
Original Article
Integrative Analysis of lncRNAs in Th17 Cell
Lineage to Discover New Potential Biomarkers
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Th17 cells play a critical role in the pathogenesis of autoim-
mune diseases, including multiple sclerosis, rheumatoid
arthritis, systemic lupus erythematosus, Sjogren’s syndrome,
and inflammatory bowel disease. Despite the extensive investi-
gation into this T cell lineage, little is understood regarding
the role of Th17 lineage-specific lncRNAs (long non-coding
RNAs) > 200 nt. lncRNAs may influence disease through a
variety of mechanisms; their expression could be regulated by
SNPs. lncRNAs can also affect the expression of neighboring
genes or complementary miRNAs, and their expression may
have lineage-specific patterns. In the system biology study pre-
sented here, the effective lncRNAs from different criteria were
predicted for each autoimmune disease, and we then evaluated
their expression levels in 50 MS patients compared to 25 con-
trols using qRT-PCR. We identified changes in the expression
levels of AL450992.2, AC009948.5, and RP11-98D18.3 as po-
tential peripheral blood mononuclear cell (PBMC) biomarkers
for MS among our studied lncRNAs in which co-expression
analysis of AL450992.2 had the most AUCs, and the relation-
ship to RORC was also assessed. We propose that the recur-
rently deregulated lncRNAs identified in this report could
provide a valuable resource for studies aimed at delineating
the relationship between functional lncRNAs and autoimmune
disorders.
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INTRODUCTION
Approximately 7% to 9% of people around the world suffer from
autoimmune and immune-related diseases (AIDs) from a variety of
heterogeneous disorders.1 Th17 cell subsets with specific develop-
mental requirements and functions play critical roles in the
pathogenesis of autoimmune diseases.2,3 Although transcriptional
regulation of Th17 cell differentiation has been extensively studied,
there is little understanding of the post-transcriptional regulation of
Th17 cells.

Recently, reports suggest that long non-coding RNAs (lncRNAs), i.e.,
non-coding RNAs > 200 nt, have more stability compared to protein-
coding genes in body fluids and tissues, have tissue-specific patterns
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of expression, and are relatively easy to detect through various tech-
niques in liquid biopsies. lncRNAs are attractive disease biomarkers
and therapeutic targets, since they may modulate gene expression
through several mechanisms.4–7 In order to manifest the associated
lncRNAs with the disease, several possibilities exist, including the
possibility that they could be influenced by SNPs, affect the expres-
sion of neighboring genes or complementary microRNAs (miRNAs),
or affect lineage-specific expression. In this paper, we address all of
these influences.

The unique functions of each cell type are performed by its specialized
gene expression. Therefore, regulating lineage-specific lncRNAs
could affect cell fate and play a critical role in the pathology of
disease.8 Roughly 50% of protein-coding genes within 50 kb were
co-expressed with the respective lncRNA gene, and this correlation
will decrease by each kilobase farther away from the genomic position
of the protein-coding gene.9

Integration of AID-associated SNPs with genome functional region
data demonstrate that �90% of SNPs are associated with regulatory
DNA enhancer or promoter regions rather than with protein-coding
regions.10,11 Reported trait and/or disease-associated SNPs (TASs)
were significantly overrepresented only in nonsynonymous sites
y: Nucleic Acids Vol. 12 September 2018 ª 2018 The Authors. 393
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Figure 1. Association of Th17 Cell Differentiation

Genes and lncRNAs

Th17 cell differentiation genes were deduced through

data mining, and their proximities to selected lncRNAs

were evaluated through Python programming language.

