Skip to main content
. 2018 Sep 5;6:e5478. doi: 10.7717/peerj.5478

Table 3. Metrics about psychometric predicted validity of the Episodix, semantic memory and procedural memory games.

EPISODIX+S+PDATASET Recall Precision
ML classifier F1 k ↓ HC MCI AD HC MCI AD
ET: Extra Trees 0,97 0,97 0,96 0,99 0,99 0,99 0,91 1,00
RF: Random Forest 0,97 0,96 0,95 0,98 0,99 0,98 0,91 1,00
GB: Gradient Boosting 0,96 0,95 0,95 0,94 0,98 0,96 0,93 0,98
SVM: Support Vector Machine 0,91 0,90 0,92 0,82 0,99 0,90 0,87 0,98
LR: Logistic Regression 0,84 0,81 0,77 0,80 0,98 0,90 0,67 0,95
AB: Ada Boost 0,84 0,80 0,77 0,78 0,99 0,90 0,70 0,93

Notes.

Episodix, semantic memory and procedural memory dataset (458 triples). ML algorithms: GB, Gradient Boosting classifier; ET, Extra Trees classifier; SVM, Support Vector Machines; LR, Logistic regression; AB, Ada Boost classifier; and RF, Random forest. Metrics: F1 score; Cohen’s Kappa (i.e., used as index to order best classification); recall and precision, the last two distributed by cognitive group. Experiments were performances with cv-fold cross validation (cv = 55) and default configuration in ML algorithms.