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Abstract 

Background:  Thapsigargin and nortrilobolide are sesquiterpene lactones found in the Mediterranean plant Thapsia 
garganica L. Thapsigargin is a potent inhibitor of the sarco/endoplasmic reticulum calcium ATPase pump, inducing 
apoptosis in mammalian cells. This mechanism has been used to develop a thapsigargin-based cancer drug first by 
GenSpera and later Inspyr Therapeutics (Westlake Village, California). However, a stable production of thapsigargin is 
not established.

Results:  In vitro regeneration from leaf explants, shoot multiplication and rooting of T. garganica was obtained 
along with the production of thapsigargins in temporary immersion bioreactors (TIBs). Thapsigargin production was 
enhanced using reduced nutrient supply in combination with methyl jasmonate elicitation treatments. Shoots grown 
in vitro were able to produce 0.34% and 2.1% dry weight of thapsigargin and nortrilobolide, respectively, while leaves 
and stems of wild T. garganica plants contain only between 0.1 and 0.5% of thapsigargin and below detectable levels 
of nortrilobolide. In addition, a real-time reverse transcription PCR (qRT-PCR) study was performed to study the regula‑
tory role of the biosynthetic genes HMG-CoA reductase (HMGR), farnesyl diphosphate synthase (FPPS), epikunzeaol 
synthase (TgTPS2) and the cytochrome P450 (TgCYP76AE2) of stem, leaf and callus tissues. Nadi staining showed that 
the thapsigargins are located in secretory ducts within these tissues.

Conclusions:  Shoot regeneration, rooting and biomass growth from leaf explants of T. garganica were achieved, 
together with a high yield in vitro production of thapsigargin in TIBs.

Keywords:  Thapsia garganica, Thapsigargin, Nortrilobolide, In vitro shoot cultures, Temporary immersion bioreactor, 
Sesquiterpenes, TgTPS2 and TgCYP76AE2

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Thapsigargins are sesquiterpene lactones that are wide-
spread within the Mediterranean genus Thapsia (Api-
aceae) [1]. Among this family of natural compounds, 
thapsigargin and nortrilobolide are present in the spe-
cies Thapsia garganica and Thapsia gymnesica [2]. 

Thapsigargins are potent inhibitors of the mammalian 
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 
[3]. When the molecules bind to the transmembrane of 
mammalian cells, SERCA is prevented from maintain-
ing a low concentration of Ca2+ in the cytosol and a high 
Ca2+ concentration in the reticulum leading to apoptosis 
[3]. A subnanomolar affinity for SERCA has made thapsi-
gargin the most intensely studied molecule of the family 
[4].
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Due to its ability to kill mammalian cells, thapsigargin 
has been used as a therapeutic target to induce apoptosis 
in cancer cells with a low rate of cell proliferation, thus 
with resistance to standard anti-proliferative chemo-
therapy. To target thapsigargin to the cancer cells, thapsi-
gargin is fused with a masking peptide, which inhibits its 
biological activity until proteolytic cleavage at the tumor 
site [5]. Based on this technology, InSpyr Therapeutics 
(Westlake Village, California, previously GenSpera) has 
patented a thapsigargin-based prodrug named Mipsa-
gargin (G-202). Mipsagargin has been studied in a Phase 
2 clinical trial in patients with hepatocellular carcinoma 
[6], but the current status of the trials is unclear.

Marketing of a thapsigargin-based drug will increase 
the demand for this molecule. Until now, all of the com-
mercially available thapsigargin is obtained from fruits 
and roots of wild T. garganica [4]. Traditional field culti-
vation techniques are very difficult and not economically 
viable for T. garganica, as with many species of Apiaceae, 
since the plants are difficult to germinate from seeds [7]. 
ThapsIbiza (Islas Baleares, Spain) is the only company 
that has started a small production of T. garganica plants. 
On the other hand, the total synthesis of thapsigargin was 
described in 2007. The approach allowed the total syn-
thesis of thapsigargin in 42 steps from (s)-carvone with 
an overall yield of 0.6% [8], and recent developments 
have cut this to 12 steps with a 5.8% yield [9] and 11 steps 
with an overall yield of 0.137% [10]. Despite the success-
ful synthesis of thapsigargin, the many steps for obtain-
ing the core of the structure and the cost of the starting 
material make this approach commercially challenging. 
The biosynthesis of thapsigargins is not established and 
thus heterologous production in e.g. yeast or mosses is 
not yet possible [4, 11, 12].

Plant tissue culture technologies can provide an alter-
native production platform of thapsigargins and ensure a 
stable supply of thapsigargin at an industrial scale, using 
the temporary immersion bioreactors (TIB) developed at 
Alkion Biopharma (now part of Evonik Botanicals) [13] 
and is a prerequisite for plant transformation. TIBs have 
many advantages regarding other conventional in  vitro 
plant propagation techniques. TIBs reduce manual labor, 
the risk of contamination and therefore the cost of the 
process. TIBs also avoid asphyxiation and tissue vitrifi-
cation by exposing the plants to the liquid medium with 
periodic immersions, which ensures a complete renewal 
of the atmosphere. Plant growth and development can be 
controlled by modifying the frequency and duration of 
the immersion.

Only a few reports have been published on in vitro cul-
tures of T. garganica since the first in 1993 [14]. A cell 
culture was established in which somatic embryos were 
spontaneously formed and followed by the development 

of roots and shoots [14]. However, only nortrilobolide 
and trilobolid were found in the tissue cultures obtained 
in this study [14]. Later, Makunga et  al. [15] published 
protocols for the micropropagation of T. garganica and 
acclimation of ex vitro plants. This was followed by the 
in  vitro regeneration of T. garganica from leaf explants 
via direct organogenesis [16] and with improved rooting 
and hyperhydricity in regenerating tissues [17]. Nonethe-
less, thapsigargin was not detected or measured in these 
studies. Thus, to the best of our knowledge thapsigargin 
production has not been established in in vitro cultures 
prior to this work. The main objective of this study was to 
establish and evaluate an efficient production platform of 
thapsigargin based on in vitro tissue culture techniques. 
We established in vitro shoot cultures that can be culti-
vated at an industrial scale in TIBs. The culture’s ability 
to produce thapsigargin and nortrilobolide was quan-
tified by analytical chemistry techniques (HPLC and 
UPLC-MS) along with the gene expression (qRT-PCR) of 
the biosynthetic genes: HMGR, FPPS, TgTPS2 and TgCY-
P76AE2. Analysis with Nadi staining was also performed 
in the tissue cultures.