Desired lncRNAs with the appropriate distance are indi-

cated by red circles.
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and 5-kb promoter regions compared to SNPs randomly selected
from genotyping arrays.12 Logistically, genomic regions containing
SNPs associated with disease could include disease-associated genes
like lncRNAs.

lncRNAs may have critical roles through targeting miRNA in a wide
range of biological processes; accordingly, competing endogenous
RNA theories could explain how lncRNAs regulate coding genes
via competitively binding with their complementary miRNA.13,14

Identifying influential biomarkers could potentially shed light on the
underlying pathogenic mechanisms in AIDs. From a practical stand-
point, the most useful autoimmune biomarkers will be those measur-
able in peripheral blood mononuclear cells (PBMCs) and serum. The
utility of most of these markers is limited by their restriction to rela-
tively inaccessible anatomic sites.

One emerging view is that lncRNAs could be novel molecules for dis-
ease diagnosis and therapy.15 In this system biology study, we aimed
to deduce effective lncRNAs in several autoimmune diseases,
including multiple sclerosis (MS), rheumatoid arthritis (RA), sys-
temic lupus erythematosus (SLE), Sjogren’s syndrome (SS), and
inflammatory bowel disease (IBD) through several criteria, and
we show that the expression levels of some are significantly elevated
in MS.

RESULTS
lncRNA Selection

Among the currently known lncRNAs, we selected 26 Th17 cell-
lineage-specific lncRNAs that derived from previous RNA-
394 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
sequencing (RNA-seq) data. These lncRNAs
included 54 transcripts (Table S1).

lncRNA Selection from Adjustment to Th17

Cell Differentiation Genes

From mining the literature, we identified 116
genes encoding proteins involved in Th17
cell differentiation and categorized them ac-
cording to their signaling pathway involvement
(Table S2). From this list, we identified 5
lncRNAs that neighbor the genes involved in
Th17 cell differentiation with a distance less
than 50 kb and for which 4 of them were
also co-expressed with IL21R, RORC, and
BATF, which are also expressed in Th17 cell differentiation
(Figure 1).

lncRNA Selection from Adjustment to Differentially Expressed

Genes in AIDs

In the next phase, we analyzed array datasets of AID genes
by comparing patient PBMC samples to controls and iden-
tified the most differentially expressed protein-coding genes
(MS, 405; SLE, 102; SS, 55; RA, 23; and IBD, 238) (Table S3).
We then examined the proximity of these genes to candidate
lncRNA genes and recorded lncRNAs that were located less
than 50 kb from protein-coding genes as associated or
linked. We retrieved 1 lncRNA linked to MS and 3 linked to
IBD genes with a potentially cis-regulatory role in neighboring
genes, one of which was shared between these two groups
(Figure 2).

lncRNA Selection from Adjustment to the AID-Associated SNPs

SNPs associated with each AID were retrieved from the
Genome-Wide Association Studies (GWAS) catalog (MS, 210;
SLE, 307; RA, 365; SS, 26; and IBD, 345) (Table S4). Accord-
ingly, we predicted 3 lncRNAs related to AIDs via SNPs,
including two associated with MS and one associated with
SLE that was located less than 50 kb away from selected SNPs
(Figure 3).

lncRNA-miRNA Interactions and Associated Diseases

Next, we inserted the sequence of every single exonic lncRNA
transcript in FASTA format into the “LncRNAs Input” panel of
LncDisease software, as shown in Table 1.



Figure 2. Association of lncRNAs and Array-Expressed Genes

Differentially expressedmRNAs inAIDsamplescompared tocontrolswere retrieved from theGeneExpressionOmnibus (GEO)database, and their proximities toselected lncRNAs

were analyzed by Python programming language, inputted to STRING-db, and visualized in Cytoscape. Appropriate lncRNAs in logical distance are indicated with red circles.
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Putative lncRNAs Associated with MS

We selected 8 putative lncRNAs that, in addition to Th17 cell-lineage
specificity, were also derived from at least one of the other criteria: 4
lncRNAs involved in Th17 cell-differentiation pathways, 1 lncRNA
selected from an array expression criterion, 1 derived from
LncDisease software, 1 lncRNA related to a SNP association criterion,
and 1 derived from both SNP association and LncDisease software.
AL450992.2 was associated with miRNA; therefore, we only evaluated
this transcript for SNP association. This lncRNA was associated with
MS (Table 2), so we explored its expression levels in a case-control
study by real-time qPCR analysis.

