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Boosting potassium-ion batteries by few-layered
composite anodes prepared via solution-triggered
one-step shear exfoliation
Yajie Liu 1, Zhixin Tai1, Jian Zhang 2, Wei Kong Pang 1, Qing Zhang 1, Haifeng Feng 1,

Konstantin Konstantinov 1, Zaiping Guo 1,3 & Hua Kun Liu 1

Earth-abundant potassium is a promising alternative to lithium in rechargeable batteries, but

a pivotal limitation of potassium-ion batteries is their relatively low capacity and poor cycling

stability. Here, a high-performance potassium-ion battery is achieved by employing few-

layered antimony sulfide/carbon sheet composite anode fabricated via one-step high-shear

exfoliation in ethanol/water solvent. Antimony sulfide with few-layered structure minimizes

the volume expansion during potassiation and shortens the ion transport pathways, thus

enhancing the rate capability; while carbon sheets in the composite provide electrical con-

ductivity and maintain the electrode cycling stability by trapping the inevitable by-product,

elemental sulfur. Meanwhile, the effect of the exfoliation solvent on the fabrication of two-

dimensional antimony sulfide/carbon is also investigated. It is found that water facilitates the

exfoliation by lower diffusion barrier along the [010] direction of antimony sulfide, while

ethanol in the solvent acts as the carbon source for in situ carbonization.
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Two-dimensional (2D) materials have various unique phy-
sical properties, which have prompted widespread suc-
cessful application in the fields of catalysis,

nanoelectronics, energy storage and conversion, etc. In particular,
2D materials present extensive prospects for application in energy
storage and conversion due to their highly accessible surface area
and fast charge transfer kinetics, so that they have been applied in
a unique strategy to significantly enhance the rate performance of
electrodes1,2. Potassium-ion batteries (KIBs) have attracted
enormous attention due to their obvious advantages. Besides the
abundance of potassium resources, the relatively lower redox
potential of K/K+ (−2.93 V vs. standard hydrogen electrode) than
that of Na/Na+ (−2.71 V), implies that KIBs could have a high-
voltage plateau and high-energy density. Due to the large size of
the K-ion, however, the insertion of K+ into electrode materials is
hindered, resulting in their relatively low capacity and poor
cycling performance. The research on KIBs is still at an early
stage, with the electrochemical reaction mechanism of most
electrode materials unclear, and only a few cathode materials
(such as Prussian blue3, KxMnFe(CN)64, confined selenium (c-
PAN-Se)5), and anode materials (graphite/carbon6–9, Sn4P3/
C10,11) could present reasonable capacity, although the cycling
stability for all of them is far away from practical application.
Therefore, further exploration of suitable electrode materials with
high reversible capacity as well as good rate performance and
excellent cycling stability is of great importance, and could pos-
sibly be achieved via the design and fabrication of 2D structured
materials.

Among all the Sb-based anode materials, antimony trisulfide
(Sb2S3) has drawn extensive attention12,13, owning to its higher
reversible theoretical capacity (946 mAh g−1) compared to that of
Sb anode (660 mAh g−1) due to its theoretical accommodation of
12 moles of Li+ or Na+ per Sb2S3 mole. Better mechanical sta-
bility is also expected for Sb2S3 due to its smaller volume changes
during charge/discharge than those of Sb anode. Moreover, the
reversibility of sulfides is better than those of oxides (Sb2O3 and
Sb2O4), resulting in relatively better cycling stability14. Improve-
ment of the cycling stability and rate performance of Sb2S3 is
necessary, however, to meet the requirements for real applications
because of the unavoidable volume changes and limited ion/
charge transfer. The bulk Sb2S3 crystal has a layered structure
with zigzag sheets parallel to the b-axis, which makes the fabri-
cation of 2D Sb2S3 possible. As far as we know, however, there
has been no report on the electrochemical behavior of 2D Sb2S3
so far.

Exfoliation of layered bulk crystals to obtain monolayer or
few-layer flakes has been a crucial technique in the fabrication
of 2D materials15, and it has been the primary technique in the
synthesis of high-quality flakes for various applications. Among
all the exfoliation techniques, high-shear mixing is a more
effective approach than sonication for the large-scale fabrica-
tion of graphene16 and other 2D materials (MoS2 nanosheets17,
few atomic-layered LiCoO2 material2), which could be a feasible
and promising approach for industrial scale applications.
Although this technique is promising, the challenges are still
there, such as the relatively unclear mechanism of shear exfo-
liation and whether it is applicable to other layered structured
materials.