Results
In vitro culture establishment
Among the different treatments that were applied to leaf 
explants, only treatments combining auxin (2,4-Dichlo-
rophenoxyacetic acid (2,4-D)) along with cytokinins 
(1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (TDZ) or 
N-(Phenylmethyl)-7H-purin-6-amine (BAP)) responded 
positively. From these, somatic embryogenesis and calli 
development were quantified (Table 1). Direct and indi-
rect shoot regeneration was observed in some of the cul-
tures (Fig.  1a), but no significant statistical differences 
between different concentrations of combined treat-
ments were noted.

The number of embryos produced per leaf explant 
varied with the concentration of cytokinins applied. 
Treatments with the lowest hormone concentrations, 
2,4-D (0.1 mg/L) + TDZ or BAP (0.1 mg/L) yielded the 
highest number of somatic embryogenesis (Table  1). 
However, low concentrations of auxin 2,4-D or cyto-
kinins (TDZ or BAP) alone, did not induce any orga-
nogenic response (Table  1). The photoperiod also 
influenced somatic embryogenesis. Leaf explants 
in total darkness seemed to produce more somatic 
embryos than explants grown in light. The continu-
ous dark treatment, TDZ or BAP (0.1  mg/L) + 2,4-D 
(0.1 mg/L) produced the highest percentage of explants 
forming embryos (83.3%) and the highest number of 
embryos per treatment (31.0%).

Explants in media containing TDZ alone and under 
light had low callus induction frequency (10–43.3%), 
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Table 1  The effect of different plant growth regulators on the induction of callus and somatic embryos from leaf explants 
of T. garganica 

Type I: friable, soft white calli; type II: nodular green organogenetic and compact calli; type III: creamy, yellow nodular calli; type IV: brown dead calli. Furthermore, the 
amount of calli was noted from low to high (−, +, ++, +++)

Values represent mean ± SE. Different letters within a column indicate significant differences revealed after an ANOVA analysis followed by a Tukey’s multiple 
comparison test (p ≤ 0.05). Percentage values were arcsine transformed prior to analysis. n = 30 per treatment

Treatment, plant 
growth regulators 
(mg/L)

Explant forming callus (%) Type of callus Explant forming embryos (%) Number of embryos

TDZ BAP 2,4-D Light Dark Light Dark Light Dark Light Dark

0.1 16.7 ± 10cd 0d IV (+) – 0f 0f 0e 0e

0.5 10 ± 10 cd 0d IV (+) – 0f 0f 0e 0e

1 43.3 ± 10bc 0d IV (+) – 0f 0f 0e 0e

0.1 0.1 96,7 ± 3.3a 96.7 ± 3.3a I, II (+++) I, III (++) 56.7 ± 3.3a–d 83.3 ± 3.3a 17.5 ± 5.5a–d 31.0 ± 5.0a

0.5 0.1 100a 100a I, II (+++) I, III(+++) 43.3 ± 10b–e 66.7 ± 6.7a–c 8.0 ± 3.0c–e 17.5 ± 3.5a–d

1 0.1 96.7 ± 3.3a 100a I, II (++) I, III (+++) 26.7d–f 60.0 ± 13.3a–c 4.5 ± 0.5de 11.5 ± 2.5b–e

0.1 0d 0d – – 0f 0f 0e 0e

0.5 0d 0d – – 0f 0f 0e 0e

1 0d 0d – – 0f 0f 0e 0e

0.1 0.1 73.3 ± 13.3ab 83.3 ± 10ab I, II (+) I, III (+) 40.0c–e 76.7 ± 3.3a 12.5 ± 3.5b−e 28.5 ± 5.5a

0.5 0.1 93.3 ± 6.7a 96.7 ± 3.3a I, II (++) I, III (++) 13.30ef 73.3ab 4.5 ± 1.5de 20.0 ± 1.0a−c

1 0.1 63.3 ± 23.3ab 86.7 ± 6.7a I, II (++) I, III (++) 16.7 ± 16.7ef 80.0 ± 6.7a 4.0 ± 4.0de 24.5 ± 2.5ab

0.1 0d 0d – – 0f 0f 0e 0e

Fig. 1  T. garganica leaf explants after 12 weeks in MS with different plant growth regulators (plant growth regulators). a TDZ (0.1 mg/L) + 2,4-D 
(0.1 mg/L), 16 h light photoperiod yielding calli type I (3) and III (4), and presence of embryos in different stages (heart (1) and torpedo (2) stages) 
and shoot buds (1). b BAP (0.1 mg/L) + 2,4-D (0.1 mg/L), 16 h light photoperiod yielding the presence of embryos (1) and a shoot (5). c TDZ 
(1 mg/L) + 2,4-D (0.1 mg/L), 16 h light photoperiod yielding calli type I (3) and III (4), and presence the of shoot bud (5). d TDZ (0.5 mg/L) + 2,4-D 
(0.1 mg/L), darkness conditions yielding calli type I and II (6) and the presence of embryos (1). plant growth regulator
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which increased with increasing TDZ concentration 
(0.1–1  mg/L). The callus formed under these treat-
ments did not proliferate and was classified as type 
IV brown dead calli. The combined treatments with 
cytokinins and auxin resulted in high callus forma-
tion in the explant cut surfaces. Leaf tissue cultured 
in BAP + 2,4-D showed lower percentages of explant 
forming callus (63-96%) in comparison with leaf tissue 
cultured in TDZ + 2,4-D (96–100%). Additionally, cal-
lus morphology was significantly influenced by the light 
regimen (Fig.  1b–d). Both light regimens gave rise to 
friable soft white calli (type I) identified as embryogenic 
calli. Explants under dark condition formed creamy yel-
low nodular calli defined as type II while explants under 
light conditions formed nodular green calli (type III).

The presence of shoots was also as observed, with 
no significant statistical difference between the differ-
ent treatments, although a high concentration of BAP 
or TDZ tended to induce hyperhydricity of the shoots. 
This tendency requires further studies to confirm if this 
can be used for faster shoot induction.

Rooting
Rooting occurred in all tested treatments, reaching 
49–71% of rooted shoots after 6 weeks (Fig. 2a) (Table 2). 
The number of roots increased with increased concentra-
tions of auxin. However, in treatments with the highest 
auxin concentration, the shoot systems were greatly dam-
aged or died due to stress. Therefore, treatments with 
the lowest auxin concentrations were more suitable for 
rooting.

Production of thapsigargins in the rooting experiment
A high-performance liquid chromatography (HPLC) 
analysis of extracts of the plant cultures showed different 
concentrations of thapsigargin depending on the treat-
ment and tissue type (Table  2). The highest amounts of 
thapsigargin (3.77 mg/g DW (dry weight)) and nortrilo-
bolide (13.08  mg/g DW) were obtained in shoots culti-
vated in ½MS medium without plant growth regulators. 
The level of thapsigargin was significant for this medium, 
whereas for nortrilobolide it was not. This treatment did 
not provide any rooting since there were no plant growth 
regulators. This initiated the work in TIBs, where rooting 
is not a prerequisite.