Patient Characteristics

The clinical and pathological data including sex, age, illness duration,
and score on the Expanded Disability Status Scale (EDSS) have been
recorded. Statistical analyses showed no significant differences be-
tween all samples in each group (Table 3).

Significant Changes in Levels of Expression of Specific lncRNAs

in MS Patients

We evaluated the expression levels of selected lncRNAs in the PBMCs
of MS patients compared to the control group. Real-time qPCR anal-
ysis showed a significant elevation of RP11-126K1.6 expression in
the PBMCs of MS patients compared to those of the healthy
controls (p = 0.023). Furthermore, RP1198D18.3, AL450992.2, and
AC007182.6 lncRNAs associated with the Th17 cell differentiation
genes, and AC009948.5—an lncRNA associated with miRNA and
SNP—were downregulated in patients compared to the healthy vol-
unteers (p = 0.001, p < 0.001, p = 0.041, and p < 0.001, respectively).
In contrast, expression levels of these lncRNAs showed no statistically
significant difference between the MS samples and control group:
AL928768.3 as a SNP-related lncRNA, RP11-290L1.3 as a miRNA-
associated lncRNA, and IL21R-AS1 as associated with a differentially
expressed protein-coding gene (Figure 4).

Significant Changes in Levels of Expression of Specific lncRNAs

in Relapsing- and Remitting-Phase Patients

RP11-126K1.6, a lncRNA adjusted to array-expressed genes, had
elevated expression levels in the remitting phase of disease compared
to healthy volunteers (p = 0.039). RP1198D18.3 and AL450992.2,
lncRNAs close to genes involved in Th17 cell differentiation, which
were evaluated in relapsing-phase patients compared to controls
using real-time qPCR, showed significantly decreased transcript levels
(p = 0.030 and p < 0.001, respectively) and a decreased RP1198D18.3
Molecular Therapy: Nucleic Acids Vol. 12 September 2018 395
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Figure 3. SNP-lncRNA Association

SNPs associated with selected AIDs were determined, and their distance from each lncRNA locus was assessed by Python programming language and visualized via

Cytoscape. Selected lncRNAs in this analysis were connected to the associated SNP, as indicated with red circles.
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expression level in relapsing-phase compared to remitting-phase
patients (p = 0.016). Data indicated that AL450992.2 was downregu-
lated in remitting-phase rather than healthy volunteers (p < 0.001).
However, these values were not significant for IL21R-AS1 and
AC007182.6 between the relapsing-phase, remitting-phase, and con-
trol groups.
Table 1. Deduced Potentially Associated lncRNAs according to miRNA

Interaction Deduced from LncDisease Software

Disease lncRNA

MS
AC009948.5-007

RP11-290L1.3-001

IBD LINC00877-001

RA
RP11-290L1.3-001

RP11-488C13.5-002

SS AC009948.5-001

SLE

RP11-213H15.3-003

RP11-82L18.2-001

AC098614.2-001
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We assessed the expression levels of RP11-290L1.3 as a miRNA-asso-
ciated lncRNA; however, the differences between the relapsing-phase,
remitting-phase, and control groups were not as significant as for
AL928768.5, a SNP-related lncRNA. However, there was a significant
decrease in AC009948.5, a lncRNA associated with both miRNA and
SNP, in the relapsing phase compared to the controls (p = 0.016) and
in the relapsing phase compared to the remitting phase (p < 0.001)
(Figure 5).

