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Evaluation of a ‘‘Lexically
Assign, Logically Refine’’
Strategy for Semi-automated
Integration of Overlapping
Terminologies

ROBERT H. DOLIN, MD, STANLEY M. HUFF, MD, ROBERTO A. ROCHA, MD, PHD,
KENT A. SPACKMAN, MD, PHD, KEITH E. CAMPBELL, MD, PHD

A b s t r a c t Objective: To evaluate a ‘‘lexically assign, logically refine’’ (LALR) strategy for
merging overlapping healthcare terminologies. This strategy combines description logic
classification with lexical techniques that propose initial term definitions. The lexically suggested
initial definitions are manually refined by domain experts to yield description logic definitions
for each term in the overlapping terminologies of interest. Logic-based techniques are then used
to merge defined terms.

Methods: A LALR strategy was applied to 7,763 LOINC and 2,050 SNOMED procedure terms
using a common set of defining relationships taken from the LOINC data model. Candidate
value restrictions were derived by lexically comparing the procedure’s name with other terms
contained in the reference SNOMED topography, living organism, function, and chemical axes.
These candidate restrictions were reviewed by a domain expert, transformed into terminologic
definitions for each of the terms, and then algorithmically classified.

Results: The authors successfully defined 5,724 (73%) LOINC and 1,151 (56%) SNOMED
procedure terms using a LALR strategy. Algorithmic classification of the defined concepts
resulted in an organization mirroring that of the reference hierarchies. The classification
techniques appropriately placed more detailed LOINC terms underneath the corresponding
SNOMED terms, thus forming a complementary relationship between the LOINC and SNOMED
terms.

Discussion: LALR is a successful strategy for merging overlapping terminologies in a test case
where both terminologies can be defined using the same defining relationships, and where value
restrictions can be drawn from a single reference hierarchy. Those concepts not having lexically
suggested value restrictions frequently indicate gaps in the reference hierarchy.
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Standardized definitions and standardized use of ter-
minology in medical record systems are prerejquisites
for robust informatics applications such as automated
decision support and outcomes analysis. The proper
way to attain such standards and to formally define
healthcare terminology is an area of active discussion
and research.1 – 6 Often, proposed approaches seem to
be polarized into two paradigms: lexically based,
which relies on analysis of morphemic patterns within
the terms being defined to derive meaning, and logi-
cally based, which relies on axiomatic definition of
concepts and subsequent classification on those defi-
nitions to derive meaning.
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We believe that pragmatic solutions to our terminol-
ogy problems may be found in hybrid solutions that
leverage the best characteristics of each approach.
Here we describe an evaluation of a ‘‘lexically assign,
logically refine’’ (LALR) strategy that combines the ef-
ficiency of linguistically based approaches with the
precise semantics of description logic. We leverage
lexical algorithms and language’s inherent structure
to propose relationships for terms in a terminology.
These proposed definitions are then reviewed and re-
fined by domain experts, and subsequently loaded
into a description logic classifier. The LALR strategy
allows us to efficiently and formally define terms to
the extent pragmatically possible with the concomi-
tant benefits of decreased ambiguity and increased
precision available to represent medical observations,
diagnoses, and patient management plans.

Using our hybrid approach, we seek to demonstrate
the practicality of a LALR strategy that we believe can
scale to answer the terminologic challenges posed by
the Computer-Based Patient Record Institute7 and the
Institute of Medicine.8 Although our test case focuses
on the semi-automated merging of overlapping ter-
minologies, we believe that the LALR approach can
be generally applied to a wide variety of terminologic
challenges.

We selected the SNOMED (Systematized Nomencla-
ture of Human and Veterinary Medicine) laboratory
procedures9 and the LOINC (Logical Observation
Identifier Names and Codes) laboratory procedures10

as our test case because the terminologies are individ-
ually important to our respective organizations, and
the two terminologies have complementary strengths.

SNOMED III is the foundation of Kaiser Permanente’s
Convergent Medical Terminology project,11 and has
been shown to have broad content coverage in many
clinical domains.12,13 Despite SNOMED’s broad cov-
erage of medical concepts, it is missing many of the
detailed laboratory terms necessary for standardizing
reporting of laboratory information, although it pro-
vides a hierarchical classification of laboratory pro-
cedures.

The LOINC database contains finely detailed test re-
sult identification codes suitable for standardized re-
porting of laboratory information and has been en-
dorsed by the American Clinical Laboratory
Association (ACLA). ACLA recommends that all
members report laboratory results using LOINC
codes (ACLA members account for approximately
70% of the volume of tests performed in the United
States). Additionally, the Health Care Financing Ad-
ministration is constructing ICD-10-PCS codes using
LOINC terms.14

Despite LOINC’s finely detailed identification codes
and consensus regarding its adoption, LOINC lacks a
hierarchical organization of those identification codes.
We chose to test our LALR strategy using LOINC and
SNOMED because we felt that a combination of
LOINC and SNOMED could produce a comprehen-
sive strategy for representing detailed laboratory
terms as well as appropriately classify those terms.