Production of thapsigargins in TIBs
Thapsia garganica in  vitro shoots were grown in TIBs 
for the mass production of thapsigargins (Fig. 2b). The 
shoot cultures were grown with the following elicitors: 
cellulase, alginate, yeast extract and MeJA; and the 
inhibitor miconazole (data not shown). Only the MeJA 
elicitor stimulated the production of thapsigargins 
(Fig.  3). Thapsigargin and notrilobolide contents were 
quantified by HPLC. An increase in thapsigargin and 
nortrilobolide was observed throughout the growth 
period and increased with increasing MeJA concentra-
tion. After 18 days of growth with 400 μM MeJA treat-
ments, 2.15  mg/g DW of thapsigargin and 17.42  mg/g 
DW of nortrilobolide were obtained. Only the increase 
in nortrilobolide concentration was statistically signifi-
cant (p < 0.0; F-value = 16.2).

Fig. 2  a T. garganica in vitro plant after root induction treatment (½MS + IAA (4 mg/L)) from a culture tube. b, c T. garganica in vitro shoots in TIB 
(temporary immersion bioreactor). d RITA® operation cycle: (1) Plants are placed on a fixed raft support in the upper compartment, and the culture 
medium is in the lower compartment (200 mL). (2) An overpressure of 30 kPa of sterile air is applied in the lower compartment, which pushes the 
medium into the upper compartment, immersing the explants. (3) During 3 min every 6 h, a sterile airflow continuously agitates and oxygenates 
the medium allowing an inner atmosphere renewal. (4) The airflow is stopped and the culture medium drains into the lower compartment by 
gravity
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Another study was performed with MeJA elicita-
tion combined with reduced nutrient supply (½MS) 
(Fig. 4). With this treatment, the amount of thapsigargin 
and nortrilobolide reached 3.37 ± 0.23  mg/g DW and 
21.50 ± 1.87 mg/g DW. This represents a 2.6 and 2.1 fold 
increase (p < 0.0; F-values = 32.6 and 21.06 respectively) 
and a total of 2.49% of the dry weight constitute these two 
molecules alone. For this experiment, we also observed 
that during the 18  days the TIBs biomass increased 3.4 
fold for the control, 1.6 fold for the ½MS and 1.5 fold 
for ½MS + MeJA. The natural content of thapsigargins 
has been reported up to 0.5% in the stem and leaf. Thus, 
2.49% (DW) is a very promising result.

Identification of thapsigargins
In order to identify the major thapsigargins, a UPLC-MS 
analysis was performed. Five major peaks were sepa-
rated and identified through UPLC-MS (Figs.  5, 6) and 
the mass spectra were compared with previously pub-
lished data [18–21]. The mass spectrum of peak A corre-
sponds to nortrilobolide (MW = 508.5) (NCBI, PubChem 
CID = 10097774), peak B corresponds to thapsivillosin I 
(MW = 605.4) (NCBI, PubChem CID = 102157434), peak 
D corresponds to thapsigargin (MW = 650.7) (NCBI, 
PubChem CID = 446378) and the MS spectrum peak E 
correspond to thapsivillosin C (MW = 663.5). The spec-
trum of peak C could not be identified. These results 

Table 2  In vitro rooting of T. garganica shoots on ½MS medium supplemented with different concentration of IAA, NAA 
and IBA after 6 weeks

After 8 weeks of rooting treatment, the samples were split into shoots and roots to quantify the amount of thapsigargin and nortrilobolide. Values represent 
mean ± SE. Different letters within a column indicate significant differences revealed after an ANOVA analysis followed by a Tukey’s multiple comparison test (p ≤ 0.05). 
n = 45 per treatment in number of roots; n = 6–9 for thapsigargin and nortrilobolide quantification

Treatment, plant growth regulators 
(mg/L)

Rooted 
shoots (%)

Number of roots 
per rooted shoot

Thapsigargin (mg/g dry weight) Nortrilobolide (mg/g dry 
weight)

IAA NAA IBA Shoots Roots Shoots Roots

1 49a 4.09 ± 0.81c 3.56 ± 0.33ab 0.77 ± 0.22a 13.54 ± 0.64a 8.27 ± 0.69a

2 56a 4.80 ± 0.87bc 3.32 ± 0.35abc 0.42 ± 0.08ab 11.57 ± 1.18a 6.22 ± 0.67a

4 64a 7.21 ± 0.87abc 3.21 ± 0.41abc 0.50 ± 0.07ab 9.27 ± 0.94a 7.63 ± 0.62a

1 53a 8.04 ± 1.14abc 2.24 ± 0.25bcd 0.38 ± 0.05bc 11.46 ± 0.99a 7.19 ± 0.84a

2 51a 11.04 ± 2.23ab 1.72 ± 0.32d 0.41 ± 0.05ab 9.24 ± 1.37a 8.41 ± 0.29a

4 49a 12.05 ± 2.08a 2.08 ± 0.21cd 0.30 ± 0.05bc 11.45 ± 0.49a 7.37 ± 0.66a

1 60a 6.07 ± 1.19abc 3.00 ± 0.22abcd 0.66 ± 0.12ab 11.51 ± 1.41a 8.70 ± 0.78a

2 62a 9.75 ± 1. 81abc 3.15 ± 0.21abc 0.48 ± 0.04ab 10.07 ± 0.87a 7.80 ± 0.62a

4 71a 8.21 ± 1.56abc 3.04 ± 0.24abcd 0.42 ± 0.07ab 11.89 ± 1.14a 7.87 ± 0.95a

Half strength MS 0b 0d 3.77 ± 0.36a – 13.08 ± 0.92a –

MS + 1.5 BAP + 0.5 NAA 0b 0d 2.20 ± 0.11cd – 10.35 ± 0.53a –

Fig. 3  The effect of MeJA elicitation on thapsigargin and nortrilobolide content (mg/g DW) in T. garganica in vitro shoots in TIBs. The medium was 
MS salts and vitamins supplemented with 1.5 mg/L BAP and 0.5 mg/L NAA and different concentrations of MeJA (100, 200 and 400 µM). An asterisk 
(*) indicates a significant difference between the sample and the control. This is based on an ANOVA test followed by a Tukey’s multiple comparison 
test (p ≤ 0.05). n = 6–9 samples per treatment.TG = thapsigargin shown in (a), NT = nortrilobolide shown in (b), DW = dry weight
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confirmed the presence of these molecules in in vitro cul-
tures of T. garganica. 

