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Intestinal infection by Cryptosporidium is known to cause epithelial cell migration disorder but the underlying mechanisms are 
unclear. Previous studies demonstrated that a panel of parasite RNA transcripts of low protein-coding potential are delivered into 
infected epithelial cells. Using multiple models of intestinal cryptosporidiosis, we report here that C.  parvum infection induces 
expression and release of the dickkopf protein 1 (Dkk1) from intestinal epithelial cells. Delivery of parasite Cdg7_FLc_1030 RNA 
to intestinal epithelial cells triggers transactivation of host Dkk1 gene during C. parvum infection. Release of Dkk1 is involved in 
C. parvum-induced inhibition of cell migration of epithelial cells, including noninfected bystander cells. Moreover, Dkk1-mediated 
suppression of host cell migration during C. parvum infection involves inhibition of Cdc42/Par6 signaling. Our data support the 
hypothesis that attenuation of intestinal epithelial cell migration during Cryptosporidium infection involves parasite Cdg7_FLc_1030 
RNA-mediated induction and release of Dkk1 from infected cells.
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Cryptosporidium, a genus of protozoa in the phylum 
Apicomplexa, represents a group of protozoan parasites that can 
infect humans and many other species of animals [1, 2]. The 
C. parvum and C. hominis species cause most Cryptosporidium 
infections in humans, particularly in AIDS patients and in chil-
dren younger than 2 years old in developing countries [1, 3].  
Humans are infected when they ingest Cryptosporidium 
oocysts. Once ingested, oocysts excyst in the gastrointestinal 
tract and release infective sporozoites. The sporozoite attaches 
to a host epithelial cell and forms a vacuole in which the or-
ganism remains intracellular but extracytoplasmic. The inter-
nalized sporozoite then matures, undergoes asexual and sexual 
development, and yields oocysts to complete a life cycle within 
4–6 days [2]. Cryptosporidium can complete all stages of its de-
velopment (asexual and sexual) within a single host [2].

The primary infection site of the parasite in humans is the 
small intestine. The intestinal mucosa is a monolayer of rapidly 
self-renewing epithelial cells. New functional epithelial cells are 

produced from stem cells in the crypt base, differentiate, and 
migrate from the crypt base to the luminal surface, and, even-
tually, are shed into the lumen after they have reached the tip 
of the villus; hence, the entire intestinal epithelium is replaced 
every 2–3 days in mice (3–5 days in humans) [4, 5]. It appears 
that Cryptosporidium has developed strategies to counteract the 
rapid turnover of intestinal epithelium to support its intracellu-
lar cell cycle. C. parvum infection induces apoptotic resistance in 
infected epithelial cells during the early stage of infection [6]. We 
recently observed that C. parvum infection inhibits cell migra-
tion of intestinal epithelial cells in culture, including infected cells 
and noninfected bystander cells [7]. Both the apoptotic resistance 
in infected cells and attenuation of epithelial cell migration may 
provide a survival benefit to the parasite cell cycle. However, 
molecular mechanisms underlying host cell migration inhibition 
during Cryptosporidium infection are still unclear.

The interactions between Cryptosporidium and intestinal 
epithelial cells involves exchanges of distinct effector molecules 
from both sides of the host cell and the parasite at the host-par-
asite interface [8, 9]. Such exchanges of effector molecules may 
be involved in parasite invasion and intracellular develop-
ment [1, 8, 9]. In our previous studies [10], we demonstrated 
that several C.  parvum RNA transcripts of low protein-cod-
ing potential are selectively delivered into intestinal epithe-
lial cells during host-parasite interactions and may modulate 
gene transcription in infected host cells. Specifically, delivery 
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of the parasite Cdg7_FLc_1000 (GenBank ID: FX115830.1) 
[11] causes trans-suppression of host sphingomyelin phos-
phodiesterase 3 (SMPD3) gene, resulting in attenuation of cell 
migration of infected host cells [7]. The dickkopf (Dkk) family 
encodes secreted proteins and consists of 4 main members in 
vertebrates (ie, Dkk1,2,3,4) [12]. Dkk1, a secreted protein with 
2 cysteine rich regions, is involved in embryonic development 
[12] and in the regulation of intestinal epithelial cell migration 
[13]. Induction of Dkk1 was previously demonstrated in human 
intestinal epithelial cells following C.  parvum infection [14]. 
Here, we report that host delivery of parasite Cdg7_FLc_1030 
RNA (GenBank ID: FX115613.1) [11] promotes the transcrip-
tion of Dkk1 gene in infected intestinal epithelial cells; release of 
Dkk1 from host cells during C. parvum infection is involved in 
inhibition of cell migration of epithelial cells, including nonin-
fected bystander cells.

