184

Research Paper m

Development of a Hospital
Information System Using

the TAD Method

TALB Damiy, PribD

Abstract

DAMIJ, TAD Method in System Development

Objective: To examine the capability of a new object-oriented method called

Tabular Application Development (TAD) in developing a hospital information system for a

gastroenterology clinic.

Design: TAD has five phases. The first phase identifies the problem to be solved. The second
phase defines the business processes and activities involved. The third phase develops the object
model. The fourth phase designs the application model. The final phase deals with
implementation.

Results: Eight requirements for the system were identified by hospital management; 17 specific
tasks were grouped into three activity categories. The process model, the object model, and the
application model of the system are described.

Conclusion: The TAD method is capable of developing such an information system without any
problem. Furthermore, the method minimizes the time needed to do this in such a way that the

process is completely visible to the analyst.

m JAMIA. 1998;5:184—-193.

A hospital information system was created using a
new object-oriented method called Tabular Applica-
tion Development (TAD). With this method, the pro-
cess of application development is easily and com-
pletely visible to the analyst. TAD has five phases and
introduces a new approach to developing information
systems that involves creating several tables. The first
phase identifies the problem to be solved using the
entity table. The second phase defines the business
processes and activities of the organization using the
activity and task tables. The third phase develops the
object model of the system. The fourth phase designs
the application model using the information collected
in the entity and the activity tables. The final phase
deals with the implementation of the system.

Affiliation of the author: University of Ljubljana, Ljubljana, Slo-
venia.

Correspondence and reprint requests to: Talib Damij, PhD, Fac-
ulty of Economics, University of Ljubljana, Kardeljeva ploscad
17, 1000 Ljubljana, Slovenia. e-mail: (talib.damij@uni-lj.si).

Received for publication 3/21/97; accepted for publication
11/14/97.

Background

The Gastroenterological Internal Clinic is a small and
very successful hospital specializing in internal dis-
eases. In addition to Management and a Reception
Office, the Clinic has four Care Departments, one In-
tensive Care Department, and three Diagnostic De-
partments.

Before the implementation of this system, this hospital
had no information system. Almost all activities were
done manually. For this reason, the management
could not obtain needed information in a timely way.
They decided to develop an information system,
which provided a good opportunity to determine
whether the TAD method was capable of solving such
a problem.

First Phase

In the first phase of TAD, the problem to be solved is
identified and reduced to understandable terms. The
best way to begin this is to interview all users. We
first interview the management and then continue
with the other users. Usually we create a plan for the

Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 185

interviews in accordance with the hierarchical scheme
of the organization. We start the process with the top
management, and work down to the lower levels.

The purpose of these interviews is to identify:

B The organization’s structure;

m Outputs and analyses that are vital to the manage-
ment’s decision making; and

® Management’s decision-support problems.

We use the term entity instead of user. An entity is
any source of information that is part of the system
or is connected with the system by some interaction.
An internal entity is inside the system and takes part
in the system’s operation. An external entity is not a
part of the system, but it has one or more interactions
with the system. An entity may be a user or any other
source that sends input to the system, participates in
some task in the system, or receives output from the
system.

Interviews should be organized with the internal
users only. Internal users inform us about the behav-
iors of the external users and other entities.

Identication of the entities and their requirements is
achieved by developing a table called the entity table.
This table is developed and completed during the in-
terviews with the management at different levels. The
entity table is structured as follows: The columns of
the table represent the entities. The rows of the table
represent the analyses required by the entities.

An asterisk in any square (i, j) in the entity table
means that the entity defined in column j requires the
analysis defined in row i, where i ranges from 1 to
the number of rows and j ranges from 1 to the number
of entities.

Second Phase

This phase deals with identifying the tasks, activities,
and processes of the system, and has four steps. The
first step creates the activity and task tables. The sec-
ond defines the activities and the processes of the sys-
tem. The third step tries to optimize the activity table.
The fourth step transforms the activity table into a
process model.

Task Identification

The aim of the interviews with the management at
different levels organized in the previous phase is to
complete the entity table and to identify the users of
the system.

The task identification step deals with identifying and
analyzing the activities of the organization by orga-

nizing further interviews with each user of the sys-
tem.

The purpose of these interviews is to identify every
task performed by any user in the framework of the
identified entities. These interviews are also useful for
completing the entity table with users’ requirements
and decision-support problems.