ROC Curve

We performed a comparative analysis of the lncRNAs generated, and
then we ranked them as biomarker candidates according to
decreasing area under the receiver operating characteristic (ROC)
curve (AUC) and graphed the results. The first three lncRNAs ranked
by AUC are AL450992.2, with an AUC of 0.866 (95% confidence in-
terval [CI] = 0.770–0.962, p < 0.001); AC009948.5, with an AUC of
0.859 (95% CI = 0.761–0.958, p < 0.001); and RP11-98D18.3, with
an AUC of 0.793 (95% CI = 0.682–0.904, p < 0.001) (Figure 6).

Correlation of lncRNAs Adjusted to RORC

We assessed RORC expression levels in the PBMCs of patients
compared to those of controls, which were adjusted to RP11-98D18.3



Table 2. Putative lncRNAs in MS Pathology Derived from System Biology

Analyses

Criterion lncRNA

SNP association with AIDs
AC009948.5

AL928768.3

miRNA interactions
AC009948.5-007

RP11-290L1.3-001

Differentially expressed genes in AIDs RP11-126K1.6

Th17 cell differentiation genes

IL21R-AS1

RP11-98D18.3

AL450992.2

AC007182.6
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and AL450992.2. AL450992.2 relative expression fold change in
PBMCs and RORC in MS patients showed a significant positive corre-
lation (Pearson’s correlation = 0.306, p < 0.05) (Figure 7), while no cor-
relation was observed between RP11-98D18.3 and RORC (Pearson’s
correlation = 0.210, p = 0.11);moreover, there was no significant differ-
ence inRORC expression levels inMSpatients compared to those of the
controls.
DISCUSSION
To identify disease-associated lncRNAs, we applied an integrated
method considering several criteria. Investigation of the chromosomal
locations of obtained results of criteria, including Th17 cell differenti-
ation genes, differentially expressed genes in AIDs; and AIDs-associ-
ated SNPs with lineage-specific lncRNAs indicated that �4.31% of
Th17 cell differentiation genes were neighbors to the selected
lncRNAs, while only�0.04% of genes retrieved from array expression
were in association with lncRNA and only�0.02% of SNPs were in as-
sociation with lncRNAs involved in disease suseptibility, which points
to the fact that genes encoding Th17 cell differentiation are enriched in
the genomic regions containing genes encoding lineage-specific
lncRNAs. Hence, by applying these techniques to cell types involved
in different diseases and protein-coding genes in specific cells, we
could potentially identify more disease-associated lncRNAs.

Effector Th17 cell populations can cause CNS inflammation and
demyelinating lesions.16 Accordingly, as demonstrated earlier, pro-
Table 3. Patient Clinical and Demographic Data

Characteristics RRMS Patients Relapsing

Sex: female/male 38/12 19/6

Age (and SD) 34 (8.30) 32.48 (7.07)

Duration of illness (and SD) 3.08 (4.41) 0

Disease severity (EDSS) 1.47 1.56

EDSS, expanded disability status scale.
tein-coding genes associated with lncRNAs9 (RP11-98D18.3,
AL450992.2, AC007182.6, and IL21R.AS1) were decreased in effector
Th17 cells compared to primary cell cultures,9 and our investigations
showed consistency with these results, as three of these lncRNAs
(RP11-98D18.3, AL450992.2, and AC007182.6) were downregulated
in MS patients compared to the controls.

Real-time qPCR of RP11-126K1.6 showed upregulation in MS pa-
tients compared to the controls, which was in accordance with its
differentially expressed gene in MS samples, as this study evaluated
expressed genes in MS patients compared to the controls with no
discriminatory group in patients, consequently, in order to verify
that lncRNAs associated with this criterion-specific sampling of pa-
tients on differentially expressed genes could influence the results.