METHODS

C. parvum and Cell Lines

C.  parvum oocysts of the Iowa strain were purchased from a 
commercial source (Bunch Grass Farm, Deary, ID). The human 
nonmalignant intestinal epithelial cell line (INT; FHs 74 Int, 
CCL-241) was purchased from ATCC (Manassas, VA). The 
murine intestinal epithelial cell line (IEC4.1) was a kind gift 
from Dr. Pingchang Yang (McMaster University, Hamilton, 
ON, Canada) and cultured as previously reported [7].

Infection Models and Infection Assays

Models of intestinal cryptosporidiosis using cell lines were 
employed as previously described; infection was with a 1:1 
ratio of C.  parvum oocysts and host cells [7, 11]. An ex vivo 
infection model employing enteroids from neonatal mice [15] 
and a well-developed infection model of cryptosporidiosis in 
neonatal mice [16, 17] were used for ex vivo and in vivo exper-
iments. At least 5 animals from each group were sacrificed and 
ileal tissues were obtained for immunohistochemistry and bio-
chemical analyses. Real-time polymerase chain reaction (PCR), 
immunofluorescence microscopy, and immunohistochemistry 
were used to assay C. parvum infection as previously reported 
[18, 19]. Details are described in the Supplementary Materials.

Quantitative Real-Time PCR

For quantitative analysis of mRNA and C. parvum RNA expres-
sion, comparative real-time PCR was performed as previous 
reported [20] using the SYBR Green PCR Master Mix (Applied 
Biosystems, Carlsbad, CA). Briefly, RNA was extracted using 
TRI-reagent, treated with DNA-free Kit (Ambion) to remove 
any remaining DNA. Quantified 500 ng RNA was reverse-tran-
scribed using T100 thermal cyclers (Bio-Rad). Real-time PCR 
was then performed using 25  ng of template cDNA for each 
RNA gene of interest. Each sample was run in triplicate. The 
relative abundance of each RNA was calculated using the ΔΔCt 
method and normalized to GAPDH or U2 small nuclear RNA 

(RNU2-1) (a nuclear RNA). The sequences for all the primers 
are listed in Supplementary Table 1.

siRNAs and Plasmids

Custom-designed siRNA oligos against Cdg7_FLc_1030 
and a scrambled siRNA were synthesized by Integrated 
DNA Technologies (Coralville, IA) and transfected into 
cells with Lipofectamine RNAimax (Invitrogen). Sequences 
of siRNAs are: 5′-CGUCAAGGAAUUUACGUAUUU-3′ 
for Cdg7_FLc_1030 and nonspecific scrambled sequence 
5′-UUCUCCGAACGUGUCACGUUU-3′ for the control. The 
plasmids expressing parasite RNAs were generated by real-time 
PCR amplification of the cDNA, using RNA from C. parvum 
sporozoites and cloned into the pcDNA3.1(+) vector, per the 
manufacturer’s protocol (Invitrogen). The sequences for all the 
primers are listed in Supplementary Table 1.

Whole Cell Extracts, Western Blot, and Immunofluorescent Staining

Whole cell extracts were prepared using the Mammalian Protein 
Extraction Reagent (Fisher) supplemented with cocktail protease 
inhibitors. Cell pellets were incubated in the Mammalian Protein 
Extraction Reagent, centrifuged at 16 100g for 20 minutes and the 
supernatants were saved as the whole cell extracts, as previously 
reported [21]. Details for western blot and immunofluorescent 
staining are described in the Supplementary Materials.