Background

Systematized Nomenclature of Medicine
(SNOMED)

SNOMED III is a multiaxial hierarchical coding
scheme.9 Terms are assigned to one of 11 independent
systematized axes: Topography, Morphology, Func-
tion, Living Organisms, Chemicals, Physical Agents,
Occupations, Social Context, Diseases, Procedures,
and General Linkage/Modifiers. The code assigned a
term places it into its proper location in a monohier-
archy, thereby conveying contextual information for
each term (e.g., Tuberculous pneumonia, DE-14817, is
a Respiratory tuberculosis, DE-14810, which is a Tu-
berculosis, DE-14800, which is a Bacterial infectious
disease, DE-10000, which is an infectious disease, DE-
00000). SNOMED concepts are further defined
through the use of cross-referencing to related con-
cepts in other axes (e.g., Tuberculous pneumonia, DE-
14817, affects the topographic region Lung, T-28000,
has a morphologic feature of inflammation, M-40000,
and an etiologic agent of Mycobacterium tuberculosis
hominis, L-21801). In the July 1996 release of SNO-
MED, version 3.3, approximately 25% of the relevant
clinical terms included cross references.15

Logical Observation Identifier Names and
Codes (LOINC)

The LOINC database provides a set of universal
names and codes for identifying laboratory test re-
sults.10,16 Initially developed in mid-1995, the August
1996 version contains approximately 8,200 codes.
Each result is defined as having a measured compo-
nent or analyte (e.g., potassium), a property being
measured (e.g., mass), whether the measurement is a
momentary observation at a point in time or an ob-
servation integrated over time (e.g., 24-hour collec-
tion), the type of system or sample (e.g., serum), the
type of scale (e.g., quantitative), and, where relevant,
the method used to produce the result or other ob-
servation. In addition, each concept is placed into a
category or class (e.g., Chemistry, Microbiology).
Thus, each LOINC concept may have up to six defin-
ing relationships: Analyte, Property, Time Aspect, Sys-
tem, Scale, and possibly a Method. A non-defining at-
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F i g u r e 1 The LOINC (Logical Observation Identifier
Names and Codes) data model. (See the Background sec-
tion for details.)

tribute of a LOINC concept is its Class. The LOINC
data model is illustrated in Figure 1, using Coad and
Yourdon’s modeling representation.17

Merging and Mapping Techniques

Prior efforts at automated mapping and merging of
overlapping terminologies have relied primarily on
two different classes of techniques: lexical, which base
their comparisons on morphemic components of the
terms themselves, and logical, which base their com-
parisons on classification of the axiomatic definition
of terms.

Lexical Techniques

Lexical algorithms typically perform an initial nor-
malization process on the terms to be compared in an
attempt to abstract away from lexical (syntactic, mor-
phologic, and orthographic) variation in terms.2,5,6,18,19

The process may involve breaking each string into its
constituent words and morphemes; lower-casing each
word; removing punctuation, stop words, and dupli-
cate words; and sorting the words in alphabetical or-
der (e.g., the term ‘‘Cell count of synovial fluid with
differential count’’ would become ‘‘cell count differ-
ential fluid synovial’’).

More sophisticated normalization techniques attempt
to convert each word to its canonical uninflected form
(e.g., ‘‘treats’’ or ‘‘treated’’ becomes ‘‘treat’’),5,18 expand
abbreviations,5 attempt to correct spelling errors,20 and
substitute preferred terms for synonyms (e.g., ‘‘kid-
ney’’ becomes ‘‘renal’’).2,5,21 Rocha et al.18,19 lexically

compared normalized word fragments (digrams) us-
ing a similarity function. Digram comparisons break
each word into fragments of two letters each for com-
parison. For example, the word ‘‘morphemic’’ would
be broken into the fragments mo, or, rp, ph, he, em,
mi, and ic for comparison with the digrams from an-
other word. This technique is less sensitive to minor
morphologic variations in words introduced by mis-
spellings or other normal variations in morphology.
Digrams are created algorithmically and do not re-
quire any knowledge about word formation rules, and
do not rely upon the existence of affix dictionaries.

Following the normalization process, terms are com-
pared using various techniques such as exact normal-
ized string matching, the Longest Common Substring
algorithm,22 or a similarity scoring approach.18 Many
of these techniques are included in the National Li-
brary of Medicine’s lexical variant generation (lvg)
tools, which are available to anyone who has signed
the UMLS license agreement.23

Logic-based Techniques

Logic-based techniques are used to formally define
concepts and to map and classify terms based on sim-
ilarities of their definitions.24 – 27 So, for example, if two
distinct and lexically unrelated terms each define a
type of laboratory procedure that measures sodium,
the two terms will be appropriately classified to-
gether. There has been a general trend in terminology
research to make more explicit the definition of med-
ical concepts,4,19,27 – 29 both to disambiguate concepts
and to facilitate automated terminology merging ef-
forts. The Canon group has argued for a medical-con-
cept representation language containing semantic
types for each concept and a network of general med-
ical concepts in which implicit relations between ele-
ments are made explicit.4

There has been an evolution over time in the formal
representation of medical concepts. An early effort to
abstract away from specific terms to term represen-
tations for use in modeling general medical language
was developed by Evans in the MedSORT project.28