AC009948.5 expression results indicated that this putative lncRNA
could, indeed, be associated with decreased level of MS pathogenesis,
as it was identified from SNP (rs9283487) association and LncDisease
criteria, while the reported risk SNP (rs11621145) from GWAS that is
associated with the expression of AL928768.7 was not dysregulated,
which suggests functional mechanisms underlying the findings
from GWAS that are more complex than regulatory variants or
expression levels of nearby lncRNA genes. Chromatin-looping
models could explain how a contributing lncRNA is not necessarily
the closest gene that is influenced by SNPs.17

The insignificant expression level of RP11-290L1.3 could be due to
the limitations of LncDisease software for determining putative
lncRNAs associated with miRNAs, as the exact mechanism by which
miRNAs regulate lncRNAs is not clear, which results in the prediction
that lncRNA targets of miRNAs will have high false positives and high
false negatives.

The expression of lncRNAs is more disease and tissue specific than
that of protein-coding genes and are more associated with their
biological function.18 lncRNAs as regulators of diverse biological pro-
cesses by immune cells and the molecular mechanism of autoimmu-
nity might be associated with numerous autoimmune diseases. Even
recently, microvesicles found to contain lncRNAs involved in AIDs
have been reported.19–21 Previous studies demonstrated the therapeu-
tic and biomarker roles of lncRNAs in various diseases such as RA,
IBD, and SLE. These include the effect of large intergenic noncoding
Remitting Control

p Value Comparison between
Patients and Control/Relapsing,
Remitting, and Control Samples

19/6 17/8 0.46/0.76

35.52 (9.26) 32.84 (6.06) 0.49/0.23

6.16 (4.47) – –

1.38 – –
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Figure 4. lncRNA Expression in MS compared to

Controls

Boxplots of the expression levels of lncRNA genes in MS

and control samples examined by real-time qPCR; values

are given as mean normalized expression relative to UBC

and WYHAZ; asterisks indicate significant differences to

the controls (*p < 0.05; **p < 0.01; ***p < 0.001).
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RNA (lincRNA)-p21 on nuclear factor kB (NF-kB) activity in RA,
PlncRNA1 mediated the function of the intestinal epithelial barrier
in IBD, and NEAT1 as a regulator of inflammatory pathway in
SLE.22–24

Arriving at more effective biomarker targets for AIDs seems a critical
step, as Bernards declared that “a poor biomarker can be just as bad
for the patient as a bad drug.”25 Improved clinical management of
autoimmune diseases through biomarkers, which could be helpful
for earlier and instant diagnosis, determining therapeutic strategies,
and predicting outcome in this broad group of enervate disorders,
398 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
is important.26 In the present study, we
have identified that expression levels of
AL450992.2, AC009948.5, and RP11-98D18.3
may potentially represent such PBMC bio-
markers for MS among our studied lncRNAs.
Moreover, the discriminatory power of these
three lncRNAs was shown in the principal-
component analysis (PCA) plot (Figure 8).

AL450992.2 and AC009948.5, as two potential
MS biomarkers, are located adjacent to RORC,
which is a key transcriptional regulator of
Th17 lineage-specific lncRNAs and predomi-
nantly expressed in Th17 cells.9,27 In accordance
with the importance of RORC in the Th17
cell lineage, RORC correlation was assessed
with the selected lncRNAs, revealing that
AL450992.2 significantly correlated with
RORC (Table S5). The possible role of
AL450992.2 in different signaling pathways is
determined through co-lncRNA andmanifested
through involvement with the cell cycle, T cell
receptor signaling pathway, and many others
(Figure 9).

MATERIALS AND METHODS
lncRNA Selection

As the first step to the preliminary selection of
Th17 lncRNAs, the study by Spurlock et al.9

on the whole-genome RNA-seq data of Th17
cell-lineage-specific lncRNAs was implemented.
At the next step, the transcripts and chromo-
somal locations of each lncRNA were retrieved
from Ensembl GRCh37 for further analyses to
reach the defined list of potentially more effective lncRNAs based
on the criteria and approach shown in the flowchart of the study in
Figure 10, which is presented in detail.