RNA Immunoprecipitation, Chromatin IP, and Chromatin Isolation by RNA 

Purification Analyses

The formaldehyde cross-linking RNA immunoprecipitation (RIP) 
was performed as described [22]. For chromatin immunoprecip-
itation (ChIP) analysis, a commercially available ChIP Assay Kit 
(Upstate Biotechnologies) was used in accordance with the man-
ufacturer’s instructions. Chromatin isolation by RNA purification 
(ChIRP) analysis was performed as previously reported [23]. 
A pool of tiling oligonucleotide probes with affinity specific to the 
C. parvum Cdg7_FLc_1030 RNA sequences was used and glutar-
aldehyde cross-linked for chromatin isolation. The sequences for 
all the primers and probes are listed in Supplementary Table 1 and 
Table 2. Details are described in the Supplementary Materials.

Cell Migration and MTT Assay

The wound-healing assay was used to analyze cell migration. 
Cell proliferation assay was carried out using the CellTiter 96 
AQueous One Solution Cell Proliferation 3-(4,5-dimethylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay Kit 
(Promega Corporation), with details in the Supplementary 
Materials.

RESULTS

C. parvum Infection Attenuates Intestinal Epithelial Cell Migration in Both 

Directly Infected Cells and Noninfected Bystander Cells

In our previous studies, we demonstrated that C.  parvum 
infection of cultured human intestinal epithelial cells inhibited 
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cell migration and inhibition of migration was not limited to 
directly infected cells [7]. Inhibition of host cell migration 
during infection was observed in both directly infected cells and 
bystander noninfected cells using cultured murine intestinal 
epithelial cells (IEC4.1 cells) (Figure 1A–1C). To confirm that 
infection can attenuate cell migration of noninfected bystander 
cells, we collected the supernatants from IEC4.1 cell cultures 
after exposure to C. parvum infection for 24 and 48 hours and 
took a centrifugation approach to remove cell or parasite debris. 
IEC4.1 cells also showed attenuation of migration after culture 
with the conditioned media with the supernatants (Figure 1A 
and 1C). This decrease in cell migration distance was not due 
to cell death induced by infection [24, 25], as the MTT assay 
revealed no obvious difference in cell number between the 
infected cell cultures and the noninfected control (Figure  1D 
and Supplementary Figure 1). Lack of obvious cell death may 
reflect the higher infection rate and the fully confluent nature 
of the cell cultures, as C. parvum-infected cells and confluent 
cultures are resistant to apoptotic cell death [25].

C. parvum Infection Induces Expression and Release of Dkk1 from 

Infected Intestinal Epithelial Cells

Given the inhibitory effect of supernatant from infected cul-
tures on epithelial cell migration, we questioned whether sol-
uble factors in the supernatant released from infected cells 
are involved in the underlying mechanisms. Genome-wide 
mRNA array analysis in previous studies revealed significant 
alterations in gene expression profiles in nonmalignant (INT) 
and malignant (HCT-8) human intestinal epithelial cells after 
C. parvum infection in vitro [10, 14, 26]. Genes that are upreg-
ulated in host cells include cytokine/chemokine genes and 
DKK1 gene. There are 4 members of the DKK protein family, 
that is DKK1–4, conserved in humans and mice [12]. Based 
on our previous genome-wide array analysis [10], upregu-
lation of DKK1, but not DKK2–4, was shown in INT cells 
at 48 hours after C.  parvum infection (Figure  2A). Similarly, 
upregulation of DKK1, but not DKK2–4, was observed in INT 
and IEC4.1 cells after exposure to C. parvum for various peri-
ods of time using real-time PCR (Figure 2B). Interestingly, a 
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Figure 1. Inhibition of intestinal epithelial cell migration during Cryptosporidium parvum infection. A, Decreased migration of IEC4.1 cells following C. parvum infection or 
after incubation with the supernatants from infected IEC4.1 cultures. Cell migration was assessed by measurement of the distance of cell migration after the wound-healing 
assay. Representative phase images of cell cultures after exposure to C. parvum infection or incubation with addition of the conditioned supernatants for 24 hours are shown. 
B, Representative dual fluorescent image of cell cultures after exposure to C. parvum infection for 24 hours, showing presence of infected cell (parasite stained in red) and 
noninfected cells at the migrating edge. Nuclei of cells were stained blue with DAPI (4′,6-diamidino-2-phenylindole). C, Quantitative analysis of the migration distance of 
IEC4.1 cells following C. parvum infection or after incubation with the supernatants from infected IEC4.1 cultures. D, Quantitative analysis of the cell numbers in the IEC4.1 
cultures following C. parvum infection. Data represent means ± SEs from 3 independent experiments. *P < .01 ANOVA versus noninfected control (Ctrl).
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slight decrease in expression levels of Dkk2 (in INT cells at 
48 hours postinfection) and Dkk3 (in IEC4.1 cells at both 24 
and 48 hours postinfection) was measured. Using an ex vivo 
infection model employing enteroids from neonatal mice [15], 
we detected an increased expression level of Dkk1 RNA in 
enteroids following C.  parvum infection (Figure  2C). An in-
crease in Dkk1 expression was also observed in the intestinal 
epithelium in infected neonatal mice following oral adminis-
tration of the parasite (Figure 2C). Different from results with 
the ex vivo infection model, a higher Dkk1 increase at 48 hours 
than at 24 hours postinfection was observed in the intestinal 
epithelium in infected neonatal mice, probably due to the dif-
ferent time course of infection in the 2 models [15]. Moreover, 
upregulation of Dkk1 at the protein level, but not Dkk2–4, was 
further confirmed in IEC4.1 cell cultures directly exposed to 