To represent concepts, MedSORT required both a se-
mantic classification scheme and rules that deter-
mined how elements in the classification scheme
might combine. Masarie et al.25 defined concepts from
several vocabularies using a frame-based system,
where the definitions were based on an analysis of the
terms to be merged. Cimino et al.27 have used a se-
mantic network for defining the concepts in the
Columbia–Presbyterian MED vocabulary. Their net-
work is a notation for representing conceptual entities
and links between them, allowing the storage of fac-
tual knowledge that can be intensional (describing the
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entities themselves) and extensional (describing how
entities are related to other entities), and includes a
classification hierarchy. Description logic, which de-
fines concepts based on formal logic theory, was de-
veloped to make explicit the semantics of frame-based
systems* and semantic networks while retaining an
emphasis on taxonomic structure as an organizing
principle.30

Campbell et al.3 have previously argued that formal
logic can provide a framework for formalizing the
representation of medical concepts. It is well recog-
nized that there is a tradeoff in expressiveness and
tractability of term classification that has to be consid-
ered when using formal logic.31,32 Rector et al.33 have
argued for a more expressive formalism, claiming that
worst-case computational complexity is an inappro-
priate guide to the choice of formalism. On the other
hand, several description logics have been defined
that support less then full first-order logic, and offer
complete and sound algorithms for the classification
of terms defined by the logic.34,35 Such a subset, used
in this study, is supported by K-Rep, a description
logic classification and terminology authoring system
developed by researchers at IBM.36 Expressiveness is
deliberately constrained in the K-Rep system so that
algorithmic classification is guaranteed to be sound
and complete. While this constraint may pose a limi-
tation in the definition of certain concepts requiring,
for example, a logical ‘‘or’’ or a logical ‘‘not,’’ this was
not an issue in the definition of the concepts in this
study, all of which could be fully defined. The explicit
representation of medical concepts in a description
logic enables the formal determination of the expres-
siveness and tractability of a particular representa-
tional syntax.

Logic-based classification algorithms typically organ-
ize a set of concepts into a taxonomy based on axio-
matic term definitions. As an initial step, the defining
characteristics for the set of concepts to be classified
must be determined. A LOINC concept, as shown in
Figure 1, is defined by its analyte, measured property,
measurement time aspect, specimen, scale, and
method. Cimino et al.27 defined laboratory specimens,
laboratory tests, and medications based on relation-
ships taken from the UMLS Semantic Network.37 Once
the defining relationships have been determined, ap-
propriate value restrictions for each defining relation-
ship must be assigned. These values can be deter-

*Many frame-based systems do not have formal semantics de-
fined by description logic. We prefer to reserve the phrase
‘‘frame-based’’ for systems where the semantics of their classi-
fication is not clear, and describe systems that are consistent
with formal logic theory as ‘‘description-logic–based.’’

mined by a combination of manual assignment,
lexical suggestion, or logical inheritance using the
methods described above.

Once concepts are defined, logic-based classification
algorithms are employed.27,32,34,35 Cimino et al.27,38 have
provided a description of their classification algo-
rithms, which are used to deepen a hierarchy and to
identify the most appropriate location for a given
term in a given classification hierarchy. Description
logic classification algorithms are discussed in more
detail by Fitting.39

Prior experience with logic-based techniques suggests
that these methods may enhance results achievable
with lexical techniques alone. Here we present our
evaluation of a specific strategy for combining logic-
based and linguistic-based techniques: Lexically As-
sign, Logically Refine (LALR).

Methods

Definitions

This section defines the terms ‘‘defining relationship’’
and ‘‘value restriction,’’ which are used throughout
this report to specify how we are defining healthcare
terminology concepts. Defining relationships (also
known as ‘‘defining roles’’) are those relationships
that link a concept to its defining characteristics. In
Figure 1, for instance, the defining relationship HAS-

ANALYTE indicates that a LOINC Observation is in
part defined by its analyte or measured component.
A value restriction (also known as a ‘‘role restriction’’
or ‘‘relationship value’’) is the target value that re-
stricts the domain of a defining relationship. In Figure
3, for instance, the concept HLA-A-serotypingoP3-
68530 has a value restriction of HLA-A-Antigen-
NOSoF-C4100 for the HAS-ANALYTE defining relation-
ship. This value restriction in effect states that any
concept in the terminology database subsumed by
HLA-A-Antigen-NOSoF-C4100 is a valid analyte for
those concepts subsumed by HLA-A-serotyping-
NOSoP3-68530. The value restrictions on a concept are
the logical intersection of the value restrictions stated
in the definition of that concept and in the definitions
of the transitive closure of its parent concepts.

Test Data Set

Of the 8,182 concepts in the August 1996 version 1.0h
LOINC database, 419 (those in LOINC Classes CLIN,
MISC, and DRUGDOSE) were excluded due to lack of
overlap with any SNOMED Procedure categories,
leaving a total of 7,763 LOINC concepts for study.
2,317 concepts are present in the SNOMED version 3.3
Procedure Axis, Chapter P3 Laboratory Procedures.
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F i g u r e 2 A sample concept defined according to the
LOINC model (of Figure 1). The middle section shows
the concept defined in conceptual graph notation, while
the bottom section shows a similar definition in descrip-
tion logic syntax.

Of these, 267 (section P3-0 General Laboratory Pro-
cedures and Services, subsection P3-53 Microbial
Identification Kit Methods, and subsection P3-70
Chemistry Methods) were excluded because they con-
tain concepts not readily adaptable to definition using
the LOINC model, for a total of 2,050 SNOMED con-
cepts for study.