In this study, the few-layered antimony sulfide/carbon sheet
(SBS/C) anode is prepared via solution-triggered one-step high-
shear exfoliation in order to boost the electrochemical perfor-
mance of potassium-ion batteries (PIBs). The fatal issue of huge
volume changes in Sb2S3 during electrochemical cycling could be
solved by the design and fabrication of few-layered SBS/C anode,
while the poor electrical conductivity of Sb2S3 can be improved by

incorporation of carbon via in situ carbonization in an ethanol-
containing solvent. Moreover, the detected by-product S after
cycling indicates that the irreversible conversion of SBS to S could
be another reason for failure of SBS anode in KIBs, which could
be overcome by the trapping effect of carbon sheets. In addition,
the solvent effect on the exfoliation is also studied in order to
optimize the structure and constitution of SBS/C composite.
Based on density functional theory (DFT) calculations, the lower
diffusion barrier of water than ethanol along the [010] direction
of SBS crystal could give a pathway for facilitating exfoliation.
Meanwhile, the ethanol in the solvent provides the carbon source
for in situ carbonization. Ultimately, by employing a mixture of
water (W) and ethanol (E) in a certain ratio as the exfoliation
solvent, the as-prepared SBS/C (E/W= 2:1) composite anode
delivers a specific capacity of 404 mA h g−1 after 200 cycles (at a
current density of 500 mA g−1) and presents outstanding rate
capability with 76% capacity retention at current densities from
50 to 500 mA g−1.

Results
Electrochemical mechanism of SBS anode for K+ storage and
failure mechanism. To understand the K+ ion storage mechanism
of Sb2S3 chemistry, the phase evolution of Sb2S3 for KIBs during
discharge/charge was studied using in-operando synchrotron X-ray
diffraction (XRD, λ= 0.6888Å), ex situ XRD, and scanning
transmission electron microscopy/selected area electron diffraction
(SAED) (Fig. 1, Supplementary Fig. 1 in the Supporting Informa-
tion, and Fig. 1c–e and Supplementary Fig. 2, respectively). Fig-
ure 1a presents the corresponding XRD patterns, which were
collected at different stages in the first discharge cycle. In stage I
(open circuit voltage (OCV) = 0.7 V), the peaks associated with the
(301), (112), (400), (212), and (013) planes of Sb2S3 (PDF No.
040048897, Pnma (62)) shift toward lower detection angle, 2θ,
indicating the insertion of K+ into Sb2S3. Specifically, the 2D col-
orful contour plot using in situ diffraction patterns in Fig. 1b shows
that the peak corresponding to (212) planes is shifted left and then
becomes weakened in intensity. When the Sb2S3 anode is dis-
charged from 0.7 to 0.5 V, the main peaks of Sb2S3 gradually
become weakened, and two new peaks evolve at 15.17° and 15.68°,
which are assigned to Sb (PDF No. 01-071-3736), and suggest the
occurrence of a conversion reaction of Sb2S3. When further dis-
charged to 0.1 V, two new peaks are generated at 13.4° and 13.7°,
which can be ascribed to the formation of K2S6 (PDF No. 01-083-
9589) as the intermediate state; two new peaks located at 14.17° and
14.46° correspond to the (131) and (221) planes of K2S3 (PDF No.
04-007-0574) as a final discharge product. At the same time, a new
diffraction peak at 13.53° has developed, which can be indexed as
the (220) peak of K3Sb (PDF No. 01-078-6559). Due to the nano-
crystallinity of the intermediate products of Sb and K2S6 (Supple-
mentary Fig. 2), the corresponding diffraction peaks are weak and
broad. In order to confirm the existence of intermediate products,
ex situ SAED was conducted on the electrode after it was discharged
to 0.5 V. As shown in the SAED pattern (Fig. 1a), the marked spots
in orange are corresponding to the Sb (101) and (002) planes, which
is consistent with the weak peaks (15.17° and 15.68°) in the syn-
chrotron XRD pattern, and the diffused green rings with spots
belong to the K2S6 (040), which corresponds to the peak at 13.4° in
synchrotron XRD. Based on our in situ/ex situ XRD and SAED
results, we propose that in KIBs, Sb2S3 may undergo K+ inter-
calation reaction (1) followed by the conversion and alloying
reactions (2, 3):

K+ intercalation reaction:

Sb2S3 þ xKþ þ xe� ! KxSb2S3 ðx<8Þ ð1Þ
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Conversion and alloying reactions:

KxSb2S3 þ 2xKþ þ 2xe� ! 2Sbþ 3KxS ðx<2=3Þ ð2Þ

2Sbþ 3KxSþ 8� 3xð ÞKþ þ 8� 3xð Þe� ! 2K3Sbþ K2S3 ð3Þ

Ex situ transmission electron microscopy (TEM) after discharge
and charge were also employed to investigate the morphology and
identify the phases of discharge/charge products (Fig. 1c–i and
Supplementary Fig. 3). After conversion and alloying reactions of
SBS with K ions, the discharge products show a connected globular
morphology (Fig. 1c, d) with particle size around 20 nm instead of
the initial microsized bulk material (Supplementary Fig. 4).

