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ABSTRACT Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM)
regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are
known to influence the formation, size, and survival of cell-matrix adhesions, but it is not yet known how they are affected by
dynamic fluctuations associated with tidal breathing in the intact airway. Here, we develop two closely related theoretical models
to study adhesion dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM cells
in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rupture events and observe two
stable regimes in which either bond formation or bond rupture dominate, depending on the amplitude of the oscillatory loading.
These regimes have either a high or low fraction of persistent adhesions, which could affect the level of strain transmission
between contracted ASM cells and the airway tissue. For intermediate loading, we observe a region of bistability and hysteresis
due to shared loading between existing bonds; the level of adhesion depends on the loading history. These findings are repli-
cated in a related continuum model, which we use to investigate the effect of perturbations mimicking deep inspirations (DIs).
Because of the bistability, a DI applied to the high adhesion state could either induce a permanent switch to a lower adhesion
state or allow a return of the system to the high adhesion state. Transitions between states are further influenced by the
frequency of oscillations, cytoskeletal or ECM stiffnesses, and binding affinities, which modify the magnitudes of the stable
adhesion states as well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect
of a DI observed in asthmatics compared to a more sustained effect in normal subjects.
INTRODUCTION
Contraction of airway smooth muscle (ASM) cells is typi-
cally triggered by exposure to irritants or allergens and
leads to bronchoconstriction, which is a narrowing of the
airways characteristic of asthma (1). Contracted ASM cells
transmit strain to the extracellular matrix (ECM) and hence
to the airways via focal adhesions (2,3), of which integrins
are a key component. Integrins are transmembrane proteins
that provide the necessary mechanical link between
the intracellular and extracellular domains by binding to
the cytoskeletal network within the cell and to ligands in
the ECM (4,5). Because it is well established that integrins
are responsive to mechanical and environmental cues
(6–8), we expect the environment of the in vivo airway,
which is inherently dynamic because of tidal breathing,
to modulate the integrin-binding dynamics and consequent
levels of strain transmission. Several experimental studies
have shown that tidal breathing and deep inspirations
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(DIs) are able to modulate the levels of contractile force
in healthy airways (9–11). In particular, DIs are capable
of inducing bronchodilation (reversing airway narrowing)
in healthy subjects, but these effects are either transient
or diminished in asthmatics. To understand this, a number
of studies at the cell level and tissue level have focused on
the ASM cell response to oscillatory loading and conse-
quent modulation of contractile force generation (12–15).
Disruption of actin-myosin cross-bridge cycling, which
mediates contractile force generation within the cell,
reduces the mean contractile force. However, the role of
cell-matrix adhesions in understanding how the strain due
to contraction is transmitted to the tissue could also be
an important factor and has so far been neglected.

To enable strain transmission between the cell and the
ECM, a sequence of molecular events takes place that con-
nect integrins to both the intracellular and extracellular
regions of the cell. These events can be thought of as revers-
ible state transitions, in which integrins belong to one of five
states (depicted in Fig. 1). Inactive integrins freely diffuse in
the plasma membrane in a bent conformation that leaves
them close to the membrane and with a low affinity for
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FIGURE 1 Representation of the five possible

integrin states. Inactive ðIUÞ and active (I) integrins
diffuse in the membrane. Active integrins may

become actin-bound ðIAÞ via adaptor proteins,

bound to ligands in the ECM ðIEÞ, or double-bound
to both the actin cytoskeleton and the ECM (B).

In our models, we consider actin-bound and

double-bound integrins (blue). To see this figure

in color, go online.
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binding to ligands in the ECM. Integrin activation occurs in
stages, with a final stage being recognized as the binding of
adaptor proteins—commonly talin—to the integrin cyto-
plasmic tail (16,17). At this stage, the active integrin extends
into an upright conformation in which it is more readily
available for ligand binding. The adaptor proteins addition-
ally form the link to the actin cytoskeleton. Once bound to
both the actin cytoskeleton and to ligands in the ECM, the
integrins form a physical link between intracellular and
extracellular domains, enabling transmission of mechanical
strain.