Gene expression
RNA transcription levels varied among treatments for the 
genes TgCYP76AE2 (p < 0.05; F-value = 4.3) and TgTPS2 
(p < 0.01; F-value = 7.5) (Fig.  7c, d). The TgCYP76AE2 

gene expression increased 1.1 fold in ½MS and 1.7 fold 
in ½MS + 400 µM MeJ treatments, whereas the TgTPS2 
gene expression increased 1.8 and 3.2 fold, respectively. 
HMGR and FPPS expression levels did not significantly 
change with treatments, which shows a tight regulation 
of these two genes (Fig. 7a, b).

Fig. 4  The effect of reduced nutrient supply; either alone or in combination with MeJA elicitation, on thapsigargin and nortrilobolide content 
(mg/g DW) in T. garganica in vitro shoots grown 18 days in TIBs. As controls TIBs with MS medium supplemented with BAP (1.5 mg/L) and 
NAA (0.5 mg/L) were used. Different letters on the bars indicate significant differences based on an ANOVA test followed by a Tukey’s multiple 
comparison test (p ≤ 0.05). n = 9 bioreactors per treatment. TG = thapsigargin shown in (a), NT = nortrilobolide shown in (b), DW = dry weight

Fig. 5  UV absorption chromatogram from a UPLC analysis of extracts of T. garganica in vitro plants grown in TIBs. The chromatogram shows the 
signal at 230 nm. (a) nortrilobolide, (b) thapsivillosin I, (d) thapsigargin and (e) thapsivillosin (c) Peak C could not be identified
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Fig. 6  Mass spectra from the analysis of thapsigargins by UPLC analysis of extracts of T. garganica in vitro plants grown in TIBs. Peak A: nortrilobolide 
and peak D: thapsigargin in negative mode, including the chemical structure of the two compounds
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Histological analysis of explants
Secretory ducts were observed to occur in the mid-rib of 
leaf cross-sections. The stem cross-sections revealed that 
the stems are surrounded by nested leaf sheaths, contain-
ing a large number of secretory ducts (Fig. 8d). The secre-
tory ducts are surrounded by epithelial cells and radiate 
out from the pith of the stems to the surrounding leaf 
sheaths in concentric circles. The Nadi staining (Fig.  8) 
indicates that the epithelial cells and the secretory ducts 
contain terpenoids (Fig.  8e), shown by the blue color. 
Positive staining was also observed in the epidermis of 
leaves (Fig. 8a, b) and stems (Fig. 8c, d).

Discussion
The joint action of auxins and cytokinins plays a criti-
cal role in the activation of somatic cells and cell divi-
sion. This has been observed previously in T. garganica 
and other species belonging to the Apiaceae family [22–
26]. Therefore, our results confirm that the cytokinin 
and 2,4-D combination is fundamental for T. garganica 

regeneration via somatic cells. Additionally, low con-
centrations of plant growth regulators gave rise to the 
highest numbers for somatic embryogenesis. Similar 
results have been reported for Ferula assa-foetida L. 
(also an Apiaceae), where direct and indirect embryogen-
esis occurred in low concentrations of 2,4-D (0.5 mg/L) 
and kinetin (0.2 mg/L) [25]. According to George et  al., 
in most plant species, a low concentration of cytokinin 
stimulates the initiation of embryogenic cultures. In con-
trast, a low concentration of auxin triggers the division 
of the pro-embryogenic cells and their development into 
embryos [27]. Other studies on Apiaceae species have 
found that embryogenic cultures in darkness are more 
competent than if grown under a photoperiod [23, 28]. 
In the only report related to somatic embryogenesis for 
T. garganica, the authors observed that four-year-old sus-
pension cultures spontaneously induced embryos both in 
darkness and in light without specifying which condition 
was better [14].

Fig. 7  Relative quantification of HMGR (a), FPPS (b), TgTPS2 (d) and TgCYP7AE2 (c) expression (qRT-PCR) with three internal controls (actin, tubulin 
and ef1α) in T. garganica in vitro shoots grown in TIBs. The cultivation was performed in ½MS and ½MS + 400 µM MeJA and the RNA was extracted 
after 18 days of growth in TIBs. As controls TIBs with MS medium supplemented with BAP (1.5 mg/L) and NAA (0.5 mg/L) were used. The different 
letters on the bars indicate significant differences based on an ANOVA test followed by a Tukey’s multiple comparison test (p ≤ 0.05). n = 9 
bioreactors per treatment
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Fig. 8  a–f NADI staining of T. garganica leaf and stem sections. Blue color indicates the presence of oxygenated or lipophilic compounds (e.g. 
terpenoids), concentrated mainly in epithelial cells, secretory ducts and in the epidermis. a, b Leaf cross-sections with staining visible in the 
epidermis. c upper-stem cross-section with the epidermis stained. d cross-section of the stem, just above callus tissue with staining concentrated in 
secretory ducts. e cross-sections of callus tissue at the base of the stems. Staining is visible in epithelial cells and secretory ducts. f transverse section 
of callus tissue showing staining of the epithelial cells along a secretory duct. g, h Unstained cross-section (g) and transverse section (h) of the stem 
to illustrate un-ruptured secretory ducts filled with resin/oil bodies c cortex, e epidermis (le lower epidermis, ue upper epidermis), ep epithelial cells, 
o oil bodies, sd secretory ducts, st stomata, vb vascular bundle. Scale bars represent 100 μm
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In our explants, treatment with TDZ led to scarce cal-
lus formation. TDZ has cytokinin-like activity and can 
stimulate de novo synthesis of auxin by increasing the 
levels of 2-(1H-indol-3-yl) acetic acid (IAA) and its pre-
cursors [29]. In Fragaria leaf explants, treatment with 
TDZ led to scarce callus formation and proliferation, and 
shoots became necrotic or died after 60 days [29]. Thus, 
the suggested de novo synthesis of auxin is not sufficient 
to obtain the activation. Our observations confirm that 
auxin and TDZ should be combined in order to obtain 
viable cultures.