According to the electrochemical reactions above (Eqs. (1)–(3)),
the volume expansion during discharging is about 300%, estimated
based on the density differences between Sb2S3 (4.64 g cm–3), K3Sb
(2.24 g cm−3), and K2S3 (2.12 g cm−3). Meanwhile, the morphology
of the Sb2S3 after charge also shows nanosized particles
(Supplementary Fig. 3) with diameters around 25 nm (Supplemen-
tary Fig. 3d). The well-defined diffraction rings shown in the SAED
pattern (Fig. 1e) undoubtedly reveal the polycrystalline nature of the
charged product. Consistent with the XRD characterization (Fig. 1a),
these rings can be satisfactorily indexed to (112) crystal planes of
the K2S3 phase (PDF No. 04-007-0574) and (220) crystal planes of
K3Sb phase (PDF No. 01-078-6559). Figure 1f–i and Supplementary
Fig. 3e–h present energy dispersive X-ray spectroscopy elemental
mapping images of discharged and charged products, respectively,
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Fig. 1 Investigation of the electrochemical mechanism of bulk Sb2S3 (SBS) anode and the failure mechanism. a In situ synchrotron XRD patterns of Sb2S3
electrodes upon K insertion at various potentials (left) and ex situ SAED pattern (right) (discharged to 0.5 V) with high-resolution image revealing weak
reflections. b Image plots of the in situ XRD diffraction patterns of the (212) reflection of Sb2S3 during the intercalation stage and corresponding fitted peak
(inset), indicating the peak shift. c, d TEM images of the first discharge product and high-resolution TEM image of the bulk Sb2S3 after potassiation. e SAED
pattern of indicated area in (c). f–i STEM images with elemental mapping of sulfur, potassium, carbon, and antimony. j Discharge capacity and columbic
efficiency of bulk Sb2S3 at different cycles. k Schematic illustration of pulverization of Sb2S3 during charge/discharge. Scale bars: 2 nm−1 (a); 0.5 µm (c); 5
nm (d); 2 nm−1 (e); 250 nm (f–i)
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indicating uniform distributions of the S, K, and Sb in the
discharged product, and homogenous distribution of Sb and S in
the charged product. The electrochemical performance of bulk SBS
is presented in Supplementary Fig. 5 and Fig. 1j. It presents a poor
first cycle coulombic efficiency (around 23%) and poor electro-
chemical stability (from 988 down to 184mA g−1 after 20 cycles).
The failure mechanism of commercial bulk SBS is primarily due to
the huge pulverization during cycling, as illustrated in Fig. 1k.
Continuous pulverization leads to, rupture of the solid-electrolyte
interphase (SEI), decrease in electrical contact, and ultimately, fast
deterioration in its electrochemical performance. In order to deal
with the problem of serious pulverization, 2D material design was
explored and found to be an effective way to overcome the problem,
thus enhancing the performance of K-ion batteries.