Defining Relationships Are Taken from the
LOINC Model

As noted above and shown in Figure 1, a LOINC con-
cept is defined by its analyte, property, time aspect,
system, scale, and method. From this model, the cor-
responding defining relationships became HAS-

ANALYTE, HAS-PROPERTY, HAS-TIME-ASPECT, HAS-

SYSTEM, HAS-SCALE, and HAS-METHOD.

Value Restrictions Are Drawn from SNOMED

All LOINC concepts are assigned an analyte, property,
time aspect, specimen, scale type, and method by the
LOINC committee. In a prior study, these components
of the 7,763 LOINC concepts in our test data set were
lexically mapped to SNOMED concepts,19 using the
methods described by Rocha et al.18 These SNOMED
mappings formed the value restrictions for the
LOINC concepts in this study.

Lexical techniques were used to suggest value restric-
tions for the SNOMED test data set. The set of SNO-
MED concepts was cross-referenced with each of the
other SNOMED axes looking for potential lexical
matches that might provide an appropriate restriction
for any of the defining relationships. Prior to compar-
ison, term strings in the SNOMED test data set and
in the target SNOMED axis were normalized (includ-
ing all SNOMED synonyms) using the norm program
available from the National Library of Medicine.23 A
detailed description of this process is provided by
McCray et al.,5 and includes breaking each string into
its constituent words, lower-casing each word, remov-
ing punctuation and stop words, sorting the words in
alphabetical order, and conversion of each word to its
uninflected form. In addition, certain patterns, such
as ‘‘oscope/oscopy’’ were identified as high-yield for
detecting matches. Comparison of the normalized
concepts included partial phrase matching (e.g.,
‘‘Alkaline phosphatase isoenzymes measurement’’
would pair with ‘‘Alkaline phosphatase isoenzyme’’).

Potential matches were placed into a report for man-
ual review. A single reviewer (RHD) examined the re-
port to determine whether or not the lexically sug-
gested target SNOMED term would be accepted as a
value restriction for the corresponding test SNOMED

concept, and to indicate the defining relationship for
the restriction.

Our primary focus was on defining each concept at
least with respect to its measured component (i.e., de-
termining the concept filling the HAS-ANALYTE value
restriction) because procedure names frequently con-
tain some lexical variant of the substance being ana-
lyzed, thereby greatly enabling a lexical approach,
and because a classification based on measured com-
ponents results in a clinically sensible hierarchical
structure.

Terminologic Definitions Are Expressed in a
Description Logic Syntax

We used a Knowledge Representation Syntax Speci-
fication (KRSS)40 –based description logic syntax to
represent terminologic definitions. Once these defini-
tions were created, they were classified by the K-Rep
system.36 The syntax allows us to express a concept’s
parents (i.e., specify ‘‘IsA’’ relationships), defining re-
lationships and their restrictions, and non-defining at-
tributes of a concept (such as its SNOMED code). Ad-
ditional expressiveness supported by the syntax, such
as cardinality constraints, was not required to be used.
Figure 2 shows how a sample LOINC concept might
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F i g u r e 3 Algorithmic classification based on measured component. Given the analyte hierarchy for the SNOMED
Function Axis and the concept definitions shown, the resulting SNOMED Procedure hierarchy is automatically gen-
erated. (Concept HLA-A1-MeasurementoL-4718-3 is from LOINC. The other two concepts are from SNOMED.)

be represented in conceptual graph notation, and a
similar KRSS-like representation.

All target SNOMED axes (i.e., all SNOMED axes that
contain value restrictions for concepts in the SNO-
MED and LOINC test data sets), are also defined in
the description logic and included in the terminology
database. In general, these axes are comprised of
‘‘primitive’’ concepts—concepts that cannot be fully
defined, and are instead placed into a manually con-
structed hierarchy. The hierarchical structure of these
axes exist within the SNOMED database, and was re-
flected in the description logic via the specification of
‘‘IsA’’ relationships. For example, Figure 3 shows a
representation of the SNOMED Function Axis, in
which HLA-A-Antigen-NOSoF-C4100 IsA HLA-Anti-
gen-NOSoF-C4000.

Defined Concepts Are Conceptually Merged

The initial merge placed LOINC concepts into corre-
sponding SNOMED Procedure categories (e.g., Chem-
istry-ProcedureoP3-70000, Microbiology-Procedureo
P3-50000), based on the LOINC Class. (This choice
was arbitrary, and subsequent techniques would have
been equally applicable had we instead placed SNO-

MED concepts into the LOINC classes.) The mapping
between the 18 LOINC classes and the nine corre-
sponding SNOMED Procedure categories was per-
formed manually. As a result, the IsA relationship for
each concept was set equal to the name of its corre-
sponding SNOMED Procedure category. All subse-
quent classification within a category was algorith-
mically determined, based on the logical definition of
each concept.

