9.5 and 71.9 � 6.2 years, respectively (P � .07). The male/

female ratios were 7:8 and 6:8 for the control and the aMCI groups

respectively (P � 1.00). Education, measured in years of school-

ing, was 15.6 � 2.6 years for controls and 16.9 � 2.8 years for the

aMCI cohort (P � .19). The subjects’ performance on the Mini-

Mental State Examination was 29.5 � 1.0 for the controls and

26.9 � 1.7 for the aMCI group (P � .001); on the Consortium to

Establish a Registry for Alzheimer Disease Word List Memory

Task, it was 24.7 � 2.9 for the controls and 16.2 � 3.2 for the

aMCI group (P � .001); and on the Delayed-Recall Test, it was

8.7 � 1.8 for the controls and 3.4 � 2.1 for the aMCI group (P �

.001).24

All subjects provided informed consent, and the research was

performed in compliance with the standards set by the National

Institutes of Health, the institutional review board, and the Inter-

national Code of Medical Ethics of the World Medical Associa-

tion. All subjects underwent high-resolution T2-weighted MR

imaging of the brain.24

MR Imaging
T2-weighted MR images were acquired on a 3T MAGNETOM

Trio scanner (Siemens, Erlangen, Germany) with an 8-channel

array head coil at the Hospital of the University of Pennsylvania.

In total, 30 coronal slices of the middle brain were acquired with a

slice thickness of 2 mm and a 0.6-mm gap, covering a total of 78

mm. The other parameters for the T2-weighted scans included

the following: TR/TE � 5310/68 ms, echo-train length � 15, echo

spacing � 18.3 ms, phase oversampling � 0%, FOV � 180 � 180

mm2, image matrix � 448 � 448, rendering an in-plane resolu-

tion of 0.4 � 0.4 mm2. The total acquisition time for the T2-

weighted dataset is about 7 minutes.24

Image Processing
A custom script was written using Matlab (R2012b; MathWorks,

Natick, Massachusetts) to automate the segmentation of EPVS in

the brain scans. We focused on the EPVS in the white matter and

the basal ganglia, areas that previous research identified as ROIs

for studying the EPVS.4

For each image, first, pixels of background noise were ex-

cluded using a preset threshold to create a brain mask. To segment

out the white matter and the subcortical nuclei from the brain, we

performed 2 successive rounds of 3- and 6-level k-means cluster-

ing to filter out the CSF and cortical gray matter, respectively.

Hole-filling, edge-detection, and contrast-enhancement algo-

rithms were used throughout this process to prevent the EPVS

from being filtered out and to keep the edges with their high

spatial gradient from being erroneously labeled as EPVS in the

subsequent steps. The pixel-wise spatial gradient was then calcu-

lated using the Matlab function “imgradient.” EPVS were then

automatically identified as pixels with a spatial gradient and top

92% of gradient values. The threshold was determined heuristi-

cally, given that pixels for brain tissues have 8% of the lowest

gradient values. Eventually, the function “bwconncomp” in Mat-

lab was applied to preserve the fusiform structures corresponding
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to the EPVS with a prescribed object size (20 –200 pixels) and to

generate EPVS maps of the brain. False-positive and false-nega-

tive rates for the automatic EPVS-segmentation method were es-

timated on the basis of visual counting from 10 randomly selected

brain slices from 10 distinct subjects, of which 5 were patients

with aMCI and 5 were controls.

The density of EPVS as a volume fraction was calculated as the

total volume of segmented EPVS divided by the total volume of

the white matter and the subcortical nuclei.

EPVS images from brain slices were interpolated to create a 3D

volume of isotropic voxels (0.4 � 0.4 � 0.4 mm) as was per-

formed in Cai et al.28 Using ImageJ (National Institutes of Health,

Bethesda, Maryland), we created maximum intensity projections.

These projections were color-coded using the cyan hot color map

available in ImageJ.

MIPs and the calculation of EPVS density were limited to the

brain volume bounded anteriorly by the anterior-most part of

the hippocampus and posteriorly by the anterior-most part of the

cerebellum for 2 reasons: First, this limitation is consistent with

previous studies that have identified this region, which contains

structures such as the subcortical nuclei, as the most relevant area

for studying the EPVS distribution.4 Second, the cerebellum was

excluded, given that it contains fine linear structures with high

and positive spatial gradients that can be erroneously labeled as

EPVS by our algorithms.