In previous models, the binding dynamics of individual
integrin-ligand bonds have been studied using stochastic
simulations. A number of studies (18–20) investigate the
stochastic rupture of parallel bonds under shared loading,
and Qian et al. (21) extend this by considering bonds that
experience stress nonuniformly because of an inclined
loading angle. Of particular relevance to the current work
are studies that consider the effect of dynamic loading on
adhesion stability (22), measured by the mean change in
number of bound integrins when subject to the external
load. Kong et al. (22) consider the rupture of adhesion
clusters under an oscillatory strain, and starting from a
high adhesion state, a threshold strain is observed past
which adhesions quickly rupture. In a related modeling
framework, although not concerned with external loading,
Paszek et al. (23) use lattice spring models together with a
stochastic simulation algorithm for modeling integrin-
ligand bonds called adhesive dynamics (24,25) to simulate
the formation of integrin clusters. Stochastic models are a
common approach for studying the mechanosensitive nature
of cell-matrix adhesion. Chan and Odde (26) and Walcott
et al. (27) both use stochastic models to investigate the
differing adhesion dynamics on stiff and compliant ECM
and obtain results in agreement with experimental studies.
Walcott et al. (27) show that mechanosensitive adhesion
properties emerge naturally with the inclusion of load-
dependent reactions.

Studies considering friction generated by discrete bonds
in more general contexts are also relevant to modeling
cell-matrix adhesions. Filippov et al. (28) consider the
stochastic formation and rupture of discrete molecular
2680 Biophysical Journal 114, 2679–2690, June 5, 2018
bonds between two rigid surfaces and simulate macroscopic
friction properties with high and low relative velocities of
the surfaces. In a closely related study, Srinivasan and
Walcott (29) develop a continuum approximation through
the use of the Lacker-Peskin model (30) and find that
well-known steady-slip and stick-slip friction behaviors
are captured. Given the potentially large number of integrins
present on the cell surface (densities have been reported
to reach 900mm�2 in mature adhesions (31)), stochastic
models can become prohibitive; continuum models,
therefore, have greater utility in such cases, allowing for a
more comprehensive exploration of the system behavior.
Welf et al. (32) and Block et al. (33) have developed
continuum models for integrin binding and for integrin clus-
tering based on biochemical feedback in reaction-diffusion
systems. However, these studies do not accommodate the
response to local mechanical cues. Integrins are highly
mechanosensitive, and Cao et al. (34,35) have developed
continuum models that allow for investigation of the effect
of substrate and cell nucleus stiffness on focal adhesion
size. The timescale of interest in their studies (focal adhe-
sion growth, occurring over minutes) is relatively large
compared to the timescale associated with individual integ-
rin-binding reactions, so a quasi-static approximation for the
density of integrins is used. A full review of existing models
is not presented here, but other noteworthy examples of
models that capture experimentally observed focal adhesion
behavior include (36–38). Further examples of stochastic
models have been reviewed by Gao et al (39).

In this article, we develop two closely-related theoretical
models to investigate integrin binding and adhesion dy-
namics between an ASM cell and the surrounding ECM in
a dynamic environment. Firstly, we consider a discrete
stochastic-elastic model for cell-matrix adhesion and inves-
tigate how tidal breathing influences the formation and sur-
vival of adhesions. We then develop an analogous multiscale
continuum model that couples microscale binding reactions
to the mechanical environment and reproduces the qualita-
tive behavior observed in the stochastic simulations. With
the more tractable continuum model, we further investigate
how material parameters and DIs may affect the adhesion
properties of ASM cells in vivo.
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METHODS

In the models that follow, we consider a simplified reaction scheme in

which the previously described integrin activation processes are assumed

to have already occurred. We therefore assume that integrins are already

attached to the actin cytoskeleton within the cell and undergo reversible

reactions to become bound to the ECM and able to transmit force (IA binds

reversibly to B; see Fig. 1). Similar to Paszek et al. (23), in our discrete

model, we represent the cell, ECM, and bound integrins by a network

of linear springs but focus on the effect of dynamic loading by introducing

an oscillatory shear displacement of the ECM. In our continuum model,

we capture microscale binding reactions at the integrin level using an

adaptation of the Lacker-Peskin model (30); these integrin dynamics

respond to (and generate) ECM and cell deformations at the cell level.

Through this multiscale approach, we are able to account for microscale

spatial constraints in the binding and unbinding reactions in a similar

manner to that of the individual-based approach used in the discrete

model.
Discrete model formulation

The discrete model comprises an evolving network of nodes and linear

springs, the structure of which is governed by stochastic reactions repre-

senting transitions between the integrin states IA and B described above.