A detailed description of classification algorithms sim-
ilar to those used by K-Rep for this report have pre-
viously been published.32 The initial step involves
parsing the textual concept definitions for syntactic
correctness. Next comes a process of normalization
that converts the definitions into a standard form.
This is followed by completion, during which value
restrictions are inherited from the transitive closure of
all parent concepts. These inherited restrictions are
logically intersected with local restrictions contained
in the concept definition to form a completely explicit
concept definition. From there, a concept is automat-
ically integrated into the taxonomy by comparing its
definition with definitions of concepts already in the
taxonomy. The process of determining a new con-
cept’s location in the taxonomy is called classification.
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Table 1 n

Lexical Determination of the Measured Components or Analytes of LOINC and SNOMED Concepts

SNOMED Section

LOINC

Concepts
(n)

SNOMED
Analyte

Determined
(n)

SNOMED

Concepts
(n)

SNOMED
Analyte

Suggested
(n)

SNOMED
Analyte

Determined
(n)

Totals

Concepts
(n)

SNOMED
Analyte

Determined
(n, %)

P3-1 Coagulation 211 184 118 247 89 329 273 (83)
P3-2 Blood bank 540 480 131 370 78 671 558 (83)
P3-3 Hematology 359 293 95 312 59 454 352 (78)
P3-4 Anatomic path 1 0 232 274 27 233 27 (12)
P3-5 Microbiology 636 476 300 251 74 936 550 (59)
P3-6 Immunology 2901 1491 429 877 234 3330 1725 (52)
P3-7 Chemistry 3045 2747 681 1441 577 3726 3324 (89)
P3-9 Urine & semen 70 53 43 76 13 113 66 (58)
P3-A Food analysis 0 0 21 4 0 21 0 (00)
Totals 7763 5724 2050 3852 1151 9813 6875 (70)

NOTE: LOINC concepts have been merged into SNOMED sections based on the class of each LOINC concept.

When one concept is more general than another, the
first concept properly subsumes the second. This can
arise if the restriction of a defining relationship of one
concept subsumes the restriction of the same relation-
ship of another concept, as represented in the target
SNOMED axis, or when the second concept’s defini-
tion expresses additional constraints beyond those of
the first concept. When two concepts are equivalent,
they subsume one another, but neither properly sub-
sumes the other. For one concept to subsume another,
every value restriction of the first concept must also
be true of the second concept.

Results

Lexically Suggested Value-restriction
Determination

As noted above, all LOINC concepts are assigned an
analyte by the LOINC committee. In a prior study, the
analytes of 5,724 (74%) of the 7,763 LOINC concepts
in our test data set were lexically mapped to SNO-
MED concepts,19 using the methods described by Ro-
cha et al.18 (Table 1). Examining the LOINC concepts
in another way, there are a total of 4,191 unique an-
alytes among the 7,763 LOINC concepts studied, of
which 2,241 (53%) could be mapped to a SNOMED
concept. There are 53 unique properties, 12 (23%) of
which could be mapped to SNOMED; eight unique
time aspects, none of which mapped; 83 unique sys-
tem or specimen types, 61 (73%) of which mapped;
four unique scale types, two (50%) of which mapped;
and 140 unique method types, 73 (52%) of which
mapped to a SNOMED concept.

Previously, SNOMED concepts had not been cross-
referenced to their corresponding analytes. Lexical
algorithms in this study suggested 3,852 restrictions
for the HAS-ANALYTE relationship, of which 1,151
(30%) were accepted as valid, resulting in 56% of the
SNOMED concepts being assigned a HAS-ANALYTE

value restriction (Table 1). These restrictions were
found in several SNOMED axes, including Topogra-
phy (e.g., Eosinophil, T-C1340), Function (e.g., 11-
Deoxycortisol, F-B2480), Living Organisms (e.g., Bor-
detella pertussis, L-12801), and Chemicals (e.g.,
Acetaminophen, C-60130). 472 restrictions for the HAS-

SYSTEM role and 45 restrictions for the HAS-SCALE-TYPE

role were also determined. No restrictions for the HAS-

PROPERTY, HAS-TIME-ASPECT, or HAS-METHOD-TYPE roles
were found using our lexical approach.

Overall, of the 9,813 concepts in the combined SNO-
MED and LOINC test set, 6,875 (70%) had a restriction
for the HAS-ANALYTE relationship determined by lexi-
cal techniques.

Terminology Merging and Algorithmic
Classification

As mentioned above, the initial merge placed LOINC
concepts into corresponding SNOMED Procedure cat-
egories (e.g., Chemistry-ProcedureoP3-70000, Micro-
biology-ProcedureoP3-50000), based on the LOINC
Class. All subsequent classification within a category
was algorithmically determined, based on the logical
definition of each concept. Of the 9,813 concepts in
the test data set, the 6,875 whose measured compo-
nent was able to be lexically determined were then
merged and algorithmically classified. Because each
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F i g u r e 4 Faulty classification due to reference hierarchy. Classification errors in the reference Function Axis are
mirrored in the automatically generated Procedure Axis. In this case, AndrostenedioneoF-B2820 also IsA 17-Ketogenic-
steroidsoF-B2420. Making this correction in the Function Axis will automatically correct the Procedure classifications.

concept is defined with respect to its measured com-
ponent, and because each measured component is a
SNOMED concept, the resulting algorithmic classifi-
cation hierarchy assumed the structure of the corre-
sponding analyte hierarchies. This is illustrated in Fig-
ure 3.

Faulty classification can result from errors in the ref-
erence hierarchy. This is illustrated in Figure 4. In this
example, AndrostenedioneoF-B2820 is modeled as a
child of Androgen-NOSoF-B2800, but should also be
modeled as a child of 17-Ketogenic-steroidsoF-B2420.
Making this manual correction in the Function Axis
will automatically correct the classification of concepts
in the Procedure Axis.