Few-layered SBS exfoliation and mechanism. The orthorhom-
bic crystal structure of Sb2S3 with Pnma phase (Fig. 2a), is
composed of infinite chains of zigzag sheets of (Sb4S6)n along
the b-axis. The weak bonding between the sheets makes the
crystal cleavable along the b-axis direction18,19. The high-
resolution TEM image of exfoliated Sb2S3 also confirms the
possible cleavable direction, and Sb2S3 sheets/plates were
obtained with (001) orientation (Fig. 2b). The size and thick-
ness of exfoliated products were investigated via scanning
electron microscopy (SEM), TEM, and atomic force microscopy
(AFM). (Supplementary Fig. 6, Fig. 2b1, Supplementary Fig. 7,
and Fig. 2c). From the comparison of SEM images (Supple-
mentary Fig. 6), the average particle size of Sb2S3 obtained in
ethanol is larger than that obtained in water. Figure 2c shows
the thickness distribution of Sb2S3 nanosheets by counting
more than 60 sheets for each sample collected from top solu-
tion. For the SBS exfoliated in water (W) and the mixed solu-
tion (E/W), the typical thickness of the nanosheets is mainly in
the range of 2–8 nm and 4–15 nm, respectively, while for the
SBS nanosheets obtained from ethanol solvent, the thickness is
several times larger than that for the samples exfoliated in water
or the mixed solvent, and is in the range of 26–55 nm. The
typical AFM images and the cross-sectional height profiles
conform the few-layered nature of the SBS nanosheet structures
which were exfoliated in the mixed solution (E/W= 2:1) and
pure water (W). From the XRD pattern of Sb2S3 after exfolia-
tion in pure ethanol, the identified peaks are all consistent with
of the standard PDF pattern, while for Sb2S3 exfoliated in water
(W) or ethanol/water solution (E/W= 2:1), as shown in Fig. 2d,
some of the characteristic peaks are relatively weaker or even
not visible, indicating smaller crystal size, in good agreement
with the thickness distribution shown in Fig. 2c. This difference
in the peak intensity or peak disappearance in the samples
could also be found in separate samples collected from same
exfoliation solution (Supplementary Fig. 8a, Supplementary
Fig. 9a). The AFM results together with XRD results indicated
that the bulk Sb2S3 could be more easily exfoliated in water or
water/ethanol solution than in pure ethanol. Water may play an
important role in shear exfoliation. First-principles calculations
were conducted in order to achieve further insight on the water
and ethanol dynamics and to test that hypothesis. The calcu-
lated adsorption energies (Fig. 2e and Supplementary Note 1),
suggest that water tends to be more easily adsorbed on the (010)
surface of Sb2S3 than ethanol, which underpins further inter-
calation into the Sb2S3 crystal. Due to the unique open crystal
structure on the (010) surface of SBS crystal, H2O or
CH3CH2OH could possibly intercalate and diffuse along the
[010] direction of SBS. The diffusion barriers to water and
ethanol along the [010] direction were also investigated by first-
principles calculations as shown in Fig. 2f, Supplementary

Fig. 10 and Supplementary Note 1. The energy barriers for
water and ethanol diffusion are 1.29 and 2.26 eV, respectively,
indicating that the path along the [010] direction is more
accessible for water than ethanol.

Carbon sheet production during exfoliation. Carbonization of
ethanol could be occurring during high-shear exfoliation because
the mechanical shearing and cavitation cause strong collisions
between the active material and ethanol. Raman spectroscopy was
performed to understand the composition of the exfoliated pro-
ducts (Fig. 3a, Supplementary Fig. 11) and to identify the carbon
component in the samples exfoliated in ethanol-containing sol-
vents. The peaks in the range of 200–500 cm−1 correspond to the
characteristic Raman shift of Sb2S320, while, the bands between
1300–1600 cm−1 can be regarded as a D band (at around 1400 cm
−1) overlapping a G band (at around 1510 cm−1), confirming the
presence of amorphous carbon21,22. The intensity ratio of the D to
the G band (ID/IG) is 1.4 for SBS/C exfoliated in ethanol and 1.6
for SBS/C exfoliated in the mixed solution. The higher intensity
ratio for SBS/C (E/W= 2:1) indicates amorphous carbon structure
in the composite with a higher content of plane defects or lattice
edges. The Fourier transform infrared (FTIR) spectrum in Fig. 3b
was collected to investigate the functional groups of the Sb2S3
exfoliated in different solutions. The transmission peaks at 690
and 1030 cm−1 represent the symmetric bending of Sb–S and
vibration of inorganic metal ions, respectively23,24. Compared
with the commercial SBS and layered SBS exfoliated in water, the
new peaks of the SBS/C exfoliated in ethanol-containing solvents
in the range of 1500–1650 cm−1 are attributed to the C=C
vibration25, and peaks in the range of 1000–1450 cm−1 are
attributed to CO (ester, ether, or hydroxyl) stretching and OH
bending vibrations26, respectively. The Sb 3d and C 1s XPS pro-
files of SBS/C and SBS were also obtained and deconvoluted to
understand the composition and structure of the SBS/C compo-
site. It was noted that the chemical state of Sb2O3 could be found
for SBS exfoliated in water, with the peaks at 531 and 540.4 eV27,
indicating partial oxidation of Sb2S3 nanosheets, while for samples
of SBS/C exfoliated in ethanol and ethanol/water solutions, these
two peaks corresponding to Sb2O3 are absent (only 539.1 and
529.7 eV for Sb 3d3/2 and Sb 3d5/2 of Sb2S3)13, suggesting that the
oxide phase was not formed on the surface of Sb2S3 and that a
relatively high-purity Sb2S3 phase can be produced when exfo-
liated in ethanol-containing solvent (Supplementary Fig. 12a–c).
As for C 1s profile, peaks due to C–C (284.4 eV) and C=C (285.3
eV) are evident (Fig. 3c and Supplementary Fig. 12d)28; these
bonds are mainly from the presence of carbon in the composite,
with the content calculated to be about 90%. The intensities of the
peaks of C=O and C–O (286.5 eV), and of COOR (288.4 eV)29