The best way to identify the tasks is by developing
another table, called the activity table. As we develop
the activity table, we simultaneously develop another
table, called the task table, which is discussed later.

The activity table is organized as follows: The entities
are represented by the columns and the tasks are
listed in the rows of the table. Every task occupies one
row. A non-empty square (i, j) shows a certain job per-
formed by an entity defined in column j inside the
task defined in row i. A job is work performed by a
determined entity in the framework of a certain task.
A task is a collection of jobs performed by a number
of entities.

Developing the activity table is a result of interviews
organized with the internal entities defined in the col-
umns. In the rows of the activity table we first register
each task performed by any user and then link this
task with the entities in the columns, which cooperate
in doing the task. In the other words, in the rows of
the table we list all tasks one by one in the order in
which they occur in the real world. Each of them must
be connected with those entities in the columns that
perform jobs in the framework of this task.

For every task defined in row i, where i ranges from
1 to the number of tasks, we list the entities in the
columns and try to link the current task with each of
these entities. If any connection exists between task (i)
and entity (j), where j ranges from 1 to the number of
entities, then a letter S or T is written in square (i, j).

Letter S in square (i, j) means that entity (j) is a source
entity for task (i). This entity (j) performs a deter-
mined job in the framework of task (i) (creates, com-
pletes, sends, etc.) defined in square (i, j). Letter T in
square (i, j) means that entity (j) is a target entity for
task (i). This entity (j) accepts or registers an output
from other entities.

Any task may have one or more source and target
entities. For this reason, the letters S and T, used to
indicate a certain task, are also indexed by the se-
quence number of the job as it occurs in the frame-
work of the treated task.

In addition, we consider only the internal entities, and
use the letters P and U to connect the tasks in which
a certain internal entity is included. This is to connect
the jobs of any internal entity defined in a determined

186

column. Letter P in square (i, j) means that task (i) is
a predecessor to some task (tasks) indicated by U in
column j. Letter U in square (i, j) means that task (i)
is a successor to another task (tasks) indicated by P in
column j. Because any task may have one or more
predecessors and also one or more successors, the let-
ters P and U are indexed by the index of the prede-
cessor task (see Table 2).

We have described how to define the tasks of the sys-
tem. Each task consists of one or more jobs and oc-
cupies one row of the activity table. Jobs of any task
are indicated by non-empty squares in the task’s row
of the activity table.

We often find ourselves in situations where we need
more information about the tasks. We especially need
detailed information about jobs to identify all the cir-
cumstances in which they are accomplished. The best
way to identify jobs, their characteristics, and the cir-
cumstances linked with them is by developing a table
called the task table. As mentioned above, the task
table is developed at the same time as the activity
table.

The task table is organized as follows: The jobs are
represented by the rows of the table and the charac-
teristics of the jobs are defined in the columns. Thus,
each job, defined by a non-empty square in the activ-
ity table, occupies one row in the task table. Each job
is represented by its code Jij, where the letter] means
job, and i and j are indices of row i and column j of
the activity table where the job is defined.

In the columns of the task table, we define job char-
acteristics in terms of Description, Time, Condition,
and Document. Description is used to write a short
description of the particular job. Time is used to de-
note that entity (j) in the activity table needs a deter-
mined time to perform job Jij. Time may become very
useful in case we decide to optimize the activity table,
as is discussed below. Time is not defined for those
jobs that do not take a lot of time. Condition is used
to define that performing job Jij requires that one or
more preconditions or conditions be fulfilled. Docu-
ment is used to indicate which documents (inputs and
outputs) are connected with job Jij. We may define
other job characteristics if necessary.

In addition to the jobs, the task table represents the
tasks defined in the activity table. The purpose of this
is to show in detail the linkages between the tasks and
their jobs. As mentioned above, each job occupies one
row in the task table. For this reason, each task occu-
pies one or more rows in the task table (see Table 3).

Developing the activity and task tables is an iterative
process. Some of the interviews have to be repeated

DAMIJ, TAD Method in System Development

to arrive at a precise understanding of the user’s
work. If anything is not understandable, then we have
to organize a new interview with the responsible user
until everything is clear.