When two concepts measure the same component
(i.e., have the same restriction for the HAS-ANALYTE

relationship), the determinaton of the parent–child re-
lationship is determined by the other defining rela-
tionships and value restrictions. More formally, if one
concept is more general than another, the first concept
is said to properly subsume the second. In such a case,
the second concept’s definition expresses additional
constraints beyond those of the first concept. In the
hierarchy, the second concept will appear as a child
of the first concept. This is shown in Figure 5.

Of the SNOMED procedures in the test database, 80%
share some measured component with a LOINC con-
cept, and as a result will acquire a LOINC concept as
a child. Because the initial merge combines LOINC
and SNOMED concepts into SNOMED Procedure cat-
egories, all LOINC concepts acquire a SNOMED par-
ent. Of the LOINC concepts, 50% share some mea-
sured component with a SNOMED concept, and as a
result will also be classified under a more granular
SNOMED concept (as in Figure 5). The remaining
LOINC concepts potentially can form a flat hierarchy
and an algorithm similar to that used by Cimino et
al.27,38 can be used to deepen these areas. A flat hier-
archy can also result where there are a number of spe-
cific tests without a more general test defined. This is
shown in Figure 4, where the concept Hormone-
measurement-NOSoP3-XFB has been created based on
the structure of the reference hierarchy to deepen the
Procedure hierarchy.

Discussion

We found the LALR strategy works well for auto-
matically merging overlapping terminologies if the
terminologies to be merged can be logically defined
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F i g u r e 5 Classification of laboratory pro-
cedures measuring the same substance. When
one concept is more general than another, the
first concept will properly subsume the sec-
ond. Given the concept definitions shown, the
resulting SNOMED Procedure hierarchy is
automatically generated. (Concept Growth-
hormone-measurementoP3-72990 is from
SNOMED. The other two concepts are from
LOINC.)

using the same model (i.e., both terminologies can be
defined using the same defining relationships), and if
their value restrictions can be drawn from the same
reference hierarchy. Key points in our approach are
that concept definitions are expressed in a formal de-
scription logic, defining relationships are taken from
a pre-established model (LOINC), lexical techniques
are used in the determination of value restrictions,
and value restrictions for the terminologies to be
merged are drawn from the same reference terminol-
ogy (SNOMED). Generalizing this approach outside
the realm of laboratory procedures will rely on the
presence of defining models for concepts in other do-
mains, and a rich reference terminology that is likely
to provide lexically suggested value restrictions for
concepts in the terminologies to be merged.

Blois41 has described a hierarchical schema of the sci-
ences, ranging from the low-level sciences (e.g., math-
ematics, chemistry, and physics), which lend them-
selves to formalization over a relatively small domain
of possible values and can therefore be more precisely
defined, to the more abstract sciences (e.g., psychiatry
and social science), which in part are built up from
the underlying sciences, and are less able to be pre-
cisely defined. This would suggest that the applica-
tion of description logic and classification might in-

herently be easier to implement for certain domains
(where concepts can be defined) than for other do-
mains. Consistent with Blois’s assertions are the emer-
gence of models defining surgical procedures, human
anatomy, and medications,1,14,27,42 although models de-
fining mental health, rehabilitation, and human dis-
ease states are also being developed.14,43 The emer-
gence of these models will support the extension of
our methods outside the scope of laboratory proce-
dures.

Within the LOINC database, concepts filling the HAS-

PROPERTY relationship are drawn from the Interna-
tional Union of Pure and Applied Chemistry
(IUPAC),44 and those filling the HAS-SYSTEM relation-
ship are drawn from ASTM E1238-9445 and HL7 ver-
sion 2.2.46 Lexical techniques were then used to map
these concepts to synonymous SNOMED concepts. If
evolving terminologies were to be defined from the
outset based on atomic SNOMED building blocks,
subsequent merging efforts could be substantially de-
creased, not to mention the beneficial impact this
might have on increasing the overall content coverage
of SNOMED. Our test database contained 2,039
LOINC concepts that could not be lexically mapped
to a SNOMED analyte. To allow these LOINC con-
cepts to be fully defined, 590 new concepts were
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added to SNOMED 3.4 (Kent Spackman, personal
communication). Such enhancements to the overall
content coverage of SNOMED are likely to benefit
subsequent applications of our approach.

Our methodology suggests the need for different
manual tasks when modeling concepts that can be
logically defined than when modeling those that can-
not. The reference SNOMED hierarchies that fur-
nished value restrictions (such as Chemicals, Living
Organisms) are generally composed of ‘‘primitive’’
concepts, meaning concepts that are unable to be fully
defined with defining relationships. Manual tasks
may include hierarchy construction and refinement as
well as the addition of new concepts. For those con-
cepts that can be logically defined (such as laboratory
procedures), manual tasks may be better directed at
refining concept definitions, including the review of
lexically suggested restrictions, and adding new ref-
erence terms where necessary to allow for expression
of value restrictions. Emerging environments such as
Gálapagos11 will enable the comparison of manually
and automatically generated hierarchies to cross val-
idate both the term definitions and the structure of
the reference hierarchies.