Previous work on T. garganica root induction has 
shown a low percentage of rooted plantlets (32%) in plant 
growth regulator-free medium [15] and no roots when 
treated with auxins [16]. Later, 60% rooting frequency was 
obtained by treatment of 10 mg/L 1H-indole-3-butanoic 
acid (IBA) for 3 days prior to transfer to plant growth reg-
ulators-free medium [17]. Here we observe that 49–71% 
of the T. garganica shoots established roots in ½MS media 
in all auxin concentrations. The positive effect of ½MS 
on in  vitro root induction has been previously reported 
for various Apiaceae species [17, 30–36]. It is known 
that water or nutrient deficiencies act as powerful stimu-
lants for the activation of cell division in root meristem, 
in order to capture more nutrients [37]. In addition, low 
concentrations of nutrients provide a low osmotic pres-
sure and ease the adaptation of the plants during acclima-
tion. The natural auxins IAA and IBA, and the synthetic 
auxin 2-(1-naphthyl)acetic acid (NAA) are the most used 
plant growth regulators for root induction, with IBA 
being the most efficient auxin for Apiaceae species [33, 34, 
38, 39]. However, for T. garganica, NAA induced the high-
est number of roots per rooted shoot (12.05 ± 2.08) as has 
also been observed for Hydrocotyle conferta (Apiaceae) 
[31]. HPLC analyses confirmed that 1 mg/L IAA was the 
best auxin for thapsigargin production in both shoot and 
root systems, but high concentrations of auxins damaged 
shoot systems. T. garganica shoot culture controls devoid 
of auxins did not show root induction. Surprisingly, these 
shoot cultures reached the highest thapsigargin levels, 
even more than shoots growing in the “shoot multiplica-
tion” media. Hence, a reduced nutrient supply by ½MS 
was used in the following experiments.

Reduced nutrient supply, via ½MS media in in  vitro 
shoots in TIBs, yielded a 1.9 fold increase of thapsi-
gargin content compared to full MS media  (Fig.  4a). 
As a response to nutrient stress, plants often produce 
higher amounts of specialized metabolites and growth 
is retarded, to increase the survival rate of the individual 
[40]. As observed here, nutrient stress has been shown to 
significantly increase levels of the sesquiterpene lactone 
artemisinin in Artemisia cells whilst causing a reduction 
in plant biomass [41].

Elicitors have been used to either increase the produc-
tion or to induce de novo synthesis of secondary metab-
olites in plants [42]. MeJA is a plant-specific signalling 
molecule synthesized in response to pathogen attack 
and wounding, and has been shown to be a powerful 
elicitor within Apiaceae species [43–49]. MeJA stimu-
lates a stress response that often leads to the biosynthe-
sis of specialized metabolites [50], such as terpenoids. 
The application of MeJA to T. garganica shoot cultures 
grown in TIBs significantly increased nortrilobolide bio-
synthesis, leading to a 2.5 fold increase after 18 days of 
treatments with 400 µM MeJA (Fig. 3b). Similar results 
were obtained for root cultures of Hyoscyamus muticus 
L., where the sesquiterpene production was enhanced by 
MeJA [51].

The joint treatment with ½MS and MeJA yielded very 
high concentrations of thapsigargin and nortrilobolide 
in T. garganica shoots grown in TIBs, a very promising 
result despite the reduced biomass (Fig. 4). The combina-
tion of the treatment and the TIB cultivation can provide 
a sustainable and viable production of thapsigargin and 
nortrilobolide. Additionally, nortrilobolide can easily be 
converted into thapsigargin or other relevant drug pre-
cursors by a 3-step chemical synthesis [52].

In plants, sesquiterpenoids are mainly biosynthesized 
by the mevalonate pathway, where HMGR and FPPS 
are considered key enzymes in the regulation [53]. The 
first specific step in the biosynthesis of sesquiterpenoids 
is catalyzed by sesquiterpene synthases followed by 
modifications in the backbone skeleton by cytochromes 
P450 [54]. Two sesquiterpene synthases [11] and one 
cytochrome P450 have been described from the root 
transcriptome of T. garganica [12]. The sesquiterpene 
synthase TgTPS2 is the most interesting one, with epi-
kunzeaol being its major product [11] followed by the 
cytochrome TgCYP76AE2, which converts epikunzeaol 
to epidihydrocostunolide a likely precursor of thapsi-
gargins [12]. We observed that the amount of thapsi-
gargin and nortrilobolide in T. garganica in vitro shoots 
exhibited a positive and significant correlation with the 
expression of TgCYP76AE2 and TgTPS2 genes. Although 
the levels of expression of TgHMGR and TgFPPS did 
not change  (Fig.  7a,b), the increase in the expression of 
TgCYP76AE2 and TgTPS2 genes (Fig. 7c,d) and the levels 
of sesquiterpenoids correlate with what was observed in 
Arabidopsis thaliana. Here the sesquiterpene synthases 
TPS21 and TPS11 were induced by jasmonate, leading 
to an increased emission of sesquiterpenes [55]. This 
shows that the levels of expression of terpene synthases 
and cytochromes P450 part of terpenoid biosynthesis in 
Thapsia can be induced by stress factors, and our data 
supports that TgTPS2 and TgCYP76AE2 are likely to be 
involved in thapsigargin biosynthesis.
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The histochemical analysis with Nadi staining enabled 
the identification of secretory ducts within the stem, 
leaves and callus tissue of the in  vitro plant material, 
whereas previous work focused on only root sections 
of T. garganica [12]. As previously reported [12], these 
secretory ducts were surrounded by epithelial cells and 
the Nadi staining, together with the HPLC results, pro-
vided a good indication for the presence of terpenoids 
and hence thapsigargins in these specialised structures. 
Resin exudation is known to be regulated by the epithe-
lial cells, being used by plants to store specialised metab-
olites to prevent auto-toxicity [56]. The relatively large 
number of secretory ducts observed in the stems and 
callus tissue of the explants could explain the high quan-
tity of thapsigargin measured in the HPLC analyses. It 
remains to be shown whether the number of ducts can 
be correlated with the stress factors and the expression 
of the terpenoid related genes, as the current data did 
not allow for this conclusion. Likewise, our data indicate 
that an induction of duct formation might be a strategy 
towards higher production of specialized metabolites in 
plants.

Conclusions
We have shown that T. garganica in vitro tissue culture 
is an efficient production platform of thapsigargin and 
nortrilobolide. The in  vitro culture can be formed from 
leaf explants. The overall setup can supply thapsigargin 
for commercial and pharmacological needs at industrial 
levels. Further process engineering is needed to optimize 
T. garganica in vitro shoot biomass production and thap-
sigargin levels. Our technology and method can protect 
this medicinal plant from future over-harvesting, as well 
as establishing the prerequisite cultures for plant trans-
formation. Finally, we have confirmed that higher expres-
sion levels of TgTPS2 and TgCYP76AE2 genes lead to 
higher thapsigargin content, thus supporting their likely 
involvement in thapsigargin biosynthesis.