Activity and Process Definition

After finishing the process of interviews with the
users, we complete the entity, activity, and task tables.
This is achieved by organizing a joint meeting with
the main or important users from different entities. In
this meeting we represent the entity, activity, and task
tables to them. The aim of this presentation is to en-
able us to correct any mistakes in the tables and to
persuade the users to complete the entity, activity, and
task tables.

In the next step, the analyst has to rethink and analyze
the activity table to define the activities of the system
by grouping the tasks into suitable collections. Each
of these collections represents a determined activity.
An activity is a collection of one or more tasks, which
are followed in a determined order. Each activity oc-
cupies one or more rows in the activity table. If nec-
essary we may go on grouping the activities into suit-
able collections; each of these collections is a business
process. Each process consists of one or more succes-
sive activities and occupies one or more rows of the
activity table.

A business process is a collection of activities that
takes one or more kinds of inputs and creates an out-
put that is of value to the customer.! Creating the ac-
tivity table leads to the discovery of all the tasks and
all the jobs inside each task, all activities defined by
grouping the tasks in convenient collections, and all
business processes identified by grouping the activi-
ties in appropriate collections. Thus, we can say that
creating the activity table leads to the discovery of the
entire system and its subsystems.

Optimization of the Activity Table

This step may be called reengineering the business
processes of the organization. To do this we need the
agreement of the top management. In this step we try
to analyze and rethink every activity to optimize the
time and the resources needed to perform any task
and to make every job more effective. This approach
enables us to develop an efficient information system,
which helps the organization to be more successful.
This goal is achieved by removing redundant tasks or
jobs, by moving jobs from one entity to another, by
shortening the times needed to perform some jobs, or
by using other optimization strategies.

Optimization of the activity table is performed using
the information collected in the activity and task ta-
bles, because these tables enable us to analyze the en

Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 187

tities, tasks, and jobs from various points of view.
From these tables we can easily find redundant tasks
or jobs and obtain other useful information. The task
table enables us to analyze the time needed to per-
form any job. We can quickly find the time-consuming
jobs and warn the management about them. In addi-
tion to this, without much additional effort we can use
the information collected in the activity table to create
event trace diagrams or other diagrams that may in-
crease our understanding of the system.

Optimization of the activity table is an iterative pro-
cess. Each further iteration may help in creating a bet-
ter solution. We repeat the process until an optimal
solution is found. If a better solution is found, we
must present it to the management before using the
new activity table.

This very important step enables TAD to be a useful
and effective method.

Process Model

This step deals with creating the process model. It
may be skipped because the activity table sometimes
seems to be more visible than the process model. The
activity table and the process model are essential for
understanding the behavior and the operations of the
system.

To develop the process model we transform the activ-
ity table into the model. The whole model is devel-
oped in accordance with the activity table. To do this,
we list all tasks in the rows of the activity table. For
every task (i), where i ranges from 1 to the number of
tasks, we list every entity (j), where j ranges from 1 to
the number of entities. We transform each non-empty
square (i, j) into an elementary process (circle) if entity
(j) is an internal entity. This process represents the job
performed by entity (j) in the framework of task (i).
For this reason, we write in it the indices i and j. Oth-
erwise we transform each non-empty square (i, j) into
a source (rectangle) and write the name of entity (j)
in it.

After transforming the whole table, we connect the
sources and processes drawn horizontally and verti-
cally. Horizontally we link each process or source in-
dicated by S, in square (i, j) by arrows with those pro-
cesses and sources indicated by T, in row i, where q
is the sequence number of the jobs in row i. Vertically
we link every process indicated by P; in square (i, j)
by arrows with those processes indicated by U; in col-
umn j. Using the described procedure, we transform
the whole activity table into a single data flow dia-
gram (DFD). To indicate each activity, we draw a bor-
der around the processes of every activity giving the
activity-level DFD. To denote every business process,

we also draw a border around the activities of each
process, giving the process-level DFD. All processes
together give a system-level DFD.

Otherwise, we may draw each activity-level DFD sep-
arately. This DFD contains all the elementary pro-
cesses of each activity. In other words, the complete
system-level DFD represents the whole activity table.
Every process-level subsystem represents a deter-
mined business process in the table if such a process
is defined. Each activity-level subsystem represents a
certain activity in the table.