lncRNAs Adjusted to Th17 Cell Differentiation Genes

Proteins and respective genes involved in Th17 cell differentiation
were deduced through manual data mining,28 in which keywords
such as Th17 cell, differentiation, and signaling pathway were
used to filter the outcomes. Systematic literature mining was
performed on papers that were published until April 2017 from
several databases, including PubMed, Science Direct, and Web of
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Figure 5. lncRNA Expression in Relapsing and

Remitting Phases compared to the Controls

Boxplots of differential expression levels of lncRNA genes

in relapsing-phase, remitting-phase, and control samples

(*p < 0.05; ***p < 0.001).
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Science. Next, chromosomal locations of selected genes were deter-
mined in Ensembl GRCh37. Proximities of previously selected
lncRNAs to these genes were analyzed using Python program-
ming language (v3.6.0) (Python Script S1). In this step, Python
programming language code categorizes the co-localized protein-
coding genes and individual lncRNAs located in the same
chromosome; then their distances were checked on each side of
each lncRNA up to a distance of 50 kb away. Meanwhile, in order
to consider more effective lncRNAs, we only selected lncRNAs
that were co-expressed with protein-coding genes in Th17 cell
differentiation.9
Molecular Therap
lncRNAs Adjusted to Differentially

Expressed Genes in AIDs

To identify differentially expressed mRNAs in
AID PBMCs, we used investigative analysis of
array datasets that were retrieved from the
Gene Expression Omnibus (GEO) database:
for IBD, GEO: GSE3365 (Platform: GPL96;
Affymetrix Human Genome U133A Array;
127 samples); for MS, GEO: GSE21942 (Plat-
form: GPL570; Affymetrix Human Genome
U133 Plus 2.0 Array; 29 samples); for RA,
GEO: GSE15573 (Platform: GPL6102; Illumina
Human-6 v2.0 expression beadchip; 33 sam-
ples), for SS, GEO: GSE84844 (Platform:
GPL570; Affymetrix Human Genome U133
Plus 2.0 Array; 60 samples), for SLE, GEO:
GSE10325 (Platform: GPL96; Affymetrix Hu-
man Genome U133A Array; 67 samples). These
were utilized for identification of differentially
expressed mRNAs with the GEO2R analyzer
between patient samples and controls. We
considered differentially expressed genes with
adjusted p values < 0.05 and absolute log
fold changes > 1. Next, each protein-coding
gene’s proximity to lncRNAs was checked via
Python programming language in order to
select adjusted lncRNAs (a similar code as
that described in the immediately preceding
section).

lncRNAs Adjusted to Autoimmune

Diseases Associated with SNPs

SNPs (p % 5 � 10�8) associated with selected
AIDs were extracted from the GWAS catalog29

and were chromosomally localized in Ensembl

GRCh37. The distance of each lncRNA locus from selected
SNPs was assessed with Python programming language (v3.6.0)
(Python Script S2). To do such analysis, SNPs relevant to each
lncRNA categorized on the same chromosome and their positions
were evaluated to reach the SNPs with less than 5-kb nt from selected
lncRNAs.

lncRNA-Associated Diseases through miRNA Interactions

In order to predict lncRNA-associated diseases, a sequence-based
bioinformatics tool, LncDisease, was used to identify potentially
associated lncRNAs with autoimmune diseases.14 TargetScan and
y: Nucleic Acids Vol. 12 September 2018 399
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miRanda criteria were used to perform such analysis in this
software. Each individual sequence of the lncRNA transcripts was
input to LncDisease to predict the interacting miRNAs by using
TargetScan and miRanda criteria. LncDisease then used the Human
microRNA Disease Database (HMDD) for further analysis on
the predicted miRNAs according to the TAMmethod. Finally, poten-
Figure 7. Correlation between AL450992.2 and RORC in MS Patients

Correlation between AL450992.2 relative expression fold change in PBMCs and

RORC (Pearson’s correlation = 0.31, p < 0.05).

Figure 8. PCA

The scatterplot of princip

to indicate a distinct over
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tial disease-associated lncRNAs through
miRNAs interactions were listed.