Cimino et al.37 have previously described a set of ter-
minology design criteria. While the use of description
logic does add formalism to terminology, allowing for
the greater fulfillment of these criteria, it also will re-
quire a consideration of the optimal balance between
expressiveness and tractability (of classification), sim-
ilar to such considerations in other areas of medical
informatics and computer science in general.32,47 Cri-
teria for a healthcare terminology include, among
others, the ideas of nonvagueness and nonredun-
dancy. Nonvagueness is achieved when concepts in
the terminology are complete in meaning. Redun-
dancy exists when multiple terms for the same con-
cept are added to the terminology as unique concepts.
If the achievement of nonvagueness requires the ex-
pressive power of full first-order logic, then the au-
tomatic determination of redundancy can become in-
tractable or undecidable. The emergence of a
workable terminology that is applied to real clinical
situations and to pooled clinical data should help
illustrate these tradeoffs.

The authors thank Simon P. Cohn, MD, MPH (Kaiser Perma-
nente Healthcare), and John E. Mattison, MD (Kaiser Perma-
nente, Southern California Region), for their support of this
work; Stephanie Lipow, of Lexical Technology, Incorporated, for
her help with the lexical processing; the JAMIA reviewers for
their detailed insightful comments; and the members of the Kai-
ser Permanente Interregional Convergent Medical Terminology
group for their constant reminder that nothing is without con-
troversy, and that through controversy comes convergence.

References n

1. Rector AL, Glowinski AJ, Nowlan WA, Rossi-Mori A. Med-
ical-concept models and medical records: an approach
based on GALEN and PEN&PAD. J Am Med Informatics
Assoc. 1995;2:19–35.

2. Barrows RC Jr, Cimino JJ, Clayton PD. Mapping clinically
useful terminology to a controlled medical vocabulary. Proc
SCAMC. 1994:211–5.

3. Campbell KE, Das AK, Musen MA. A logical foundation for
representation of clinical data. J Am Med Informatics Assoc.
1994;1:218–32.

4. Evans DA, Cimino JJ, Hersh WR, Huff SM, Bell DS. Toward
a medical-concept representation language. J Am Med In-
formatics Assoc. 1994;1:207–17.

5. McCray AT, Srinivasan S, Browne AC. Lexical methods for
managing variation in biomedical terminologies. Proc
SCAMC. 1994;235–9.

6. Sheretz DD, Tuttle MS, Olson NE, Erlbaum MS, Nelson SJ.
Lexical mapping in the UMLS Metathesaurus. Proc
SCAMC. 1989:494–9.

7. Computer-Based Patient Record Institute. Proposal to ac-
celerate standards for computer-based patient record sys-
tems. Version 3.0. CPRI, April 29, 1994.

8. Institute of Medicine, Committee on Regional Health Data
Networks. Health data in the information age: use, disclo-
sure, and privacy. Washington, DC: National Academy
Press, 1994.

9. Cote RA, Rothwell DJ, Beckett RS, Palotay JL (eds). SNO-
MED International—The systematized nomenclature of hu-
man and veterinary medicine. Northfield, IL: College of
American Pathologists, 1993.

10. Forrey AW, McDonald CJ, DeMoor G, et al. Logical obser-
vation identifier names and codes (LOINC) database: a pub-
lic use set of codes and names for electronic reporting of
clinical laboratory test results. Clin Chem. 1996;42:81–90.

11. Campbell KE, Cohn SP, Chute CG, Gennels G, Shortliffe EH.
Gálapagos: computer-based support for evolution of a con-
vergent medical terminology. J Am Med Informatics Assoc.
Symposium supplement 1996:269–73.

12. Board of Directors of the American Medical Informatics As-
sociation. Standards for medical identifiers, codes, and mes-
sages needed to create an efficient computer-stored medical
record. J Am Med Informatics Assoc. 1994;1:1–7.

13. Chute CG, Cohn SP, Campbell KE, Oliver DE, Campbell JR.
The content coverage of clinical classifications. J Am Med
Informatics Assoc. 1996;3:224–33.

14. Averill RF, Mullin RL, Steinbeck BA, Goldfield NI, Grant T.
The development on the ICD-10 procedure coding system
(ICD-10-PCS). Draft, June 5, 1996. 3M Health Information
Systems, Wallingford, CT.

15. Rothwell DJ, Cote RA. Managing information with SNO-
MED: understanding the model. J Am Med Informatics As-
soc. Symposium supplement 1996:80–3.

16. Logical Observation Identifier Names and Codes (LOINC)
World Wide Web Home Page. ^http://www.mcis.duke.
edu/standards/HL7/termcode/loinclin/loinclin.html& (or
search for ‘‘LOINC’’ from the HL7 Home Page at ^http://
www.mcis.duke.edu/standards/HL7/hl7.htm&).

17. Coad P, Yourdon E. Object-oriented Analysis. 2nd ed. En-
glewood Cliffs, NJ: Prentice–Hall, 1991.

18. Rocha RA, Huff SM. Using digrams to map controlled med-
ical vocabularies. Proc SCAMC. 1994:172–6.

19. Rocha RA, Huff SM. Coupling vocabularies and data struc-
tures: lessons from LOINCTM. J Am Med Informatics Assoc.
Symposium supplement 1996:90–4.



Journal of the American Medical Informatics Association Volume 5 Number 2 Mar / Apr 1998 213

20. Peterson JL. Computer programs for detecting and correct-
ing spelling errors. Communications of the ACM. 1980;23:
676–87.