By modeling individual interactions between integrins, the cell, and the

ECM, we aim first to develop an intuitive understanding of cell-matrix

adhesion. We assume that the cytoskeleton, integrins, and ECM form

a spring network in which actin-bound integrins ðIAÞ and ‘‘potential

binding sites’’ on the ECM fiber (E) are modeled as individual nodes,

indexed by IAj
and Ei, respectively (Fig. 2). Hookean springs between

the neighboring IA and E nodes represent the cytoskeleton and ECM,

respectively, and are each assigned a spring stiffness (ka and ke). Reactions

between integrins and the ECM are dependent on the proximity and avail-

ability of binding sites, and each node is considered to be an individual spe-

cies so that reaction propensities depend on their pairwise distances. Pairs

of compatible nodes may undergo stochastic transitions to form fully bound

integrins (B) according to the following reaction:

IA þ E#
bku�bx �
bkb�bx � B; (1)
FIGURE 2 Structure of the discrete spring network. Following (40), the

vertical movement is constrained, and we only consider horizontal motion.

Actin-bound integrins ðIAÞ and ECM binding sites (E) are considered indi-

vidual nodes connected to their neighbors by linear springs with stiffness

constants ka and ke, respectively. Bound integrins (B) are represented by

removable springs between the two sets of nodes, with spring constant

kb. The local variable bx measures horizontal distances between pairs of

integrin and ECM binding site nodes. We additionally include horizontal

restoring forces for the IA nodes to a fixed configuration of anchor nodes

via springs with stiffness kr .
where bx is a spatial variable local to each integrin that, following (40),

measures the horizontal distance between each pair of IA and E nodes

(see Fig. 2) and is therefore effectively a measure of how far each integrin

head is from its unstressed position, bx ¼ 0. Throughout the article, hats

indicate dimensional quantities. In accordance with these stochastic reac-

tions, we add or remove a third spring-type (representing double-bound

integrins with stiffness kb) between the IA and E nodes selected to bind.

We additionally include springs with stiffness kr from the IA nodes to a fixed

configuration of ‘‘anchor’’ nodes, as a representation of the restoring forces

and attachments to the cytoskeletal network within the cell. Following (40),

the vertical movement is constrained, and we only consider horizontal

motion, a physical simplification that will be addressed in future work

(see Discussion).

We select the reversible binding events using a stochastic first reaction

algorithm (41) and follow the reactions in Eq. 1 for each pair of compatible

nodes. In this work, our chosen spatial binding rates are piecewise linear

functions (Fig. 3) given by

bkbðbxÞ ¼

8><
>:

bf 1
�
1� jbx jbh

�
jbx j%bh;

0 otherwise;

(2)

and

bkuðbxÞ ¼

8><
>:

bg1 þ
bg2jbx jbh jbx j%bs;

bg3 otherwise:

(3)

A maximal binding rate bf 1 occurs at bx ¼ 0, after which the binding

propensity decreases linearly to zero within a finite binding range, bh. The
unbinding rate when bx ¼ 0 is given by bg1 and increases at a rate of bg2=bh
as bx increases. Beyond a maximal horizontal distance of bs, any remaining

bonds rupture quickly with a high rate bg3. We note that these piecewise

linear rates approximate those that can be derived using detailed balance

(see e.g., Figure 9 c in (42) and Figure 2 in (29)), by which pairs of reaction

rates are constrained to ensure thermodynamic reversibility. Within this

modeling framework, there is flexibility in the choice of rate functions,

and alternative choices can be used (see Discussion).

The stochastic reactions that govern bond formation and rupture are used

to update the structure of the mechanical spring network (Fig. 2). To imple-

ment a position update of the network, we consider the net force acting on
FIGURE 3 Sketch of the chosen form of piecewise linear binding

(bkb, Eq. 2) and unbinding (bku, Eq. 3) functions. The local variable bx mea-

sures the local distance between pairs of ECM and actin-bound integrin

nodes (see Fig. 2) and is therefore effectively a measure of how far each

integrin head is from its unstressed position, bx ¼ 0.
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each node, bFk . There are contributions due to neighboring springs, bFNk
,

and forces due to integrin bonds between species, bFBk . In this model, elec-

trostatic interactions and inertia are assumed to be negligible. We therefore

take bFk ¼ bFNk
þ bFBk

and update the positions of the nodes to ensure that

SbFk ¼ 0 at each time step.