Third Phase

The third phase has two steps and deals with devel-
oping the object model of the system. Before describing
these steps, let us give some important definitions:

B An object is anything, real or abstract, about which
we store data and those operations that manipulate
the data.”

B An object is simply something that makes sense in
an application context.’

B An object class describes a group of objects with sim-
ilar properties (attributes), common behaviors (op-
erations), common relationships to other objects,
and common semantics.’

Corresponding to these definitions and to the TAD
method, we develop the object model using the re-
sults of the first and second phases. In the first step
of this phase we identify the object classes, their at-
tributes, and their associations. Identification of object
classes is actually a continuous process, which is
started in the first phase, continued in the second
phase, and completed in the third phase. Information
about object classes is obtained from interviews with
the users and by analyzing the entity, activity, and
task tables.

During the interviews organized in the first and sec-
ond phases with the management and other users, we
try to register everything that could be relevant to the
application system mentioned by the interviewers.
For example, during interviews with management we
stated that “we would like to have an analysis about
the patients, the examinations ordered, and the doc-
tors who ordered them.” The result of this work is a
list of statements, which is an important source of in-
formation about the object of the system.

The first step of this phase deals with developing the
object model by analyzing the results of the previous
phases. We start by analyzing the list of the statements
elicited in the previous phases. For this purpose, we

188

Name Address Date

Is-pa\rtf\ %t—of Is-part-of

Is-associated-with

Patient ——— Order
Is-part-of Examld
/S/—part-of
OrderedExam

carefully consider each statement and try to find out
which object classes, attributes, and associations are
connected with it. The result of this analysis is a group
of object classes, their attributes, and their associa-
tions.

This work is continued by analyzing the entity table,
and particularly the outputs and reports defined in
the rows of the table. If any new object class, attri-
bute, or association is identified, the existing group of
classes is extended by it. Furthermore, we continue
the process by analyzing the activity and task tables,
particularly the documents defined in the Document
column of the task table. Any newly discovered object
class, attribute, or association is added to the existing
ones. In addition, the analyst may add any other ob-
ject class if it is useful to the application.

Such an analysis is carried out using three types of
relationships that can exist between classes and attri-
butes. These relationships are Is-part-of, Is-associated-
with, and Isa structures. A class of objects can be
constructed, described, and qualified by the objects’
attributes and by other classes (the Is-part-of struc-
ture). A class, then, is constructed from components
consisting of attributes and other classes. This is re-
ferred to as the class aggregation abstraction. For
example, Name Is-part-of Patient and Address Is-
part-of Patient are used to describe the aggregation
of attributes. Furthermore, OrderedExam Is-part-of
Order is an example used to describe the aggregation
of classes.

A class can interact with other classes, and a class can
affect the attribute values of other classes through as-
sociations or collaborations (the Is-associated-with
structure). This is referred to as the class association
abstraction.” For example, Order Is-associated-with
Doctor is used to describe the relationship between
the classes Order and Doctor. Sometimes it is useful
to model an association as a class.” Thus classes are
associated directly or via an association class. Figure

Is-part-0

Is-associated-with

DAMIJ, TAD Method in System Development

Institution

Is-part-of

Figure 1 Identification of four
classes of objects.

Doctor

1 shows that such an analysis leads to the identifica-
tion of four classes, Patient, Order, OrderedExam, and
Doctor, and some of their attributes and associations.

From the above discussion we can conclude that in
the first step we try to develop the initial object model
by implementing the Is-part-of and Is-associated-with
structures. In the second step we try to organize the
classes of the object model obtained in the previous
step using inheritance (the Isa structure) to arrive at
common structures. Inheritance is a critical feature as

Table 1 m
Entity Table of the Clinic

Entity
Recep- Care
Manage- tion— Depart- Endos-
Requirements ment Office ment copy
Analysis
1. Information about * *
hospital occupation
2. Information about * *
patients and dis-
eases
3. Information about * *
successful treat-
ments
Reports
4. Information about * *
problematic pa-
tients
5. Information about * * *
doctor’s occupation
6. Information about * *
medications used
7. Information about *
hospital plan reali-
zation
Decision support
* * *