To specifically study the EPVS distribution within the basal

ganglia, the region of interest for most previous studies on EPVS,4

we manually drew masks corresponding to these subcortical nu-

clei in reference to the original T2-weighted brain images. MIPs

and the calculation of EPVS density in the basal ganglia were then

separately performed.

Statistical Analysis
Experimental results are presented as mean � SD. To determine

whether a statistically significant difference existed between the

EPVS densities in the healthy controls and the MCI cohorts, we

performed 2-tailed unpaired Student t tests with the statistical

significance defined as P � .05. A receiver operating characteristic

curve was generated to evaluate the performance of our method

for differentiating individuals with aMCI from controls using

EPVS density as an imaging biomarker. EPVS densities were used

as the test variables when the state variable was considered the

“true” group category obtained from thorough clinical evalua-

tion. The best cutoff sensitivity and specificity values of the re-

ceiver operating characteristic curves were determined using the

Youden index, which maximizes the sum of sensitivity and spec-

ificity. The performance of our method for the differentiation of

patients with aMCI from healthy controls was subsequently as-

sessed by these sensitivity and specificity cutoff values as well as

the diagnostic accuracy and the area under the curve. The receiver

operating characteristic curve analysis was performed in Matlab

(R2012b).

RESULTS
Figure 1 outlines the major steps involved in the automatic iden-

tification of EPVS on an MR image of a subject with aMCI. The

algorithm sequentially masks the brain (Fig 1B), removes CSF

with first-order k-means clustering (Fig 1C), removes cortical

gray matter with second-order k-means clustering (Fig 1D), cre-

ates a pixel-wise spatial gradient map after manually removing the

brain stem, generates the mask for pixels with high and positive

spatial gradient values (Fig 1E), and selects EPVS on the basis

of object size after removing the edges of the brain structures

FIG 1. Illustration of the EPVS segmentation process. A, A coronal MR brain image of a patient with aMCI. The original image fitted with a brain
mask (B) and the original image fitted with a mask generated with first-order k-means clustering to remove the CSF (C). D, Contrast-enhanced
image of the brain fitted with the mask generated with second-order k-means clustering to exclude the cortical gray matter. E, A mask for pixels
with high and positive spatial gradient values obtained from a pixel-wise spatial gradient map. The brain stem was manually removed. F, EPVS
selected on the basis of object size after removing the edges of the brain structures. G, Color-coded EPVS overlaid on the original brain image.
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(Fig 1F). Finally, the EPVS are color-coded and subsequently

overlaid on the original brain image (Fig 1G).

Figure 2 shows side-by-side comparison of the automatically

segmented EPVS on MR images of a cognitively healthy individ-

ual (Fig 2A, -B) and a subject with aMCI (Fig 2C, -D). Compared

with visual counting of the number of EPVS pixels, the automatic

EPVS segmentation from 10 randomly selected brain slices pro-

duced 0.77% � 0.29% of false-positive pixels and 19.39% �

6.92% of false-negative pixels. The difference between the false-

positive and false-negative pixels among the control and the aMCI

subjects was not statistically significant (P � .44).

Figure 3 depicts the MIPs generated from ordered middle-

brain slices of EPVS images in a control and a subject with aMCI.

These MIP images are generated for the white matter and subcor-

tical nuclei as a whole (Fig 3A, -B) and separately for the basal

ganglia (Fig 3C, -D). There is a visually appreciable increase in the

density of EPVS in the subject with aMCI compared with the

cognitively healthy subject in both the white matter and subcor-

tical nuclei as well as the basal ganglia.

Quantified as a percentage of volume fraction, EPVS density in

the white matter and the subcortical structures was calculated to be

2.82 � 0.40 v/v% for the controls and 4.17 � 0.57 v/v% for the aMCI

group with P � .001. EPVS density in the basal ganglia was 2.74 �

0.57 v/v% for the controls and 3.90 � 0.62 v/v% for the aMCI cohort

with P � .001. Figure 4 depicts these findings in a boxplot form.