are slightly higher for SBS/C exfoliated in ethanol/water solution
than for its counterpart exfoliated in pure ethanol, and these
functional groups evidenced in the C 1s spectrum are consistent
with the FTIR results shown in Fig. 2b. These results (FTIR and C
1s XPS) suggest that there are carboxyl and hydroxyl groups on
the surface of the amorphous carbon that can be ascribed to the
incomplete carbonization at a relatively low exfoliation tempera-
ture. From the TEM and energy dispersive spectroscopy (EDS)
results (Fig. 3d, e and Supplementary Fig. 13), it is found that the
carbon sheets are relatively thinner compared to the SBS sheets. In
addition, from visual inspection of the exfoliated solutions with
different solvents, the exfoliated solutions with ethanol are
apparently darker than that in water (Supplementary Fig. 14), due
to the presence of carbon.

Electrochemical properties of few-layered SBS and SBS/C
electrodes. Electrochemical properties of the layer-structured SBS
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b High-resolution TEM image of exfoliated Sb2S3 with inset TEM image (b1) and FFT pattern (b2). c Histograms of the thickness distribution of SBS
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and SBS/C anodes were investigated in the range of 0.01–2 V (vs.
K+/K). The capacities of SBS/C electrodes were calculated on the
basis of the total mass of SBS and carbon. Supplementary Fig. 15
presents typical cyclic voltammograms of the few-layered SBS and
bulk SBS for the initial three cycles at 0.1 mV s−1. In the first cycle
of few-layered SBS (NS-3-W), three cathodic peaks at 0.78, 0.45,
and 0.31 V are attributed to the intercalation process and the
formation of SEI, the conversion reaction with sulfur in SBS, and
the alloying of K with Sb, respectively, which are assigned based
on in situ XRD analysis and research on SBS anode in lithium-ion
batteries (LIBs) and sodium-ion batteries12,20,30. For the follow-
ing cycle, all of the peaks are almost overlap for the few-layered
SBS, suggesting good reversibility. In order to understand how the
exfoliation solvents influence the electrochemical performance of
the SBS samples, the cycling stability and rate capability of the
different SBS electrodes are compared (Fig. 4a–d). All samples
collected from ethanol in different sections (NS-1-E, NS-2-E, and
NS-3-E) present better cycling stability than the samples collected
from water (NS-1-W, NS-2-W, and NS-3-W), mainly due to the
contribution of carbon from the carbonization of ethanol. The
charge/discharge curves of SBS/C (NS-2-E) and bulk SBS at dif-
ferent cycles are compared in Fig. 4e and Supplementary Fig. 16.
The results show that there is a new voltage plateau (around 1.7
V) after a certain number of cycles for SBS/C accompanied by
slightly increased capacity, while for bulk SBS, there is no new
voltage plateau and the capacity drops quickly. To explore the
chemical state of SBS, we analysed the S 2p peaks of the SBS/C
(NS-2-E) and bulk SBS electrode surfaces via ex situ XPS (Fig. 4f,
g). The two peaks of SBS/C and bulk SBS located at 161.55 and
162.37 eV show the presence of S2−13, while the two peaks at 169

and 170.5 eV are likely to reflect the –SO2– fragments due to the
decomposition of the bis(fluorosulfonyl)imide (FSI-) anion in the
SEI film31. The high ratio/content of –SO2– on the surface of bulk
SBS after the 50th charge indicates a thicker SEI film compared
with the layered SBS/C electrode due to the continuous pulver-
ization of bulk SBS during cycling. In addition, it should be noted
that the element sulfur was detected in both electrodes, with its
peak located at around 164 and 165 eV32, and the ratio of ele-
mental S0 to S2− on the electrode surface after the 50th charge are
16.5% and 9.04% for SBS/C (E) and SBS (bulk), respectively
(Supplementary Table 1 and Supplementary Note 2). The high
intensity of elemental sulfur in SBS/C could be ascribed to the
carbon trapping effect, in which the carbon sheets produced in
SBS/C composite may play a crucial role by trapping the poly-
sulfides and preventing them from dissolving in electrolyte and
creating the shuttle effect during discharge/charge. Therefore, in
the SBS/C composite, the carbon sheets in composite not only
increase the electrical conductivity, but also prevent the loss of
active material (Sb2S3 or S). On the other hand, without the
protection of carbon sheets in bulk SBS and layered SBS (W), the
by-product sulfur that is produced could cause the shuttle effect
and capacity decay. In terms of the rate capability of SBS/C and
layered SBS, although SBS/C shows better rate performance than
layered SBS in the low current density range (from 20 to 300 mA
g−1), layered SBS presents slightly better rate capability at high
current densities (from 500 to 1000 mA g−1). Carbon sheets in
the SBS/C composite play a dominant role in improving the
electrical conductivity, which enhances the rate performance at
low current densities. At high current densities, however, the
much thicker SBS sheets in the composite (around 45 nm in
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ethanol vs. around 5 nm thickness in water) become the major
limitation for ion diffusion. With the decreased thickness of the
sheets in layered SBS, the shortened ion diffusion pathways lead
to a much improved K-ion diffusion coefficient (Supplementary

Fig. 17 and Supplementary Note 3), resulting in improved rate
capability, especially at high current densities. (Fig. 4d).