8. Developing work
plan for medical
staff

Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998

Table 2 m

Activity Table of the Clinic

189

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
Insur-
Recep- Care External ance
Manage- tion- Depart- Endos- | Labora- | Phar- | Special- Com- | Personal
Process | Activity Task ment Office ment copy tory macy ist pany Doctor | Patient
Register | 1. Register pa- T1, S2 T2 S1
tient’s data P1 P1
2. Identify payer T1 S1
U1, P2
3. Accept doctor’s T1, S2 T2 S1
order U2 P3
4. Open patient’s S1
card U1, U3, P4
5. Register anam- S1
nesis U4, P5
6. Order for inter- S1 T1
nal diagnosis U5, P6 P6
Patient |Treatment |7. Accept internal T1 S1
findings Ue, P7 U6
8. Order medicine S1 T1
U7, P8 P8
9. Accept medicine T1 S1
Us Us
10. Order for labo- S1 T1
ratory Use, P10 P10
11. Accept labora- T1 S1
Ktory findings u1o0, P11 U10
12. Order for exter- S1 T1
nal specialist Use, Ull,
P12 P12
13. Accept special- T1 S1
ist’s findings U12, P13 U122
14. Prescribe ther- S1
apy Use, Ul1,
U13, P14
Release 15. Inform about T1, S2 S1 T2
state of health P15 Ul4
16. Create invoice S1 T1
U15, P16 P16
17. Accept pay- T1 S1
ment Ule Ule

NoOTES: P, predecessor to a task indicated by U. S, source entity for a task. T, target entity for a task. U, successor to task indicated by P.

well as a primary goal of object-oriented develop-
ment.* A class can be related to other classes through
subclasses (the Isa structure). Thus, a subclass can in-
herit attributes from superclass, and it can have its
own unique attributes. This is referred to as the class
generalization and specialization abstraction.! Inheri-
tance can be added in two directions: by generaliza-
tion of common aspects of existing classes into a su-
perclass (bottom-up) or by refining existing classes
into specialized subclasses (top-down).’ For example,
Order is a superclass of classes AcceptOrder, Exter-
Order, InterOrder, MedicOrder, and LaborOrder. This
is an example of generalization of common aspects

into superclass (see Figure 3).

Fourth Phase

This phase deals with designing the system, i.e., de-
veloping the application model. This model consists
of several parts. Development of the application
model is derived from the information collected in the
entity and activity tables. This goal is achieved in two
steps.

The first step develops the first two parts of the ap-
plication model in accordance with the information in
the entity table. The first part represents the reports

190

Table 3 =
Task Table of the Clinic

DAMIJ, TAD Method in System Development

Task Job Code

Description

Time Condition Document

1. Register patient’s data ~ J12
tient’s data

J13 Care department accepts patient’s
data from reception office

2. Identify payer J22
treatment payer

3. Accept doctor’s order]32

J33 Care department gets doctor’s re-

Reception office registers pa-

Reception office identifies the

Reception office accepts doctor’s
reception order from patient

Patient’s medical
card

Patient’s medical
card

If the payer is unknown Patient’s medical
do not admit the pa- card
tient

If the patient does not
have a reception order
from the doctor do
not admit the patient

Reception order

Reception order

ception order from reception

office

defined in this table. The second part considers the
decision-support problems if there is such a require-
ment in the entity table. To develop these two parts
we simply list the rows of the entity table and create
the parts corresponding to the content of the rows. To
do this we copy the required reports to the first part
and the required decision-support problem to the sec-
ond part. The created parts are especially important
for management, because they deal with various anal-
yses that are essential to management’s decision mak-
ing. These analyses provide the managers at different
levels with all the necessary information about their
plans and objectives and give them a clear picture of
any particular problem in the organization. The aim
of these analyses is to help management to optimize
the operation of the organization.

The second step develops the other parts of the ap-
plication model in accordance with the information
stored in the activity table and considering the inter-
nal entities only. Each of these parts presents a partic-
ular business process if such a process is defined in
the activity table; otherwise, it represents a deter-
mined activity. Every activity includes a number of
tasks, and each task has one or more jobs. To achieve
this, we list the activity table and create a part of the
application model for the individual business pro-
cesses that are defined in the activity table; in the ab-
sence of individual processes, we create a part for
each activity. For every process, we copy its activities
from the table to the application model, and for each
activity, we copy all its tasks and jobs from the activity
table. Thus, we can conclude that the application
model gives a clear picture of the requirements and
decision-support problems defined in the entity table
and, regarding the business processes, the activities

and tasks defined in the activity table. In other words,
it represents the contents of the entity and activity ta-
bles.