To represent fluctuations that occur because of tidal breathing, we impose

an external, oscillatory forcing to the ECM via a time-dependent displace-

ment of the boundary node as follows:

bUE1ðbtÞ ¼ bAsinðbubtÞ; (4)

where amplitude is bA, frequency is bu=2p, and bUEi denotes the displace-

ment of the ith ECM node from its rest position. Sinusoidal waveforms

are commonly used to represent tidal breathing (43–46); however, they

are a simplification because exhalation is typically longer than inhalation.

We include and discuss results for an asymmetric waveform in Supporting

Materials and Methods, Section S.3.2. The results and conclusions are

consistent with those presented here.

We note that the first reaction algorithm (41) generates an event-based

time step. As we are also considering external forcing, we introduce a

maximal time step btmax such that, in the case that no reaction occurs within
this time step, a position update of the network is induced, and reaction

propensities are recalculated. We summarize the computational model in

Supporting Materials and Methods, Section S.1.1.
Continuum model formulation

We now introduce an analogous continuum model in which we consider

two well-separated scales: a microscale, integrin-level description

for bond formation and rupture that is coupled to a macroscale, cell-

level model of material deformation (illustrated in Fig. 4). At the macro-

scale, we consider deformations of the cell, bUAðbX;btÞ, and of the ECM,bUEðbX;bt Þ, where bX is a macroscale spatial coordinate and bt is time. At

each point in bX , a macroscale deformation occurs as a result of the

adhesive drag force, bFðbX; bt Þ, which is generated by integrins cycling

between bound and unbound states at the microscale. To model the

microscale reactions, we adapt an existing model by Lacker and Peskin

(30) (an extension of the Huxley model (40) for actin-myosin cross-

bridge dynamics, discussed in detail in (29)).

Microscale-governing equations

At the microscale, we again consider the binding of active, actin-bound

integrins ðIAÞ to the ECM to form double-bound integrins (B, Eq. 1).

Following the Lacker-Peskin model, the ECM binding sites are assumed
FIGURE 4 Schematic diagram of the multiscale coupling. A relative veloc

dynamics and distribution of bonds bbðbx;bt; bXÞ in a corresponding microscale prob

and measures the horizontal distance from the cytoskeletal attachment to the b

horizontal drag force, bFðbX;btÞ, which is used to update the displacements bUA and

go online.
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to be densely distributed, and there is a characteristic length scale, bl, asso-
ciated with the spacing between sites. Each double-bound integrin is asso-

ciated with a local variable, bx, measuring the horizontal distance of the

bound integrin head from its unstressed (vertical) position at bx ¼ 0. In

the unstressed position, the integrin does not contribute to the horizontal

drag force. At each point in the macroscale domain, bX˛½0;bL�, bound integ-
rins are collectively expressed by a distribution, bbðbx;bt; bXÞ, such that the

fraction of integrins that are bound with local displacements in a range of

½bx;bx þ Dbx] at time bt is given by the integral
RbxþDbxbx bbðbx;bt; bXÞdbx. The total

fraction of bound integrins is given by

B
�bX ;bt� ¼

Z N

�N

bb�bx;bt; bX�dbx: (5)

The evolution of each microscale distribution is governed by the

following advection-reaction equation:

vbb
vbt þ bV vbb

vbx ¼
bkbðbxÞbl ð1� BÞ � bkuðbxÞbb; (6)

where the functional dependencies have been suppressed for brevity. The

right-hand side describes binding and unbinding of integrins through the
functions bkbðbxÞ and bkuðbxÞ, respectively, for which we employ the same

rates as in the discrete model (Eqs. 2 and 3). The scaling of the binding

rate by bl arises in the derivation of the Lacker-Peskin model, which is

discussed in detail in (29). Distributions are additionally advected with a

macroscale velocity, bVðbX;bt Þ, which is the velocity of the ECM relative

to the velocity of the cell. By treating integrins as Hookean springs, we

obtain the drag force per unit length as follows:

bF�bX;bt� ¼ brblb Z N

�N

bxbb�bx;bt; bX�dbx; (7)

where blb is the integrin spring constant, and br is the number of integrins per

unit length, acting at a macroscale point bX . We implicitly assume that there

is sufficient scale separation to approximate the microscale distributions to

be acting at a macroscale point; a rigorous derivation will be considered in

future work.