As it was concluded above that water could facilitate the
exfoliation by easily absorbing and diffusing into SBS crystal
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(Fig. 2e, f) and ethanol works as a carbon source, it is reasonable to
expect that the mixed solvent of ethanol/water would be the best
choice, which not only maintains the few-layered structure of SBS
but also introduces carbon sheets at the same time. Therefore, in
order to optimize SBS anode for achieving outstanding electro-
chemical performance, layered SBS/C samples were synthesized
via exfoliation in ethanol/water mixtures with various ratios (E/W
= 1:1, E/W= 2:1, E/W= 6:1, E/W= 8:1, E/W= 16:1, E/W=
32:1). In Fig. 4h, from the cycling response at different current
densities (from 50mA g−1 to 2 A g−1), we find that the SBS/C (E/
W= 2:1) and SBS/C (E/W= 6:1) electrodes present the best rate
capability. Moreover, it was found that the initial discharge
capacity of SBS/C electrodes at 50mA g−1 is slightly lower than
the following capacity at 100mA g−1 (Fig. 4h) in the rate test, and
a similar unusual phenomena can also be observed in Fig. 4b, d,
which can be attributed to the activation process of SBS and SBS/C
electrodes in the initial cycles and could be avoided by extending
the standing time of fresh cells (Supplementary Fig. 18).

The carbon content in each composite has been investigated in
Supplementary Fig. 19 and Supplementary Note 4, (with 3.82% in
SBS/C (E:W= 1:1), 3.93% in SBS/C (E:W= 2:1), 3.62% in SBS/C
(E:W= 6:1), 3.72% in SBS/C (E:W= 8:1), 4.17% in SBS/C (E:W
= 16:1), and 4.94% in SBS/C (E:W= 32:1)), indicating that there
is not much difference in carbon content among these samples. In
order to distinguish the influence of carbon content and the
thickness of SBS sheets on the electrochemical performance of
composite electrodes, we designed and fabricated SBS/C compo-
sites via a two-step shear exfoliation. It was found that the cycling
stability and rate performance improved with decreasing thick-
ness of the SBS sheets, and among them the SBS 6000 electrode
shows the best electrochemical performance. We then investi-
gated the influence of the carbon content based on the same
thickness of SBS. Supplementary Fig. 20 suggests that although
the presence of carbon sheets improved the cycling stability and
rate capability significantly, the carbon content in the composites
(in the range from 3.5 to 5 wt%) plays a negligible role in
influencing the electrochemical performance. Therefore, the
differences in electrochemical performance of the few-layered
SBS/C electrodes shown in Fig. 4h are mainly caused by the
thickness of SBS. Supplementary Figs. 21, 22 show the variations
in the size and thickness distributions of the exfoliated sheets in
these SBS/C electrodes via SEM and AFM. Less thickness of
layered SBS in a composite will lead to the short diffusion time
according to the equation t= L2/D33 (Supplementary Fig. 23)
(where t is the diffusion time, L is the diffusion length or the
thickness of SBS, and D is the K-ion diffusion constant in SBS),
which results in the simultaneous transfer of K ions with
improved rate performance. The cycling performances of SBS/C
(E/W= 2:1) and SBS/C (E/W= 6:1) electrodes were compared
after the rate test, and better cycling stability of SBS/C (E/W=
2:1) was achieved, with a high reversible capacity of 404 mAh g−1

after 200 cycles (Fig. 4h). The long-term cycling performance of
SBS/C (E/W= 2:1) electrode was further investigated (Supple-
mentary Fig. 24). It shows excellent cycling stability and high-
capacity retention of 79% after 1000 cycles (at a current density of
1 A g−1). Meanwhile, we also compared the SBS/C (E/W= 2:1)