Fifth Phase

The last phase of TAD deals with the implementation
of the system developed in the previous phases. To
complete this phase, we analyze the object model and
the application model. The first step deals with im-
plementing the object model and writing algorithms
for accomplishing the operations of every class de-
fined in the object model (see Figure 3). The second
step defines the algorithms that implement the con-
tent of the application model (see Figure 4). We write
an algorithm for every process, activity, task, or job
defined in the application model.

Resuits

First Phase

In accordance with the first phase of the TAD method,
we organized two meetings with the management of
the clinic. In addition, we interviewed the manage-
ment of each department. The results of these inter-
views are shown in Table 1. This table represents the
entity table of the hospital. It shows the organization’s
entitites, vital outputs and analyses, and decision-sup-
port problems. Thus, the clinic has four internal en-
tities: Management, Reception Office, Care Depart-
ment, and Endoscopy. The entity Care Department
represents four care departments and in intensive care
department, because these departments have almost
the same activities. The rows of Table 1 show eight
analyses, the number required by the entities in the
columns.

Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 191

Second Phase
Task Identification

To develop the activity table, develop the task table,
and complete the entity table, we organized inter-
views at the department (entity) level. We first inter-
viewed the management of each department and then
continued with all users in the framework of the de-
partment. The purpose of these interviews was to
identify the tasks and jobs performed by the depart-
ment. The results of these interviews are shown in
Tables 2 and 3, which represent the activity and task
tables of the clinic. (These tables are only part of the
real activity and task tables of the clinic. The real ta-
bles are too large to be presented here.)

Table 2 has 17 tasks and ten entities. The first four
entities are internal and the last six are external. The
first task, “Register patient’s data,” means the recep-
tion office gets personal data from the patient and
sends it to the care department. Thus, we write S1 in
square (1, 10), T1 in square (1, 2), S2 in square (1, 2)
and T2 in square (1, 3). The second task “Identify
payer” means that the reception office gets informa-
tion from the patient about who is paying for the
treatment. We write S1 in square (2, 10) and T1 in
square (2, 2). All other tasks are defined using the
same rule.

Furthermore, the first and third tasks are a predeces-
sor to the fourth task performed by the entity Care
Department. Thus, we write P1 in square (1, 3), P3 in
square (3, 3), and U1, U3 in square (4, 3). The fourth
task is a predecessor to the fifth task. We write P4 in
square (4, 3) and U4 in square (5, 3). All tasks are
linked in the same way where such connections exist
between them.

Table 3 shows only the tasks of the activity “Register.”
This activity has three tasks. Let us explain the second
task “Identify Payer,” which contains only one job.
The code of this job is J22, which means a job of task
2 performed by entity 2. In the column Description
we briefly describe the job. Column Time is empty,
because performing this job does not require a lot of
time. In the column Condition we define a condition
that must be satisfied before the patient is accepted.
Finally, in the column Document we link the job with
the patient’s medical card. Other tasks and jobs are
defined using the same concept.

Activity and Process Definition

Corresponding to this step, we grouped the tasks de-
fined in Table 2 into three activities: Register, Treat-
ment, and Release. The first activity has three tasks,
the second has nine tasks, and the last has three tasks.

1. Register

‘Q
()

2. Treatment

]
o5
=g
o
=
=

o

Pharmacy

External
specialist

3. Release

96999‘6

Insurance
Company

Figure 2 The process model.

Optimization of the Activity Table

The third activity in Table 2 needs to be accelerated.
This activity deals with releasing the patient home. In
reality the patient has to wait some time to obtain all
the needed documents. We hope that implementing
this system will solve this problem.

Developing the Process Model

Figure 2 shows the process model of the Clinic.