Macroscale-governing equations

At the macroscale, we assume that the ECM and cell are linear elastic

materials that undergo small deformations. The relative macroscale velocity

can be written as
ity bVðbX;bt Þ arising from macroscale deformation influences the binding

lem (Eq. 6). As in the discrete model, the variable bx is local to each integrin
inding site on the ECM, as shown. Microscale distributions determine thebUE and therefore bVðbX;bt Þ (via Eqs. 7, 8, and 9). To see this figure in color,
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bV�bX ;bt� ¼ vbUE

�bX;bt�
vbt � vbUA

�bX;bt�
vbt ; (8)

which is coupled to the microscale distributions of bound integrins

(see Fig. 4) via Eq. 6.

We assume that the drag forces, bFðbX;bt Þ, due to bound integrins are the

only body forces acting on the two materials, and hence, we obtain the

following macroscale description by considering the following quasi-static

equilibrium conditions:

v2 bUA

vbX2
¼ � 1bKA

bF; v2 bUE

vbX2
¼ 1bKE

bF: (9)

The constants bKA and bKE are stiffness-like parameters for the cell and

ECM, respectively, with units of force per unit strain. The cell and the

ECM experience the force in opposite directions.

Boundary conditions

The cell displacement is assumed to be zero at bX ¼ 0 and bX ¼ bL so that

bUAð0;bt Þ ¼ 0; bUA

�bL;bt� ¼ 0: (10)

We apply a time-dependent displacement to the ECM at bX ¼ 0 and zero

strain at bX ¼ bL:
bUEð0;bt Þ ¼ bAsinðbubt Þ; vbUE

�bL;bt�
vbX ¼ 0; (11)

where the oscillatory displacement is chosen to match the discrete model

(Eq. 4).

Nondimensionalization

The governing equations and boundary conditions are nondimensionalized

with the scalings as follows:

x ¼ bx�bh; t ¼ bf 1bt; UA ¼ bUA

�bL; UE ¼ bUE

�bL;
b ¼ bbbh; X ¼ bX�bL; V ¼ bV�bf 1bL; F ¼ bF.brbhblb;

(12)

where bf 1 is the maximal binding rate, and bh is the integrin-binding range.

For simplicity, we assume that br is uniform, but an extension to nonuniformbrðbXÞ is easily incorporated. The dimensionless microscale-governing

equations are

vb

vt
þ V

d

vb

vx
¼ hkbðxÞ

0
@1�

Z N

�N

bdx

1
A� kuðxÞb; (13)

where the dimensionless parameters d ¼ bh=bL and h ¼ bh=bl are the ratios

of the integrin-binding range to the macroscale length scale and to the

microscale-binding site separation, respectively. The microscale advec-

tion-reaction equations are coupled to the macroscale equations via the

macroscale velocity VðX; tÞ.
The dimensionless binding rate functions are

kbðxÞ ¼
�
1� jx j jx j%1;
0 otherwise;

(14)
and

kuðxÞ ¼
�
h1 þ h2jx j jx j%s;
h3 otherwise;

(15)

where hi ¼ bgi=bf 1 are the ratios of unbinding rates to the maximal binding

rate, and s ¼ bs=bh. The dimensionless drag force,

FðX; tÞ ¼
Z N

�N

xbðx; t;XÞdx; (16)

features at the macroscale, where the dimensionless governing equations

become

v2UA

vX2
¼ � 1

KA

F;
v2UE

vX2
¼ 1

KE

F; (17)

with the following boundary conditions:

UAð0; tÞ ¼ 0; UAð1; tÞ ¼ 0;

UEð0; tÞ ¼ AsinðutÞ; vUEð1; tÞ
vX

¼ 0:
(18)

The remaining dimensionless parameters are

KA ¼ bKA

.brbhblbbL; KE ¼ bKE

.brbhblbbL;
A ¼ bA�bL; u ¼ bu�bf 1: (19)

Implementation

To solve the advection-reaction system (Eq. 13), we differentiate

the macroscale governing equations (Eq. 17) with respect to time and

use Eqs. 8 and 16 to obtain the following second-order partial differential

equation for VðX; tÞ:

v2V

vX2
¼ gH þ g

d
VB; (20)

where

H ¼
Z N

�N

xf ðbÞdx; B ¼
Z N

�N

bdx; g ¼
�

1

KE

þ 1

KA

�
;

(21)

and

f ðbÞ ¼ hkbðxÞð1� BÞ � kuðxÞb: (22)

Equations 13 and 20 are solved numerically, as detailed in Supporting

Materials and Methods, Section S.1.2, subject to

Vð0; tÞ ¼ AucosðutÞ; vV

vX
ð1; tÞ ¼ 0: (23)