electrode with previously reported state-of-the-art anodes11,34–42

for KIBs, excluding carbon-based anodes (Fig. 5). It is shown that
our few-layered SBS/C electrode could deliver the highest
reversible capacity with unrivaled cycling stability among all the
anode materials so far (excluding carbon/graphite anode). The
superior cycling stability and rate capability of SBS/C (E/W= 2:1)
are mainly due to the synergetic effects between few-layered
structured SBS and the carbon sheets in the composite, which not
only promote ion/electron transfer, but also maintain the
electrode/structure stability and electrode reversibility. Here, we
exclude the carbon/graphite anodes from the comparison of
electrochemical performance because of their limitations as anode
for PIBs. The very low theoretical capacity (279 mA h g−1, 30%
less than that of LIB) and poor capacity retention of the graphite
anode mean that it cannot rival nongraphite anode in KIBs.
Although amorphous carbon electrode present higher reversible
capacity than graphite (250 vs. 200 mAh g−1) with relatively
better cycling retention, the electrochemical behavior is more like
capacitor behavior, with a sloped, inconspicuous, and relatively
high voltage plateau.

Discussion
According to the research presented above, high-performance
PIBs with a composite of few-layered antimony sulfide/carbon
sheets (SBS/C) as anode are introduced. The SBS/C composite
was fabricated via one-step high-shear exfoliation in an ethanol/
water solvent (ratio E/W= 2:1). Compared with commercial bulk
SBS, the few-layered SBS/C could effectively deal with the issues
related to the huge volume changes of Sb2S3 during charge/dis-
charge and its poor electrical conductivity. Few-layer structured
SBS anode could minimize the absolute volume changes of SBS
and facilitate ultrashort ion transport paths compared with the
bulk material. The microsized carbon sheets in the composite not
only provide electrical conductivity, but also avoid the loss of
active material by trapping the element S that is inevitably pro-
duced due to the irreversible reaction between K2S3 and Sb2S3.
After investigating the solvent effect (water and ethanol) on
exfoliation, it was found that water could facilitate the exfoliation
to produce few-layered SBS based on the experimental results and
DFT calculations, while ethanol could promote carbon sheet
generation during exfoliation due to the carbonization. The
electrochemical performance of layered SBS/C anode was further
optimized by investigating the solvent ratio of ethanol/water for
exfoliation. With the cooperative action of water and ethanol in
a certain ratio as exfoliation solvent, the obtained SBS/C (E/W=
2:1) composite anode could deliver a reversible capacity as
high as 404mA h g−1 after 200 cycles (at a current density of
500 mA g−1) and present excellent rate performance with 76%
capacity retention from current densities of 50–500 mA g−1.

At the same time, in order to obtain insight on the electro-
chemical behavior of Sb2S3 in PIBs, the electrochemical reaction
mechanism of the Sb2S3 electrode during charge/discharge was
investigated by in situ XRD, ex situ XRD, and TEM. The two-
stage reactions of SBS in the PIB are proposed. Unlike the reac-
tions of SBS in LIBs/SIBs, it clearly presents an intercalation step
before the conversion/alloying reactions. According to the final

Fig. 4 Electrochemical properties of few-layered SBS and SBS/C electrodes. Comparison of (a) cycling performance and (b) rate performance of SBS/C
(NS-1-E), SBS/C (NS-2-E), and SBS/C (NS-3-E) electrodes, which were exfoliated and collected in ethanol. Comparison of (c) cycling performance and (d)
rate performance of layered SBS (NS-1-W), SBS (NS-2-W), and SBS (NS-3-W) electrodes, which were exfoliated and collected in water. e Discharge/
charge curves at different cycles of SBS/C (NS-2-E) composite at 50mA g−1. Ex situ X-ray photoelectron spectroscopy (XPS) of the S 2p peaks of (f) SBS/
C (NS-2-E) and (g) bulk SBS electrodes after the 50th charge. h Rate capabilities of SBS/C electrodes exfoliated with different solvents (E/W= 1:1, E/W=
2:1, E/W= 6:1, E/W= 8:1, E/W= 16:1, E/W= 32:1) obtained at various charge and discharge current densities (at 50, 150, 300, 500, 1000, and 2000
mA g−1) and their cycling performance after rate testing at a current density of 500mA g−1

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05786-1

8 NATURE COMMUNICATIONS |  (2018) 9:3645 | DOI: 10.1038/s41467-018-05786-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


discharge products, the calculated theoretical capacity of SBS in
KIBs is as high as 630 mA h g−1.

Moreover, in terms of fabrication, the solvent effect was discussed
for fabricating different thicknesses of layered SBS via shear exfo-
liation, which gives guidance for exfoliating other materials with
control of thickness. The carbonization of organic solvent during
high-energy shear exfoliation was proposed and demonstrated for
the first time in our work. This strategy for the fabrication of few-
layered material/carbon composite can be extended to other layered
crystals, and the shear exfoliation may open a new path towards
carbon composite fabrication with selected organic solvents.