C. parvum or in supernatants from the cell cultures after expo-
sure to C. parvum infection (Figure 2D).

Dkk1 Released From Infected Epithelial Cells in the Supernatants 

Is Involved in C. parvum-Induced Inhibition of Cell Migration of the 

Noninfected Bystander Cells

To explore whether DKK1 released from infected cells is involved 
in inhibition of epithelial cell migration during C. parvum infec-
tion, we used a neutralizing antibody to Dkk1 [27] and measured 
its effects on cell migration associated with C. parvum infection. 
The neutralizing antibody to Dkk1 restored cell migration of 
IEC4.1 cells after incubation with the supernatants of infected 
cell cultures (Figure 3A and 3B). In accordance, as a positive con-
trol, addition of recombinant mouse Dkk1 protein to the culture 
media inhibited the migration of IEC4.1 cells (Figure 3C).

Expression levels of  selected DKK genes
(normalized with quantile algorithm)

1.5 7.5 13.0

INT Ctrl (48 h)

–1 –2 –3 –1 –2 –3

C. parvum (48 h)

DKK1

DKK2

DKK3

DKK4

7.53 ± 0.39

9.82 ± 0.23

12.52 ± 0.11

1.84 ± 0.35

20 60

40

20

0

15

D
k

k
1 

m
R

N
A

 l
ev

el
(r

at
io

 to
 c

tr
l)

D
k

k
1 

m
R

N
A

 l
ev

el
(r

at
io

 to
 c

tr
l)

m
R

N
A

 l
ev

el
(r

at
io

 to
 c

tr
l)

m
R

N
A

 l
ev

el
(r

at
io

 to
 c

tr
l)

* *

*

*

10

5

0

4
Ctrl 24 h

BA

C D

C. parvum 24 h C. parvum 48 hCtrl 48 h

3 *
*

*

2

1

0

9.77 ± 0.05

10.06 ± 0.06

12.50 ± 0.03

2.12 ± 0.48

*

GeneSymbol Ctrl (48 h) C. parvum (48 h)

DKK1

DKK2

DKK3

DKK4

DKK1

INT

IEC4.1

DKK2 DKK3 DKK4

4 *

3
*

* *

2

1

0

– + – + – + – +

Dkk1 Dkk2 Dkk3 Dkk4

Dkk1 Dkk2 Dkk3 Dkk3
ex vivo infection

Ctrl Infect.
(24 h)

Infect.
(48 h)

Ctrl Infect.
(24 h)

Infect.
(48 h)

in vivo infection

Cell lysate
(GAPDH)

Supernatant
(Dkk)

Cell lysate
(Dkk)