The macroscale-governing equations (Eq. 17) can be integrated directly

to obtain UAðX; tÞ and UEðX; tÞ in terms of FðX; tÞ. Using Eq. 18, the cell

deformation is given by
Biophysical Journal 114, 2679–2690, June 5, 2018 2683
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UA ¼ � 1

KA

Z X

0

Z z

0

Fdxdzþ X

KA

Z 1

0

Z z

0

Fdxdz; (24)

and the ECM deformation is

UE ¼ 1

KE

Z X

0

Z z

0

Fdxdz� X

KE

Z 1

0

Fdxþ AsinðutÞ: (25)

Initial conditions

For each amplitude of oscillatory loading, A, we consider two initial condi-

tions: 1) a zero state with no preexisting bound integrins, and 2) a saturated

steady state with high integrin binding obtained in the absence of external

forcing. In the discrete model, this is found by running the simulation with

A ¼ 0 until the fraction of bound integrins stabilizes; in the continuum

model, the steady state, obtained from Eq. 13 when V ¼ 0, is given by

bsðx; 0;XÞ ¼ hkbðxÞ
kuðxÞ

0
BB@ 1

1þ RN

�N

hkbðxÞ
kuðxÞ dx

1
CCA: (26)

RESULTS

Effect of increasing the amplitude of oscillation

We first investigate the effect of varying the amplitude, A, of
the oscillatory loading in both the discrete and continuum
models. In Fig. 5, we show representative time courses
from both models for the fraction of integrins that become
FIGURE 5 Representative time courses from the discrete stochastic simulatio

Formulation), shown in the left and right columns, respectively, illustrating the

high-amplitude oscillatory loading. This is applied using u ¼ 20 and amplitudes

in Eq. 4 or Eq. 18 (where Eq. 4 has been nondimensionalized using the scalings i

(blue) initial condition (Eq. 26). See Tables S1 and S2 for a full list of chosen
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fully bound (B) under low-, intermediate-, and high-ampli-
tude oscillatory loading. In the continuum model, the total
macroscale bound fraction is found from

BtotðtÞ ¼
Z 1

0

BðX; tÞdX; (27)
where BðX; tÞ is given by Eq. 21.
For the lowest amplitude oscillation, in both models

(Fig. 5 a), we find that both the zero and saturated initial
conditions converge to a pattern of high adhesion (with a
mean total bound fraction of �0.75) subject to small fluctu-
ations as a result of low, sustainable turnover of bound integ-
rins. For the highest amplitude loading (Fig. 5 c), in both
models and for both the zero and saturated initial conditions,
the result is an oscillatory state in which significant bond
rupture leads to a total bound integrin fraction with a lower
mean (�0.2–0.3) and larger amplitude fluctuations. For an
intermediate oscillation amplitude (Fig. 5 b), we observe
bistability, in which the initial condition determines which
of the two adhesion states occur; if adhesions are present
when oscillations begin, then shared loading and increased
traction prevent high levels of rupture under applied strain.
Because of the stochastic nature of the discrete model, under
high-amplitude oscillations, we observe small variations in
the time of collapse from the high to the low state. Similarly,
it is possible to observe stochastic switching (data not
shown) between the two adhesion states when the loading
parameter is within the bistable range. The high state
exhibits persistence of bound integrins, whereas the low
n (Discrete Model Formulation) and continuum model (Continuum Model

responses of bound integrins (Eq. 27) to (a) low-, (b) intermediate-, and (c)

A ¼ 0:1, A ¼ 0:15, and A ¼ 0:2, respectively, via the boundary conditions

n Eqs. 12 and 19). In each case, we consider a zero (orange) and a saturated

parameter values. To see this figure in color, go online.
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FIGURE 7 Bifurcation diagram indicating steady states of the time-aver-

aged total adhesion density hBtoti (Eqs. 27 and 28) for a range of oscillation

amplitudes, A (Eq. 18). Stable branches are indicated by solid lines separated

by the dashed, unstable branch. Thepositionof theunstable branch is bounded

by points known to converge to the upper and lower solutions, in green and

red, respectively. Blue markers highlight example monostable ((a) A ¼ 0:1,

(d) A ¼ 0:3) and bistable ((b) A ¼ 0:125, (c) A ¼ 0:15) regimes, and a

hysteresis loop is seen (blue dotted line). The path taken as A increases

((a) / (b)i / (c)i / (d)) differs from the path followed as A decreases

((d)/ (c)ii/ (b)ii/ (a)). To see this figure in color, go online.