Methods
In vitro culture establishment
Thapsia garganica L. plant material was obtained from 
a two-year-old stock plant growing under greenhouse 
conditions (University of Copenhagen, Denmark). 
Leaves were collected to be used as explants, washed 
with a detergent solution and rinsed under running tap 
water to remove loose dirt. For surface sterilization, 
the explants were dipped in a 0.5% sodium hypochlo-
rite solution with tween 20® for 15  min, followed by 
three rinses with sterile distilled water. Leaf segments 
were aseptically inoculated, abaxial-side down, on 
Petri dishes containing 25 ml of Murashige and Skoog 

(MS) salts and vitamins (Duchefa Biochemie, The 
Netherlands), 30  g/L sucrose, 0.25  g/L phytagel and 
supplemented with three different plant growth regu-
lators, N-(Phenylmethyl)-7H-purin-6-amine (BAP) 
or 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (TDZ) (0.1, 
0.5 or 1  mg/L), either alone or in combination with 
2,4-Dichlorophenoxyacetic acid (2,4-D) (0.1  mg/L). 
Cultures were incubated under a 16  h light photoper-
iod or 24  h darkness. Each treatment consisted of 15 
explants spread over three Petri dishes and the experi-
ment was repeated twice (n = 30). Shoot organogenesis 
and somatic embryogenesis were investigated after cul-
turing for a total of 12 weeks. The induction of shoots, 
callus, and somatic embryos was observed monthly 
(Table  1). The different treatments gave rise to differ-
ent callus types. Type I: friable, soft white calli; type II: 
nodular green organogenetic and compact calli; type 
III: creamy, yellow nodular calli; type IV: brown dead 
calli. Furthermore, the amount of calli was noted from 
low to high (−, +, ++, +++).

Culture media and incubation conditions
For all culture media, the pH was adjusted to 5.8 before 
autoclaving at 121 °C and 103 kPa for 20 min.

Culture establishment media
The medium was MS [57] salts and vitamins (Duchefa 
Biochemie, The Netherlands), 30  g/L sucrose, 0.25  g/L 
phytagel (Duchefa Biochemie, The Netherlands). This 
was supplemented with three different plant growth reg-
ulators (plant growth regulators), BAP or TDZ (0.1, 0.5 
or 1  mg/L), either alone or in combination with 2,4-D 
(0.1 mg/L). TDZ was dissolved in NaOH and filter-ster-
ilized through a 0.24  µM filter and added to autoclaved 
medium after it had cooled while the rest of plant growth 
regulators were added prior to autoclaving. Cultures were 
incubated in Petri dishes at 23 ± 2  °C under a 16 h light 
photoperiod (15 μmol m−2 s−1) or 24 h darkness.

Shoot multiplication medium
After three months, T. garganica shoots, buds and 
embryos regenerated from the leaflet explants grown in 
the different culture establishment media were trans-
ferred to a shoot multiplication medium defined as MS 
salts and vitamins, 30  g/L sucrose and 7  g/L plant agar 
(Duchefa Biochemie, The Netherlands). This was sup-
plemented with 1.5 mg/L BAP and 0.5 mg/L 2-(1-naph-
thyl)acetic acid (NAA). Shoot cultures were multiplied in 
glass culture vessels, incubated at 23 ± 2 °C under a 16 h 
light photoperiod (15 μmol m−2s−1).
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Rooting media
The medium was half strength MS salts (½MS) with 
MS vitamins, 30  g/L sucrose and 7  g/L plant agar. This 
medium was supplemented with 2-(1H-indol-3-yl) acetic 
acid (IAA), NAA and 1H-indole-3-butanoic acid (IBA) 
(1-4  mg/L). Cultures were incubated in 20  ml culture 
tubes (Fig. 2a) at 23 ± 2 °C under a 16 h light photoperiod 
(15 μmol m−2 s−1).

TIBs setup and culture media
1 Liter autoclavable RITA® bioreactors were used 
(Fig.  2b–d) [58]. The RITA® bioreactor consists of two 
compartments; an upper one, where the plants are placed 
in a raft support; and a lower one, which contains 200 mL 
of the culture medium. Both compartments are con-
nected through a small tube and the raft support placed 
at the bottom of the upper compartment. When apply-
ing overpressure by means of the small tube, the culture 
medium goes up and immerses the plants in the upper 
compartment. During the immersion, the airflow con-
tinuously agitates and oxygenates the medium, allowing 
an inner atmosphere renewal. When pressure drops, the 
medium drains into the lower compartment by gravity. 
The overpressure is generated by an air pump linked to 
several RITA® bioreactors. The air pump is controlled by 
a timer that regulates the frequency and the length of the 
overpressure; the cultures were immersed for 3 min every 
6 h. The entry and exit flows were sterilized through 0.2-
µm filters. The RITA® bioreactors and the medium were 
autoclaved separately before use.

For the MeJa treatment, the medium used was MS 
salts and vitamins and 30 g/L sucrose. This was supple-
mented with 1.5 mg/L BAP and 0.5 mg/L NAA and dif-
ferent concentrations of MeJA (100, 200 and 400  µM). 
Cultures were incubated in TIBs [13] at 23 ± 2 °C under 
a 16 h light photoperiod (15 μmol m−2 s−1). Three bio-
reactors were used for each treatment, and the experi-
ment was repeated three times (n = 9). A sample from 
each bioreactor was taken after 3, 6, 12 and 18 days for 
quantification of thapsigargin and nortrilobolide by 
HPLC.

For the reduced nutrient supply treatment, the medium 
was ½MS with MS vitamins salts and 30  g/L sucrose. 
This medium was free of plant growth regulators and 
either supplemented with 400 µM MeJA (½MS + 400 µM 
MeJA) or without MeJA (½MS). Cultures were incubated 
in TIBs [13] at 23 ± 2 °C under a 16 h light photoperiod 
(15 μmol m−2s−1—Photosynthetic Photon Flux Density). 
A sample from each bioreactor was taken after 18  days 
for thapsigargin and nortrilobolide HPLC quantification 
and gene expression analysis by qRT-PCR of the genes of 
interest: HMGR, FPPS, TgTPS2 and TgCYP76AE.

Shoot multiplication
Thapsia garganica shoots, buds and embryos regen-
erated from the leaflet explants were transferred to a 
“shoot multiplication medium” plant growth regulator 
to induce shoot multiplication. All regenerated shoots 
were left to multiply and grow in culture vessels with 
solid medium. Shoots cultured for approximately 3 weeks 
were transferred to TIBs with liquid medium, in order to 
use them as an efficient production platform system of 
thapsigargins.

Root formation
Regenerated single shoots (4–7  cm) were transferred 
onto “rooting medium” (Fig.  2a). After cultivation for 
4 weeks, the plants were transferred to ½MS medium free 
of plant growth regulators. The control was ½MS with-
out plant growth regulators. Each treatment consisted 
of 15 shoots, and the experiment was repeated three 
times (n = 45). The percentage of root formation and 
the number of roots was recorded weekly over a period 
of 6 weeks. The content of thapsigargin and nortrilobo-
lide was quantified by HPLC; sampling was performed 
after 8 weeks to allow for sufficient biomass content. The 
shoots and roots of the generated plants in all treatments 
were sampled and the quantification was performed sep-
arately in these trials (Table 2).