Figure 5 depicts the receiver operat-

ing characteristic curve for using EPVS

as a differentiating biomarker between

subjects with aMCI and controls. The

area under the curve is 0.96, with the

95% confidence interval between 0.89

and 1.00 and the standard error being

0.04. The threshold value that achieves

the best compromise between sensitiv-

ity (92.86%) and specificity (93.33%)

is 3.35 v/v%.

DISCUSSION
In this study, we quantified the EPVS

density with an automatic segmentation

algorithm in patients with MCI and in-

vestigated whether EPVS density may be

a useful imaging biomarker for the diag-

nosis of MCI at the clinically available

magnetic field strength of 3T.

Improving on the previous study at

7T,23 we implemented the EPVS quanti-

fication method for the MR imaging da-

taset collected on a clinical 3T scanner.

Compared with 7T EPVS MR imaging,

the lower magnetic field strength of

these scanners entails a lower detection

sensitivity and a reduced signal-to-noise

ratio.29 However, it has the benefit of a
more homogeneous radiofrequency B1

field, a feature that is appreciated for
segmenting EPVS on the basis of a pixel-

wise spatial gradient. Most important,

EPVS quantification from clinically accessible 3T MR imaging has

a higher potential for clinical applications.

The algorithm used in this study performed better at correctly

identifying true EPVS at the cost of capturing all the true EPVS

pixels in any given brain slice, as evidenced by its lower false-

positive rate and the comparatively higher false-negative rate.

This lower false-positive rate and the comparatively higher false-

negative rate can be explained by the threshold values used in the

segmentation process. These values were selected via trial and

error, with the aim of maximizing identification of true EPVS,

minimizing segmentation of unrelated structures, and using con-

sistent threshold parameters across all subjects. If one assumed

that healthy brains are associated with smaller PVS, this conser-

vative PVS recognition strategy may overestimate the difference

between MCI and healthy subjects to some extent. Our results

show that the EPVS density in a patient with aMCI is significantly

higher than that in controls, both in the subcortical brain as a

whole and in the basal ganglia separately. This finding suggests

that quantitative EPVS density may be a sensitive imaging bio-

marker with utility in aiding the diagnosis of aMCI.

The detection of MCI remains one of the biggest clinical chal-

lenges in the management of neurologic pathologies.11,16,17 MCI

is a relatively common condition in the elderly, with its prevalence

reported to be 15%–20% in individuals 65 years of age or older.30

FIG 2. A side-by-side comparison of EPVS in a cognitively healthy control versus a patient with
aMCI A, A coronal MR brain image of a cognitively healthy control. B, Segmented EPVS color-
overlaid on the MR brain image of a cognitively healthy control. C, A coronal MR brain image of
a patient with aMCI. D, Color-coded EPVS overlaid on the MR brain image of a patient with aMCI.

AJNR Am J Neuroradiol 39:1622–28 Sep 2018 www.ajnr.org 1625



Current research suggests that the MCI population progresses to

dementia at a greater rate than those without this condition.31,32

Anywhere from 32%–38% of individuals with MCI progress to

AD in 5 years or longer.32,33 Annual rates of progression have

been estimated to be 10%–15%.9-12 These findings have naturally

generated an interest in using disease-modifying agents to not

only preserve cognitive function in indi-

viduals with MCI but also slow their

conversion to dementia.14 Given the sig-

nificant difference between the EPVS

densities in patients with MCI and

cognitively intact individuals as evi-

denced by our results, incorporating

EPVS quantification into the diag-

nostic work-up of MCI could help

eliminate some of the prevailing un-

certainty surrounding its diagnosis, al-

lowing earlier intervention and better

clinical outcomes.

Past literature has demonstrated that

the entire CSF space and the cerebral

ventricular volume increase due to brain

tissue atrophy in patients with MCI and

AD.34 Measurement of total CSF space

or cerebral ventricular volume with MR

imaging may provide a simpler quanti-

tative method to examine neuropatho-

logic changes associated with MCI and

AD.35 However, given that PVS function

as a conduit for the drainage of intersti-

tial fluid and solutes from the brain, the

measurement of EPVS reflects brain

functionality that may be independent

of brain tissue atrophy. Hence, EPVS

may be an earlier functional signature

than structural brain atrophy during the

aging process. Testing such a hypothesis will be our future research

interest.