C. parvum
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Delivery of Parasite Cdg7_FLc_1030 RNA to Infected Epithelial Cells 

Triggers Transactivation of Host Dkk1 Gene During C. parvum Infection

Our previous studies demonstrate that a panel of C.  parvum 
RNA transcripts is selectively delivered into epithelial cells 
during host cell invasion and may modulate gene transcrip-
tion in infected cells [10]. We generated constructs express-
ing each of these C.  parvum RNAs and transfection of each 
of these constructs resulted in significant expression of the 
corresponding parasite RNA in IEC4.1 cells (Supplementary 
Figure  2). Expression levels of Dkk1 were then measured, by 
real-time PCR, in IEC4.1 cells after transfection of these con-
structs. Interestingly, a high level of Dkk1 RNA was detected 
in cells following transfection of parasite Cdg7_FLc_1030, an 
RNA transcript from the chromatin 7 of low protein-coding 
potential (GenBank ID: FX115613.1) [21, 22] (Figure 4A and 
4B). No significant alteration in Dkk1 expression was detected 
in cells transfected with the other parasite RNA transcripts 
(Supplementary Figure 3). We then questioned whether nuclear 
delivery of Cdg7_FLc_1030 causes Dkk1 transcription. Because 
conventional genetic tools are very difficult, if not impossible, 
to modify C.  parvum genes [1, 28], we developed a method 
to treat cells with an siRNA to Cdg7_FLc_1030 for 4 hours 
and then exposed them to C. parvum. The increase in Cdg7_
FLc_1030 RNA level in cells induced by C.  parvum infection 
was significantly suppressed by pretreatment with the siRNA 
to Cdg7_FLc_1030 (Figure  4C). Accordingly, upregulation of 
Dkk1 RNA expression induced by C. parvum infection was at 
least partially inhibited through pretreatment of the siRNA to 
Cdg7_FLc_1030 (Figure 4C).

To explore how Cdg7_FLc_1030 may promote Dkk1 expres-
sion in the host cells, we measured the enrichment of transcrip-
tional activity markers within the promoter region of the Dkk1 
gene locus in cells following infection. Histone modifications, 
such as H3K4 and H3K36 methylations, are generally associated 
with gene transcriptional activation [20]. Increased enrichment 
of H3K4me1 and H3K36me3 was detected in the Dkk1 gene 
locus in infected cells using ChIP analysis with anti-H3K4me1 
or anti-H3K36me3 and the PCR primer sets designed to cover 
the various promoter regions of the Dkk1 gene locus (Figure 5A). 
In addition, increased enrichment of the RNA polymerase II 
(Pol II) was also detected in the Dkk1 gene locus in infected 
cells using ChIP analysis with anti-Pol II and the same PCR 
primer sets (Figure  5A). To test whether Cdg7_FLc_1030 is 
assembled into the Pol II complex in the infected cells, we pre-
formed RIP analysis of infected cells. A significant amount of 
Cdg7_FLc_1030, but not the control RNU-2 RNA, was detected 
in the immunoprecipitates from infected cells using anti-Pol II 
(Figure  5B). To define whether Cdg7_FLc_1030 is physically 
recruited to the Dkk1 gene locus in infected cells, we used a pool 
of biotinylated tiling oligonucleotide probes specific to Cdg7_
FLc_1030 for ChIRP analysis. Recruitment of Cdg7_FLc_1030 
was detected within the promoter region of the Dkk1 gene locus 

in cells following infection (Figure 5C). To further explore how 
Cdg7_FLc_1030 may activate transcription of the Dkk1 gene, 
we generated various luciferase reporter vectors encompassing 
the various upstream regions of the transcription start site of 
the Dkk1 gene (Figure 5D). IEC4.1 cells were transfected with 
the luciferase reporter plasmids, followed by exposure to C. par-
vum infection. No significant increase in luciferase activity 
associated with the Dkk1 promoter regions was detected in cells 
following infection (Figure 5D). In contrast, a marked increase 
in luciferase activity associated with the human interleukin 8 
luciferase reporter plasmid, as a positive control for C.  par-
vum-induced transcription of host genes [29], was measured in 
infected cells (Figure 5D). Because the luciferase reporter assay 
cannot mimic the chromatin-remodeling–mediated regulation 
of gene transcription, we speculate that Cdg7_FLc_1030 may 
activate transcription of the Dkk1 gene through modulation of 
chromatin-remodeling–associated histone modifications.