Loading History and Cell-ECM Adhesion
state shows cyclic breaking and reattachment of a significant
fraction of integrins. These states could be akin to firm and
transient adhesions, which are observed to occur in other
contexts (see Discussion).

As illustrated in Fig. 5, the discrete and continuum
models display strikingly similar qualitative behavior. We
exploit the deterministic nature of the continuum model to
more reliably investigate the bistability, summarized in
Fig. 6, where we present the bound integrin densities
obtained for a range of oscillation amplitudes. For each
oscillation amplitude, we use both the zero and saturated
initial conditions. Because the states under consideration
are oscillatory, once the behavior has converged to its
periodic steady state, we plot the time-averaged adhesion
density given by

hBðXÞi ¼ 1

T

Z T

BðX; tÞdt; (28)

where T ¼ 2p=u is the oscillation period. There is variation
in hBðXÞi across the macroscale domain, X˛½0; 1�, and we
observe a significantly lower adhesion density near X ¼ 0,
where the oscillation is applied.

The time-averaged adhesion density plotted in Fig. 6,
hBðXÞi, is additionally averaged over X to calculate the total
time-averaged density hBtoti (Eq. 27), which is used to
generate a bifurcation diagram (Fig. 7). Stable branches
indicated by the solid lines confirm, as in Fig. 6, that for
low amplitude oscillations, we expect solutions to converge
to a high averaged bound integrin state regardless of
initial conditions, whereas for high-amplitude oscillations,
the solutions converge to a low bound integrin state. For
an intermediate range of oscillation amplitudes, we observe
a window of bistability in which the initial condition, in
relation to an unstable branch (dashed line), determines
1
0.80

0

0.2

0.60.05

0.4

X

,ytisned
nir getni

d nuob
de ga re va -e

mi T
)

X (
B

0.1

0.6

0.4

A

0.8

0.15

1

0.2 0.20.25 00.3

FIGURE 6 High (blue) and low (orange) solution surfaces across the

macroscale domain, X, indicating stable states of the time-averaged

adhesion density hBðXÞi (Eq. 28) for a range of oscillation amplitudes,

A (Eq. 18), in the continuum model. For intermediate amplitudes, there is

bistability. The model parameters are as in Fig. 5 and given in Table S1.

To see this figure in color, go online.
which of the two stable outcomes occurs. The position of
the unstable branch is estimated as the mean of two points
that are observed to converge to the upper and lower solu-
tions (green and red markers, respectively). The unstable
and stable branches appear to meet in a pair of saddle
node bifurcations. As illustrated in Fig. 7, starting on the up-
per stable branch, an increase in A would lead to a jump
from the upper to the lower stable solution at the bifurcation
point. The value of A at this point corresponds to a threshold
loading at which adhesions quickly rupture. On the other
hand, a decrease in A from the lower branch leads to a
jump from the lower to upper branch at a different amplitude
following a different path, thereby generating a hysteresis
loop (blue dotted line).

Next, we examine the spatiotemporal cell deformation
resulting from oscillatory loading for both the discrete and
continuum models in each stable regime (Fig. 8). In the
high bound integrin regime (i.e., low amplitude oscilla-
tions), adhesions persist, and in both models, there are
smooth transitions between positive and negative cell defor-
mations across the domain (Fig. 8, a and c). These appear as
wide bands that follow the movement of the ECM. In the
low bound integrin regime (high-amplitude oscillations),
the bands narrow and exhibit sharp boundaries because of
greater numbers of rupture events at each cycle (Fig. 8,
b and d). The differences in deformation that result from
low and high-amplitude oscillations correspond to differ-
ences in the total drag force generated by bound integrins,
as shown in Fig. 9. The total drag force in the continuum
model, Ftot, is defined analogously to Btot (Eq. 27). Note
that although the total drag forces are qualitatively similar
Biophysical Journal 114, 2679–2690, June 5, 2018 2685



FIGURE 8 Cell deformation, UAðX; tÞ, (indicated by color) plotted as

functions of the position in the cell domain, X, and time, t, obtained in

the discrete (a and b) and continuum (c and d) models in the cases in which

adhesion formation (a and c) and adhesion rupture (b and d) dominate under

oscillatory loading. Simulations are carried out from a zero initial condi-

tion, and oscillation amplitudes are A ¼ 0:1 and A ¼ 0:2 in Eqs. 4 and

18. Eq. 4 has been nondimensionalized using the scalings in Eqs. 12 and

19. In (a) and (b), the results have been averaged over 150 simulations,

and the spatial positions are presented on a scaled domain X˛½0; 1�.
To see this figure in color, go online.
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in both models, there are some significant differences in the
spatial propagation of the deformation applied at X ¼ 0