Enhancement of thapsigargins production in TIBs by MeJA 
and reduced nutrient supply
For the treatment with MeJa, 4-7 cm shoots were added 
into TIBs (15 shoots per TIB) containing 200 mL of liq-
uid MS medium supplemented with BAP (1.5 mg/L) and 
NAA (0.5  mg/L), and different concentrations of MeJA 
(100, 200 and 400 µM) (Fig. 2b). TIBs with MS medium 
supplemented with BAP (1.5 mg/L) and NAA (0.5 mg/L) 
were used to grow controls. Three bioreactors were used 
for each treatment, and the experiment was repeated 
three times (n = 9). A sample from each bioreactor was 
taken after 3, 6, 12 and 18 days for thapsigargin and nor-
trilobolide HPLC quantification.

In the reduced nutrient supply treatment, 4-7  cm 
shoots were added into TIBs (15 shoots per TIB) contain-
ing 200 mL of liquid ½MS medium with 400 µM MeJA 
or without MeJA (½MS) (Fig.  2b). Controls were cul-
tured in MS medium supplemented with BAP (1.5 mg/L) 
and NAA (0.5  mg/L). Three bioreactors were used for 
each treatment, and the experiment was repeated three 
times (n = 9). A sample from each bioreactor was taken 
after 18  days for thapsigargin and nortrilobolide HPLC 
quantification and gene expression analysis by qRT-
PCR of genes of interest: HMGR, FPPS, TgTPS2 and 
TgCYP76AE.
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Quantification of thapsigargin
Extraction of thapsigargin from plant material
Plant material from in  vitro cultures (shoots and roots) 
was frozen at −  80  °C and dried 48  h in a freeze drier 
(LABCONCO FreeZone 2.5 plus). 50  mg of each dried 
sample was ground and extracted overnight with 1.5 mL 
70% ethanol. The extract was centrifuged at 13,000 rpm 
for 10  min. 1  mL of the supernatant underwent evapo-
ration by speed vacuum until dry and the residue was 
dissolved in 250  μL methanol 80% (concentration × 4). 
The extracts were then filtered through a 0.45 μm filter, 
placed into 1.5 mL vials and kept at − 20 °C until HPLC–
DAD analysis.

Standard solutions of thapsigargin and nortrilo-
bolide were prepared in 80% methanol in the range 
12–1200  mg/L and 11–1007  mg/L respectively, corre-
sponding to the concentration range of the plant extracts. 
Calibration curves were generated by integrating the 
peak area (230  nm) versus the concentration of stand-
ard thapsigargins. For both, the calibration curves were 
linear with a correlation coefficient of 0.99. The results 
were converted to mg of compound per g of dry weight 
plant (mg/g DW). The standards used in all chromatog-
raphy experiments of thapsigargin and nortrilobolide and 
the mass spectrums of all thapsigargins were provided by 
Prof. Søren B. Christensen, University of Copenhagen, 
Denmark.

High‑performance liquid chromatography quantification 
of thapsigargins
The HPLC–DAD system consisted of a quaternary pump 
(JASCO-2089 Plus pump), a thermoregulated autosam-
pler set at 4 °C (Intelligent autosampler JASCO AS-2059) 
and a photodiode array detector (PDA) detector (UV/VIS 
detector JASCO MD-2018 Plus). The column tempera-
ture was 30  °C. Separation of compounds was achieved 
on a Luna C18 column (5  μm, 4.6  mm ×  25  cm) (Phe-
nomenex, USA). The flow rate was set to 0.5 mL/min and 
the mobile phase consisted of water with o-phosphoric 
acid (0.01%) as solvent A and acetonitrile with o-phos-
phoric acid (0.01%) as solvent B. The binary gradient elu-
tion was: 80–100% A (0–15 min., linear gradient), 100% 
A (15–25  min.) and 100–80% A (25–27.5  min., linear 
gradient).

Identification of thapsigargins by UPLC‑MS
Qualitative analysis of thapsigargins from the in  vitro 
plants was performed using a Waters Acquity TQD 
UPLC/MS/MS (triple quadrupole mass spectrometer) 
system associated with a PDA detector using the stand-
ards mentioned above. The mass spectrums was com-
pared with those provided by Prof. Søren B. Christensen, 

University of Copenhagen, Denmark. The system was 
directed by the software MassLynx 4.1. Extracts were fil-
tered at 0.2 µm and 7.5 μL of each extract was separated 
on a C18 Luna (2)-HST (100 × 2.0 mm, 2.5 μm) column 
(Phenomenex, USA). The flow rate was set to 0.6  mL/
min and the mobile phases consisted of water with 
o-phosphoric acid (0.01%) for A and acetonitrile with 
o-phosphoric acid (0.01%) for B. The binary gradient elu-
tion was: 90% A (0–0.5 min.), 90–0% A (0.5–7 min., lin-
ear gradient), 0% A (7–10 min.), 0–95% A (10–10.2 min., 
linear gradient) and 95% A (10.2–13  min.). The PDA 
swept wavelengths from 200 to 400 nm with a 2.4 resolu-
tion. Mass spectra were obtained in positive and negative 
modes, using an electrospray ionization (ESI) source on 
a triple quadrupole instrument (Waters Acquity) in full 
scan (50–2000 m/z). The conditions were as follows, cap-
illary voltage: 3000 V, cone voltages: 30 and 60 V, desolva-
tion temperature: 450 °C, source temperature: 150 °C, gas 
flow cone: 50 l/min, desolvation gas: 800 l/min.

Gene expression analysis by qRT‑PCR
RNA transcription levels of genes of interest: HMGR, 
FPPS, TgTPS2 and TgCYP76AE2 were measured for T. 
garganica in vitro shoots growing in TIBs under reduced 
nutrient supply (½MS) or under reduced nutrient sup-
ply in combination with MeJA (½MS + 400  µM MeJA). 
Controls were cultured in TIBs with MS medium supple-
mented with BAP (1.5 mg/L) and NAA (0.5 mg/L).

RNA isolation and primer design
Total RNA was isolated from 75 to 85 mg samples from 
elicited and non-elicited shoots. RNA was extracted with 
the Spectrum™ Plant Total RNA kit (Sigma-Aldrich, 
Copenhagen, Denmark) and was treated with DNaseI 
Amplification Grade (Sigma-Aldrich, Copenhagen, Den-
mark). To determine nucleic acid purity, 260/280  nm 
ratios were measured using an Agilent RNA 6000 Nano 
kit (Agilent Technologies, Copenhagen, Denmark).