DKK1-Mediated Suppression of Host Cell Migration during C. parvum 

Infection Involves Inhibition of Cdc42/Par6 Signaling

Previous studies demonstrated that Dkk1 mediates cell migra-
tion through inhibition of Cdc42/Par6 signaling [13]. To define 
whether Cdc42/Par6 signaling is involved in C.  parvum-in-
duced inhibition of intestinal epithelial cell migration, we per-
formed immunostaining of Cdc42-active and Par6 in IEC4.1 
cell cultures upon wound healing after incubation with super-
natants from infected cell cultures. An increased staining of 
Cdc42-active and Par6 was detected in cells along the migrat-
ing edge after wounding when they were cultured with normal 
control media (Figure 6A and 6B). In contrast, we detected a 
weakened staining of both Cdc42-active and Par6 in cells along 
the migrating edge upon wounding in the cell cultures after 
incubation with the conditioned supernatants (Figure 6A and 
6B). Addition of neutralizing anti-Dkk1 to the culture media 
restored the staining level of Cdc42-active and Par6 in cells 
along the migrating edge (Figure 6A and 6B). Decreased stain-
ing of Cdc42-active and Par6 along the migrating edge was also 
detected in cells following culture with addition of the recombi-
nant mouse Dkk1 (Supplementary Figure 4).

DISCUSSION

In this study, we report that host delivery of a parasite Cdg7_
FLc_1030 RNA transcript into infected intestinal epithelial cells 
during C. parvum infection activates transcription of the Dkk1 
gene and increases release of Dkk1 protein from host epithe-
lial cells. Consequently, induction and release of Dkk1 inhibits 
cell migration of both infected cells and noninfected bystander 
cells. Coupled with our previous study on the trans-suppression 
of the Smpd3 gene through Cdg7_FLc_1000-mediated epigen-
etic suppression to inhibit cell migration in infected cells [7], 
our data support the hypothesis that delivery of parasite RNA 
transcripts into infected host cells during Cryptosporidium 
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infection causes inhibition of epithelial cell migration of both 
infected and noninfected bystander cell populations, contribut-
ing to disturbances of intestinal epithelial homeostasis follow-
ing Cryptosporidium infection (Figure 7).

Consistent with data from previous studies [10, 14], we 
detected induction of Dkk1, but not other members of the 
Dkk family, in intestinal epithelial cells after C. parvum infec-
tion, using in vitro, ex vivo, and in vivo infection models. 
Interestingly, tissue damage itself can cause an upregulation of 
Dkk-1 and production of Dkk-1 is a normal response to man-
age tissue remodeling in response to injury [30–32]. Increased 
amounts of Dkk1 have also been reported in chronic inflam-
matory diseases such as various types of cancers, rheuma-
toid arthritis, and lupus [33–35]. Here, our data indicate that 

C. parvum infection of intestinal epithelial cells triggers Dkk1 
transcription via host delivery of Cdg7_FLc_1030, a parasite 
RNA transcript of low protein potential [11]. This induction of 
Dkk1 through host delivery of Cdg7_FLc_1030 appears to be 
specific as expression of other parasite RNA transcripts, even 
though they were also delivered into infected host cells, failed 
to induce Dkk1 transcription. Moreover, Dkk1 induction was 
not detected in intestinal epithelial cells following infection by 
Escherichia coli or Aeromonas caviae [36, 37], suggesting that 
this is not a general intestinal epithelial cell response to patho-
gen infection or inflammatory stimulation.