PBMC Isolation of Patients and Control

In this step, we performed a case-control associ-
ation study including 75 adults, divided into
three groups. 10 mL peripheral blood was
obtained from 25 patients recently diagnosed
as having MS, according to the revised
McDonald’s criteria,30 and 25 in the remitting
phase, and both groups had no history of other
diseases of the CNS, tumor(s) and systemic
hematologic diseases, recent infection, and
concomitant use of antineoplastic or immuno-
modulating therapies prior to blood sampling. Blood samples were
gathered in EDTA-containing tubes from the Alzahra Hospital,
Isfahan, Iran. Both groups were between 18 and 60 years old. Patients
were also characterized according to the EDSS method of calculating
and understanding disability in MS patients.31 Moreover, 25 age-
and gender-matched blood samples were collected from healthy
al-component analysis using biomarker lncRNAs in order

lap of patients and controls.
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volunteers, and written informed consent was obtained. The human
subject protocol was approved by an institutional review board of
Royan Institute (Project ID no. 91000573). All study protocols were
carried out in accordance with the approved guidelines. Human
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PBMCs were isolated with the Lymphoprep
density gradient medium (STEMCELL Tech-
nologies, Cambridge, MA, USA).

RNA Extraction and cDNA Synthesis

To isolate total RNA, TRIzol reagent (Invitro-
gen, Carlsbad, CA, USA) was used according
to the manufacturer’s supplied instructions.
The RNA was quantified, and the quality
was evaluated according to a ratio of
absorbance of 260/280 nm using a Nanodrop
spectrophotometer (Nanodrop 1000, Thermo
Scientific, Waltham, MA, USA). To eliminate
any potential contaminating DNA, total
RNA samples were treated with RNase-free
DNase (Thermo Scientific, Waltham, MA,
USA) prior to real-time qPCR. cDNA was
synthesized from the total RNA using a RevertAid First
Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA,
USA). Afterward, cDNA samples were stored at �80�C until
further use.
Figure 10. In Silico Workflow of the Study

Lineage-specific lncRNAs were obtained from RNA-seq

data. In step a, SNPs associated with each AID were

retrieved from the GWAS catalog for analysis of their

proximities to lncRNAs through Python programming

language and were then visualized in Cytoscape. In step

b, differentially expressed mRNAs in AID patients were

obtained from corresponding GEO datasets. After chro-

mosomal localization, their distances from selected

lncRNAs were checked via Python programming lan-

guage and, after inputting to STRING-db, visualized in

Cytoscape. In step c, Th17 cell differentiation genes were

selected through data mining. Their neighboring to the

selected lncRNAs was determined and, after inputting to

STRING-db, visualized in Cytoscape. In step d, lncRNAs’

transcripts were deduced and inputted to the LncDisease

software, which checked lncRNA-miRNA interaction and

outputted the diseases related to the predicted miRNAs.
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Table 4. Primer Pairs Used in This Study

Primer Sequence (50–30) GC% 30DG (kcal/mol) Amplicon Size (bp) Ta (�C)