21. Zeng Q, Cimino JJ. Mapping medical vocabularies to the
Unified Medical Language System. J Am Med Informatics
Assoc. Symposium supplement 1996:105–9.

22. Friedman C, Sidelli R. Tolerating spelling errors during pa-
tient validation. Comput Biomed Res. 1992;25:486–509.

23. National Library of Medicine’s Unified Medical Language
System (UMLS) World Wide Web Home Page. ^http://
www.nlm.nih.gov/research/umls/UMLSDOC.HTML& (or
search for ‘‘UMLS’’ from the National Library of Medicine’s
Home Page at ^http://www.nlm.nih.gov/&).

24. Rocha RA, Rocha BHSC, Huff SM. Automated translation
between medical vocabularies using a frame-based interlin-
gua. Proc SCAMC. 1993:690–4.

25. Masarie FE Jr, Miller RA, Bouhaddou O, Giuse NB, Warner
HR. An interlingua for electronic interchange of medical in-
formation: using frames to map between clinical vocabu-
laries. Comput Biomed Res. 1991;24:379–400.

26. Cimino JJ, Barnett GO. Automated translation between
medical terminologies using semantic definitions. MD
Comput. 1990;7:104–9.

27. Cimino JJ, Clayton PD, Hripcsak G, Johnson SB. Knowl-
edge-based approaches to the maintenance of a large con-
trolled medical terminology. J Am Med Informatics Assoc.
1994;1:35–50.

28. Evans DA. Pragmatically-structured, lexical-semantic knowl-
edge bases for unified medical language systems. Proc
SCAMC. 1988:169–73.

29. Rector AL, Nowlan WA, Glowinski A. Goals for concept
representation in the GALEN Project. Proc SCAMC. 1993:
414–8.

30. Russel SJ. Artificial Intelligence: A Modern Approach. En-
glewood Cliffs, NJ: Prentice–Hall, 1995.

31. Doyle J, Patil RS. Two theses of knowledge representation:
language restrictions, taxonomic classification, and the util-
ity of representation services. Artificial Intelligence. 1991;48:
261–97.

32. Levesque HJ, Brachman RJ. Expressiveness and tractability
in knowledge representation and reasoning. Comput Intel.
1987;3:78–93.

33. Rector AL, Nowlan WA, Kay S. Conceptual knowledge: the
core of medical information systems. MEDINFO. 1992:1420–
6.

34. Borgida A, Brachman RJ, McGuinness DL, Alperin Resnick
L. CLASSIC: a structural data model for objects. SIGMOD
Record. 1989;18:58–67.

35. Brachman RJ, Schmolze JG. An overview of the KL-ONE
knowledge representation system. Cogn Sci. 1985;9:171–
202.

36. Mays E, Weida R, Dionne R, et al. Scaleable and expressive
medical terminologies. J Am Med Informatics Assoc. Sym-
posium supplement 1996:259–63.

37. Lindberg DAB, Humphreys BL, McCray AT. The Unified
Medical Language System. Meth Inform Med. 1993;32:281–
91.

38. Cimino JJ, Hripcsak G, Johnson SB, Friedman C, Fink DJ,
Clayton PD. UMLS as knowledge base—a rule-based
expert system approach to controlled medical vocabulary
management. Proc SCAMC. 1990:175–9.

39. Fitting M. First-order Logic and Automated Theorem Prov-
ing. New York: Springer-Verlag, 1990. (Gries D, ed. Texts
and Monographs in Computer Science).

40. Patel-Schneider PF, Swartout B. Working version (draft):
Description logic specification from the KRSS effort. June
30, 1993. (^http://www-ksl.stanford.edu/knowledge-shar-
ing/papers/dl-specs.ps&).

41. Blois MS. Medicine and the nature of vertical reasoning. N
Engl J Med. 1988;318:847–51.

42. CEN (European Committee for Standardization) Technical
Committee 251: Medical Informatics. Structure for classifi-
cation and coding of surgical procedures. Interim Draft.
CEN/TC251/PT2-002S. November 1994. (URL ^http://mig-
info.rug.ac.be:8001/centc251/prestand/wg2/pt2o002s/pt2o

002s.htm&, or search from the CEN/TC 251 homepage at
^http://miginfo.rug.ac.be:8001/index.htm&).

43. Brown PJB, O’Neil M, Price C. Semantic representation of
disorders in Version 3 of the Read Codes. Proceedings of
the International Medical Informatics Association, Working
Group 6. January 1997, Jacksonville, FL: 209–14.

44. International Union of Pure and Applied Chemistry/Inter-
national Federation of Clinical Chemistry. The Silver Book:
Compendium of Terminology and Nomenclature of Prop-
erties in Clinical Laboratory Sciences. Oxford, England:
Blackwell Scientific Publishers, 1995.

45. ASTM E1238-94. Standard Specification for Transferring
Clinical Observations between Independent Computer Sys-
tems. Philadelphia, PA: American Society for Testing Ma-
terials, 1994.

46. Health Level Seven. An application protocol for electronic
data exchange in healthcare environments. Version 2.2. Ann
Arbor, MI: Health Level Seven, 1994.

47. Dolin RH. Expressiveness and query complexity in an elec-
tronic health record data model. J Am Med Informatics As-
soc. Symposium supplement 1996:522–6.