Mechanistically, transactivation of the Dkk1 gene in in-
testinal epithelial cells after C.  parvum infection is associated 
with an increased methylation of H3K4 and H3K36 in its gene 
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promoter. We speculate that Cdg7_FLc_1030 may activate 
transcription of the Dkk1 gene through modulation of chroma-
tin-remodeling–associated histone modifications. Consistent 

with the mechanism of transactivation for most genes in mam-
malian cells, the enrichment of Pol II to the Dkk1 gene locus 
was also detected in cells following infection. It is still unclear 
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Figure 6. The Cdc42-Par6 signaling pathway is involved in DKK1-mediated suppression of host cell migration during Cryptosporidium parvum infection. IEC4.1 cells were 
incubated with the supernatants from infected IEC4.1 cultures for 24 hours, in the presence or absence of the neutralizing anti-Dkk1. Wound healing was applied to the cell 
cultured as the cell migration assay, followed by immunostaining with anti-Par6 or anti-Cdc42-GTP (Cdc42-active), respectively. Representative images showing the staining 
of Par6 (A) and Cdc42-GTP (B) in cells along the migrating edge (indicated by arrowheads) after wounding are shown. Data represent means ± SEs from 3 independent 
experiments. Bar = 20 µm.
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how Cdg7_FLc_1030 RNA may trigger transcription of the 
Dkk1 gene. Increasing evidence supports the hypothesis that 
RNA molecules in mammalian cells can function as scaffold 
molecules to affect gene transcription through their interac-
tions with various RNA-binding components in the chroma-
tin-remodeling complexes [38, 39]. As such, Cdg7_FLc_1030 
may modulate the recruitment of those chromatin-remodel-
ing complexes to the Dkk1 gene locus. In our previous studies, 
we demonstrated that nuclear delivery of the parasite Cdg7_
FLc_1000 transcript (GeneBank ID: FX115830.1) [11] causes 
trans-suppression of host SMPD3 gene [7]. Cdg7_FLc_1000 can 
interact with the positive regulatory domain zinc finger protein 
1, an RNA-binding protein with a role in the regulation of his-
tone methylation [40, 41], and, consequently, causes trans-sup-
pression of the SMPD3 gene [7]. Another potential mechanism 
is that Cdg7_FLc_1030 may trigger Dkk1 transcription through 
direct binding to a specific DNA motif in its promoter regions, 
as RNAs may interact directly with DNA molecules to form 
a triple-helical structure [38]. However, C.  parvum infection 
failed to trigger luciferase activity in intestinal epithelial cells 
that were transfected with plasmids expressing the promoter re-
gion-(1/2/3) of the Dkk1 gene locus.

Dkk1 was originally identified in the regulation of head for-
mation of Xenopus laevis and is known to inhibit the canon-
ical Wnt signaling pathway [42, 43]. Dkk1 is an antagonistic 
inhibitor of the Wnt signaling pathway that acts by isolating 
the Lrp5/6 receptors so that it cannot aid in activating the 
Wnt signaling pathway [44]. This inhibition plays a key role in 
heart, head, and forelimb development during anterior mor-
phogenesis of the embryo [45]. A  polarized localization of 
active Cdc42 and Par6 was demonstrated in the leading edge 
of migrating cells in cultured intestinal epithelial cells [13]. 
Dkk1 was reported to disrupt the polarized localization of 
active Cdc42 and Par6 in the leading edge of migrating cells, 
resulting in disturbance of cell migration [13]. In our exper-
imental setting, increased staining of active Cdc42 and Par6 
was observed in the migrating cells along the wounded edge. 
Our data also implicate the involvement of Cdc42/Par6 sig-
naling in the attenuation of intestinal epithelial cell migration 
associated with release of Dkk1 during C.  parvum infection. 
Dkk1 is a well-characterized Wnt signaling inhibitor and acts 
as an antagonist of the canonical Wnt pathway by binding to 
the Wnt receptor [46, 47]. Given the critical role of Wnt sig-
naling in regulating intestinal epithelial cell migration [48, 49],  
future studies should investigate the potential role of Wnt 
signaling associated with Dkk1 release in inhibition of cell 
migration following infection. Cdg7_FLc_1030-mediated 
cell migration through induction and release of Dkk1 may be 
critical to the parasite intracellular cell cycle during intestinal 
infection, which merits in vivo investigation using cell-type 
specific Dkk1 knockout mice. Moreover, targeting Dkk1 may 

be of relevance to the development of therapeutic strategies for 
intestinal cryptosporidiosis.
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