192

Third Phase

In accordance with the first step of the third phase we
analyzed the list of statements registered during the
interviews, the entity table and its outputs, the activ-
ity and task table, and the documents collected in the
Document column of the task table. The result of this
analysis is the initial object model, which contains set
of classes, their attributes, and their associations.
These classes are: Patient, Card, Department, Diag-
nosis, Hospital, Doctor, Medicine, Examination,
AcceptOrder, ExterOrder, InterOrder, MedicOrder,
LaborOrder Treatment, PatientState, PatientDiag,
Findings, Order-Medic, Labor-Exam, Institution, and
Specialization. Corresponding to the second step, we

DAMIJ, TAD Method in System Development

analyze the classes obtained, trying to find the inher-
itance between them. The result of this analysis is to
create a superclass Order, which is a superclass
of the classes AcceptOrder, ExterOrder, InterOrder,
MedicOrder, and LaborOrder. Because of the com-
plexity of the real object model of the clinic and space
limitations, Figure 3 represents only part of the model.

Fourth Phase

Figure 4 shows the application model of the clinic.
The model contains three parts. In the first step of this
phase we create the first two parts corresponding to
the content of the entity table. These are Reports and
Decision Support. In the second step we develop the

Patient Card Treatment
Pat# Card# Department Card#
Name 4 Pat# Medicine#
Address N AcceptDate Dept# Qty
Dept# Name
Host# Operations
Operations Operations Uperations
s-part-of Y
A Is-associatgd-with
PatientDiag - Order -
PatientState O Hospital
Card# Card# Date
Dia Date Doc# Hos#
Temperature Card# Name
Operations Address
Operations Operations Operations
Isa
AcceptOrder ExterOrder InterOrder MedicOrder LaborOrder
[nst# # B .
qst Ir}st# Dept» Inst# Inst# Figure 3 The ob]ect
Diag# Diag# Descrip del
Operations Operations Operations Operations Operations model.
N /
Is-part-of
AN AN
Diagnosis Findings Institation Order-Medic Labor-Exam
Find# Inst# Or# Or#
Diag# Or# o Medicine# Exam#
Name Date Name Qty Qty
. Address
Descrip
Operati
perations Docf# Operations Operations Operations
Operations A\74 AN
A\ 74
Is-associated-with L
- : Doctor Medicine Examination
Specialization
Spec# Doci
m Name Medicine# Exam#
Address Name Name
Spec#
Operations Inﬁ# Operations Operations
Operations

Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 193

Hospital occupation
Patients and diseases
Successful treatments
Reports —| Problematic patients
Doctor’s occupation
Medicaments

Plan realization

Decision — Work plan
support L

Register patient’s data
Register] Identify payer
Accept Doctor’s order

HIS -

Open patient’s card
Register anamnesis
Order for internal diagnosis
Accept internal findings
Order medicine
Accept medicine
Order for Laboratory
Accept Laboratory findings
Order for external specialist
Accept specialist’s findings
Prescribe therapy

Patient .

Treatment

—Information about state of health
Release —| Create invoice
Accept payment

Figure 4 The application model.

last part of the model to represent business-process
Patient, which consists of three activities in accor-
dance with the content of the activity table, Register,
Treatment, and Release.

Fifth Phase

The results of the final phase are a set of methods that
implement the operations of the classes of the object
model and a set of algorithms that implement the ap-
plication model. (Because of space limitations we can-
not present these algorithms here.)

Conclusion

The aim of this work was to develop a hospital infor-
mation system using a new object-oriented method
called TAD. We found that the TAD method is capable
of developing such a system without any problem. In
addition, we found that in spite of the large number
of tasks, the process of systems development re-
mained completely visible to the analyst at all times,
independent of the analyst and his or her experience.
Furthermore, we discovered that the TAD method en-
ables us to minimize the time needed to create such
a system. This method has the following characteris-
tics, which are important in making it acceptable and
useful in practice:

B Creates the analyses and outputs needed by man-
agement at different levels.

B Includes decision-support problems.

® Shows the functioning of the organization in a vis-
ible and understandable way using the activity ta-
ble.

B Includes the reengineering of business processes by
optimization of the activity table.

B Defines an algorithm to develop the process model
independent of the analyst.

B Prescribes an algorithm to develop the application
model.

References ®

1. Hammer M, Champy J. Reengineering the Corporation, A
Manifesto for Business Revolution. New York: Harper Busi-
ness, 1993.

2. Martin J. Principles of Object-Oriented Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, 1993.

3. Rumbaugh], et al. Object-Oriented Modeling and Design.
Englewood Cliffs, NJ: Prentice-Hall, 1991.

4. Sanders GL. Data Modeling. Danvers, MA: Boyd and Fraser,
1995.