Three reference genes were selected for normalization: 
actin, elongation factor (ef1α), and tubulin. The previ-
ously published T. garganica root transcriptome data 
(SRX096991) was used for primer design. Daucus carota 
sequences, acquired from NCBI database, of genes: 
actin, tubulin, FPP and HMGR were used to do a BLAST 
against T. garganica root transcriptome, while Solanum 
tuberosum sequence was used for ef1α gene [12]. Daucus 
is the sister genus to Thapsia thus was an obvious choice 
for the design of primers. For the ef1α Solanum was the 
closest relative available. Primer design of TgCYP76AE2 
and TgTPS2 was based on the published sequences [11, 
12] (Additional file 1: Table S1).
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Two steps qRT‑PCR
A total of 500  ng of each RNA sample was reverse 
transcribed to cDNA with IScript™ cDNA Synthe-
sis kit (BIO-RAD, Copenhagen, Denmark). Two-step 
qRT-PCR (as specified by the kit supplier) was per-
formed using QuantiFast® SYBR® Green PCR (Qiagen, 
Copenhagen, Denmark) according to the manufac-
turer’s protocol. The following amplification program 
was used: 95  °C for 5 min, 40 cycles at 95  °C for 10  s 
followed by 60  °C for 30 s. Samples were amplified in 
duplicate from the same RNA isolation. qRT-PCRs 
were performed using 3 biological replicates from dif-
ferent bioreactors and the experiment was repeated 3 
times. Therefore, 9 biological replicates (with 18 data 
points) spread out in three different elicitation experi-
ments were analyzed.

qRT-PCR efficiency, E, was estimated for each gene 
by generating standard curves by plotting quantification 
cycle (Cq) values (y) against the log of a series of cDNA 
dilutions (x). For this, a cDNA sample was used as tem-
plate in a range of 20, 4, 2, 1 and 0.5 ng. The qRT-PCR 
efficiencies were calculated from the slope (a) of the lin-
ear regression equations of the standard curves, along 
with the regression coefficient (R2). The equation used 
was: E = 10(−1/a) [59]. E values in a range of 1.90–2.10 
(PCR efficiency between 90 and 110%) with a regression 
coefficient below 0.02 are acceptable. All PCR efficien-
cies displayed between 96 and 104% (Additional file  1: 
Table S1).

Determination of reference gene expression stability, data 
analysis and normalization using geNorm
The stability of the reference genes and normalization 
factors were evaluated with geNorm V.3.1 (www.genor​
m.cmgg.be). The geNorm algorithm is based on the 
pairwise variation of a single reference candidate gene 
relative to all other genes, assuming that the expression 
ratios of the two ideal reference genes are identical in all 
samples regardless of the conditions tested [60]. geNorm 
calculates two parameters: the expression stability value 
of reference gene (M) and the coefficient of variation of 
the normalized reference gene relative quantities (CV) 
[61]. The cut-off proposed for typical stable reference 
genes for M and CV values are 0.5 and 0.25 respectively, 
however, for more heterogeneous samples, M and CV 
values can increase to 1 and 0.5 respectively [61].

Normalization factors were calculated following the 
Δ-Δ-Ct method as previously described [62] and using a 
reference target normalization approach with the three 
reference genes: actin, elongation factor (ef1α), and tubu-
lin [60].

Verification of amplified products and sequencing reactions
PCR product size was checked on a 2% agarose gel 
and melting curves showed a singled product for all 
genes. To verify sequences of amplification products, 
PCRs for each primer set were performed. PCR reac-
tions comprised: 0.5  µM of primers, 0.02 U/µl of Phu-
sion High-Fidelity DNA Polymerase (Thermo Scientific, 
Copenhagen, Denmark), 2  mM of dNTP mix, 1 × Phu-
sion HF Buffer (Thermo Scientific, Copenhagen, Den-
mark) and 10  ng cDNA in a total volume of 20  µl. The 
following amplification program was used: 98 °C for 30 s 
and 34 cycles at 98 °C for 5 s, 58 °C for10 s and 72 °C for 
20 s followed by 72 °C for 5 min. Amplified products were 
cloned with CloneJET PCR Cloning Kit (Thermo Scien-
tific, Copenhagen, Denmark) for sequencing, according 
to the manufacturer’s instructions. E. coli strain (DH5α) 
was transformed with the ligation products, 4 colonies 
for each gene were analyzed by colony PCR with plas-
mid reverse specific primer (5′-AAG​AAC​ATC​GAT​TTT​
CCA​TGG​CAG​-3′) at an annealing temperature of 60 °C. 
One colony per gene was selected for sequencing (Euro-
fins), previous plasmid preparation (GenElute Plasmid 
Miniprep kit, Sigma-Aldrich, Copenhagen, Denmark). 
Sequences of amplification products were compared 
through a BLAST analysis.

Histological analysis of explants
A histological analysis was performed to investigate the 
tissue structure of the in vitro shoots, and a histochemi-
cal analysis with Nadi was carried out to identify secre-
tory structures storing terpenoids. Nadi staining has 
been described as a tool to detect terpenoids [63] and 
has been used to this effect in a number of studies [64, 
65]. The method is a reaction that is believed to result 
from the oxidation of naphthalen-1-ol and N,N-dimeth-
ylbenzene-1,4-diamine by cytochrome oxidase enzymes 
[66]. In the presence of monoterpenes and sesquiterpe-
nes, the diamine is enzymatically oxidised, resulting in a 
free radical that combines with naphthalen-1-ol to form 
4-(4-hydroxyphenyl)iminocyclohexa-2,5-dien-1-one 
blue [66, 67]. For the histological analysis, 65  µm sec-
tions of the stems, leaves and callus tissue were made 
using a vibratome (Microtome, HM 650  V vibratome 
(Thermo Scientific). The sections were collected in tubes 
containing either 0.05  M phosphate buffer (pH 7.2), to 
keep unstained, or in Nadi reagent (1% naphthalen-1-ol 
with 1% N,N-Dimethylbenzene-1,4-diamine in 0.05  M 
phosphate buffer, pH 7.2; immersed for approximately 
30  min). The sections were then mounted on glass 
slides and observed under a Leica DMR HC micro-
scope through ×5, ×10, ×20, ×40 dry objectives and a 
×100 oil immersion objective. The resulting images were 

http://www.genorm.cmgg.be
http://www.genorm.cmgg.be
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processed and analysed using the Fiji platform on ImageJ 
[68].

Statistical analysis
All experiments were repeated 3 times, except for the 
regeneration from Thapsia leaves that was repeated 
twice. The data are reported as mean ± SE (standard 
error) including all data points. Means were subjected to 
a one-way analysis of variance (ANOVA) test followed by 
a Tukey’s multiple comparison test (p ≤ 0.05).
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