AC007182.6 F GTAAGTCAGCATGTAGCAC 47.7 �7.5
86 50

AC007182.6 R GCTCCATCAATAACATCTTCAT 36.4 �5.7

AC009948.5.007 F ATCAAGTTACAGAGCAGAG 4.1 �64
83 50

AC009948.5.007 R AACATTACCGAGGACAAC 44.4 �6.5

AL450992.2.001 F TTAGACTCTCCTTGACCAT 42.1 �6.6
113 52

AL450992.2.001 R TTCTCCTTCTGTGCTTTC 44.4 �5.7

AL928768.3 F ACAGGGAGGAAGTGTGGAG 57.9 �6.9
93 56

AL928768.3 R GTGAGTAAGGGCGGGTC 64.7 �7.4

IL21R-AS1 F CTCCGACCACTCATTCAG 55.6 �6.1
119 56

IL21R-AS1 R CTTATCACCTTGCCGTCTG 52.6 �6.6

RP11.126K1.6 F AACAGTCGCCTTCCAACAC 52.6 �6.5
118 62

RP11.126K1.6 R TCCATCACTCCTACCCATCATT 45.5 �5.7

RP11-98D18.3 F AGGCTCAGTCACCTTTCC 55.6 �6.2
81 54

RP11-98D18.3 R CCTTCTCTGTGACCGTCGA 57.9 �7.4

RP11-290L1.3 F GCGAGTGCGGCTCGTGATCTC 66.7 �5.8
168 64

RP11-290L1.3 R CCGGTCAAGCTCAAGGAACTGC 59.1 �7.5

RORC F TGCCAGAATGACCAGATTGTGCTT 45.8 �7.1
132 60

RORC R GAACAGCTCCATGCCACCGTA 57.1 �7.1

UBC F GGATTTGGGTCGCAGTTCTTG 52.4 �6.1
135 58

UBC R TGCCTTGACATTCTCGATGG 50 �6.5

YWHAZ F ACTTTTGGTACATTGTGGCTTC 40.9 �6.9
94 62

YWHAZ R CCGCCAGGACAAACCAGTA 57.9 �5.8

F and R, forward and reverse primers, respectively; 30DG stands for Gibbs energy for binding of the 30 part of the primer with the template. Ta, annealing temperature of PCR reactions.

Molecular Therapy: Nucleic Acids
Real-Time qPCR

Transcription levels were measured in triplicate by real-time qPCR
using SYBR Green Master Mix: SYBR Premix Ex TaqII (TaKaRa, To-
kyo, Japan) and were carried out using specific primer pairs in the
Step One Plus Real-Time PCR thermal cycler (Applied Biosystems,
Foster City, CA, USA). UBC and YWHAZ were used as the most sta-
bly expressed reference genes, which were in accordance with gene
expression analysis of PBMCs between healthy volunteers, relaps-
ing-remitting MS (RRMS) and RRMS-interferon (IFN)-b patients.32

Primer pairs used in these reactions are listed in Table 4.

Statistical Analysis

We performed analyses using a standard two-tailed Student’s t test
and a one-way ANOVA to assess differences, followed by pairwise
comparisons using Tukey’s correction. Pearson correlation was also
performed for lncRNA-mRNA co-expression in this study. The
discriminatory power of biomarker panels was assessed by ROC anal-
ysis between the controls and the MS patients. The aforementioned
statistical analyses were performed using SPSS 20 software (SPSS,
Chicago, IL, USA) and GraphPad Prism (v6; GraphPad software).
For all analyses, p < 0.05 was considered statistically significant. Clus-
tering of samples was performed using PCA with the package ggfor-
tify (v0.4.1) in R software (v3.1.1).33
402 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
Network Construction

The protein-protein interactions of significant genes were assessed
by STRING-db34 and visualized by Cytoscape 3.6.0 software.
Additionally, Cytoscape supplies a basic set of features for data
integration, analysis, and visualization for complicated networks.
Briefly, we transformed mined data into STRING-db to assess
interactions and STRING-db results in Cytoscape. Next, to
construct the network graph, we used methods available in
Cytoscape to visualize and analyze the network by the number
of direct edges. Co-LncRNA, a web-based computational tool that
provides an overview of the relevant pathways of expressed pro-
tein-coding genes with inputted lncRNAs was also used in this
study.35

Conclusions

In this study, most of the predicted lncRNAs of MS were
derived from association with two criteria: Th17 cell differentia-
tion genes and differentially expressed genes in AIDs. Most
of the dysregulated lncRNAs were derived from these criteria.
We propose that recurrently deregulated lncRNAs identified
in this report could provide a valuable resource for studies
aimed at delineating the relationship between functional lncRNAs
and AIDs.
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