Although receiver operating characteristic curve analysis dem-

onstrated �90% sensitivity and specificity for the differentiation

of patients with MCI and healthy controls on the basis of quanti-

fied EPVS density, some caution is warranted because fundamen-

tally increased EPVS density may not be a specific feature of MCI.

It has been observed in a variety of other physiologic and patho-
logic neurologic conditions, such as normal aging, hypertension,
and Parkinson disease.5-8 EPVS density may therefore be best

used to substantiate a suspected diagnosis of MCI in the presence

of its other clinical features as opposed to being used as a screening
test. Nevertheless, the higher sensitivity of our method under-
scores its potential as a confirmatory test for the early diagnosis of

MCI.36

One limitation of this study is that we confined our analyses to
the middle region of the brain because the cerebellum posed a

unique challenge to our segmentation process. A large volume of
the cerebellum is occupied by its finely structured cortex,37 which

appears hyperintense with respect to its surrounding tissues on

T2-weighted MR images, a feature it shares with EPVS. This leads

our algorithm to misidentify the cerebellar cortex as part of the

EPVS. Thereafter, we excluded this brain region from our analy-

sis. Additionally, given that the quantification of the pixel-wise

spatial gradient can be affected by the signal-to-noise ratio, spatial

resolution, and so forth, our technique for EPVS segmentation

requires the MR images to be collected under the same imaging

FIG 3. Representative multislice MIP projections of EPVS in the subcortical brain structures and
the basal ganglia of a control and a subject with aMCI. A, MIP image of subcortical structures
within the middle of the brain of a control subject. B, The MIP image of subcortical structures
within the middle of the brain of a subject with aMCI. C, MIP image of the basal ganglia of a
control subject. D, MIP image of the basal ganglia of a subject with aMCI.

FIG 4. Summarized EPVS densities within the middle part of the sub-
cortical brain (SB) and the basal ganglia (BG) of healthy controls and
subjects with aMCI. The asterisk indicates P � .001.
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setup as well as with the same acquisition sequence and parame-

ters. This may pose a challenge for large-scale multicenter studies

or studies involving the use of MR imaging scanners from differ-

ent vendors. A way to make the EPVS quantification consistent

across multiple sites and vendors remains to be studied.

A second limitation is the lack of data on the prevalence of

vascular disease, such as diabetes and hypertension, within the

study population. Such conditions can precipitate microvascular

changes within the brain and are well-known risk factors for la-

cunar infarcts. The presence of subcortical infarcts was addition-

ally not assessed in these subjects. Because both lacunar and sub-

cortical strokes leave MR imaging footprints within the regions

that contain the PVS, they can confound our algorithm, causing it

to mistake those footprints for EPVS. Whether our algorithm per-

forms just as well in patients with known vascular disease and

brain infarcts would be an intriguing question to probe in our

future studies. Additional features of the brain with MCI, such as

the severity of hippocampal atrophy, could also be incorporated

in future investigations to provide a more detailed picture of the

imaging features of MCI.

Another limitation is the lack of 3T MR imaging data for pa-

tients with AD. Although Cai et al23 have already established that

the EPVS density is similarly increased in patients with AD in MR

images acquired at 7T, it would be interesting to compare the

EPVS level between patients with MCI and those with AD at 3T to

understand the time course of PVS enlargement during the devel-

opment of AD from cognitively intact, to MCI, and, finally, to

clinically manifest dementia or AD. With a large sample size, it

will also be interesting to see whether EPVS density can discrim-

inate patients with MCI whose clinical symptoms are less evident

and who have low neuropsychiatric testing scores. These charac-

teristics could further enhance the utility of EPVS quantification

as a tool for monitoring dementia progression and regression in

response to treatment.

CONCLUSIONS
The quantitative EPVS segmentation method allows automatic

mapping of EPVS from MR images acquired on a clinical 3T MR

imaging scanner. EPVS density was found to be significantly

higher in patients with aMCI compared with age-matched cogni-

tively healthy control subjects. Therefore, EPVS density may be a

useful imaging biomarker for the diagnosis of MCI.
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