Methods
Materials. All the involved chemicals were analytic grade and they were purchased
from Sigma Aldrich. They were all directly used without any further purification.

Shear exfoliation. SBS and SBS/C were synthesized via a modified shear exfolia-
tion method using the commercial bulk materials2. The L5M high-shear laboratory
mixer that was employed is made by Silverson Machines Ltd., UK. Typically, the
screw-on slotted and interchangeable disintegrating head equips a rotor with 30
mm in diameter. The gap between the head screen and rotor is about 0.05 mm
(illustrated in Supplementary Fig. 25). When it is in operation, the high rotor speed
(N) creates a high-shear rate (γ) within the gap. More specifically, in synthesis, the
bulk SBS (5 g) was put into a beaker (250 ml) containing ethanol, water, or a mixed
solution of ethanol and water (1:1, 2:1, 6:1, 8:1, 16:1, and 32:1) (total volume of 200
ml). The mixtures were kept at room temperature for 2 h before exfoliation. Then,
the mixer head was lowered, immersed in the solution, and then rotated at 6000
rpm for a continuous 30 min. During mixing, the beaker was fixed in a water bath
with the initial temperature of 20℃. After 24 h of standing after mixing, the
obtained dispersion was divided into three samples (top dispersion: NS-3; middle
dispersion: NS-2; and bottom dispersion: NS-1). For the SBS exfoliated in ethanol,
the three separated samples were denoted as NS-1-E, NS-2-E, and NS-3-E, while
for the SBS exfoliated in water, the samples were denoted as NS-1-W, NS-2-W, and
NS-3-W. These samples were then collected via filtration. In the case of the sample
collection from the mixed exfoliation solution, the procedure was similar, but
collection was only done from the top of the dispersion for filtration. For the two-
step exfoliation, different thicknesses of SBS in water were fabricated with adjusting
the rotation rate (4000, 5000, 6000, and 7000 rpm) (SBS 4000, SBS 5000, SBS 6000,
and SBS 7000). Then, the solution product of SBS 6000 was chosen as target
sample, and different amounts of ethanol (ethanol/water ratio: 1:1, 4:1, and 16:1)
were added for step-two exfoliation.

Materials characterization. The microstructure/morphology of the as-prepared
Sb2S3 bulks and nanosheets was investigated by XRD (GBC MMA) with Cu Kα
radiation; field-emission SEM (FESEM) (JEOL 7500); TEM (JEOL ARM-200F)
with high-resolution TEM (HRTEM), and Raman spectroscopy (Jobin Yvon
HR800) employing a 10 mW helium/neon laser at 632.8 nm. A commercial AFM
(Asylum Research MFP-3D) was used to measure the morphology and thickness of
the SBS nanosheets in trapping mode. An Al coated n-silicon probe with resonance

frequency of 204–497 kHz and force constant of 10–130 Nm−1 was used in the
AFM measurements. For synchrotron X-ray powder diffraction, a specially mod-
ified CR2032 coin cell was used with holes on both sides. In situ synchrotron XRD
measurements were then performed at the Powder Diffraction beamline (Aus-
tralian Synchrotron), and the XRD patterns were conducted at 0.688273 Å
(determined using LaB6, NIST SRM 660b).

Electrochemical measurements. The commercial SBS, exfoliated SBS and SBS/C
electrodes were assembled in a glove box into coin cells (CR2032). For the anode
preparation, slurry containing 60 wt% active material, 20 wt% Super P, and 20 wt%
carboxymethyl cellulose was dissolved in an aqueous solution. Then, the working
electrodes were prepared by coating the slurry on a copper foil current collector
and drying it at 70 °C for 12 h. The loading mass of the active materials (SBS or
SBS/C) was around 1mg cm−2. 1 M potassium fluorosilicate (KSiF6) in ethylene
carbonate/ propylene carbonate (1:1 V/V) was applied as the electrolyte. The as-
fabricated coin cells were charged and discharged in the voltage range of 0.01–2 V
for the SBS anode using a Neware instrument.

Theorectical calculations. The calculations were performed based on the DFT
approach43 using the DMol3 package. The exchange-correlation interaction was
tested by using the generalized gradient approximation (GGA) with the Perdew-
Wang 91 (PW91) function44. The double numerical basis with polarized orbital
(DNP) was specified as the atomic orbital basis set45. The Brillouin-zone was
sampled using the Monkhorst-Pack grid of special k-points46. The convergence
tolerances of energy, the maximum force, and the maximum displacement were
1.0 × 10–5 Ha, 0.002 Ha Å−1, and 0.005 Å for, respectively.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.
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