(Fig. 8) because of the differences between the two
modeling approaches. In particular, in the discrete model
there are individual springs between each node, but this is
simplified in the microscale formulation of the continuum
model. Because bond rupture is affected by the level of
deformation, the total bound fractions (Fig. 5) also differ
slightly in magnitude between the two models; however,
there is still striking qualitative agreement for the averaged
macroscale quantities of interest (Btot, Ftot, in Figs. 5 and 9).
Because we are primarily interested in qualitative behavior,
we exploit the efficiency of the continuum model in place
of discrete stochastic simulations to investigate the effect
of perturbations due to DIs. We also investigate the effect
2686 Biophysical Journal 114, 2679–2690, June 5, 2018
of oscillation frequency, material stiffness, and binding
affinities on the averaged bound integrin density, Btot

(Fig. S1). In each case, bistability is observed, but the posi-
tions of the stable branches are shifted.
Effect of perturbations due to DIs

We now investigate the effect of transient perturbations to
the amplitude of oscillatory loading to mimic the strain
imposed on ASM cells and the ECM that may result from
taking a DI during a period of regular breathing. Starting
from the saturated initial condition (Eq. 26), we allow the
bound fraction to settle to its periodic high steady state
before perturbing the amplitude of the oscillation for one
cycle. We therefore impose

UEð0; tÞ ¼
8<
:A2sinðutÞ; 8p

u
< t <

10p

u
;

A1sinðutÞ; otherwise;

(29)

for baseline oscillation amplitude A1, DI amplitude A2

(where A2 >A1), and oscillation frequency u=2p.
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We consider two different baseline oscillation amplitudes
(A1 ¼ 0:1 and A1 ¼ 0:125, marked by (a) and (b), respec-
tively, in Fig. 7). This choice is motivated by variations in
the amplitude of tidal breathing that may arise between in-
dividuals; pressure-driven oscillations in vivo lead to
smaller strains for greater material stiffnesses (14,47). The
differences in A1 could therefore correspond to asthmatic
(stiff) and healthy (compliant) airways. We investigate the
response to a small perturbation (A2 ¼ 0:15, point (c) in
Fig. 7) and a DI that is large enough to induce significant
rupture of adhesions (A2 ¼ 0:3, point (d) in Fig. 7) and
find that for a starting amplitude A1 ¼ 0:1, there is recovery
to the high adhesion state regardless of the amplitude
of the perturbation (Fig. 10 a). For a starting amplitude
A1 ¼ 0:125, there are two possible responses depending
on the amplitude of the DI perturbation (Fig. 10 b). As
shown by the blue markers in Fig. 7, for A1 ¼ 0:1, the
high adhesion state is the only stable solution, and a high
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FIGURE 10 Different amplitude baseline oscillations and DI-like pertur-

bations may lead to a switch in adhesion states. We show the applied oscil-

latory displacement, UEð0; tÞ, and the total bound fraction of integrins,

BtotðtÞ (see Eqs. 29 and 27), when u ¼ 20. (a) For A1 ¼ 0:1, A2 ¼ 0:3

(solid line) and A1 ¼ 0:1, A2 ¼ 0:15 (dashed line), the high adhesion state

persists after both DI perturbations because for A1 ¼ 0:1, this is the only

steady state. (b) For A1 ¼ 0:125, A2 ¼ 0:3 (solid line), there is a transition

to a low adhesion state because A1 ¼ 0:125 is within the bistable window

(see Fig. 7), and the DI is sufficiently large to drive the system into the basin

of attraction of the low state. For a smaller amplitude perturbation,

A2 ¼ 0:15 (dashed line), the high fraction of bound integrins persists.
density of bound integrins therefore persists after a perturba-
tion. In contrast, A1 ¼ 0:125 lies within the bistable window,
and if the DI perturbation is large enough to drive the system
into the basin of attraction of the low adhesion state, there is
a transition to a low bound integrin density that persists even
after the oscillation returns to its initial amplitude.

These responses demonstrate the possible consequences
of bistability as well as the importance of loading history
because an event such as a DI perturbation may alter the
future state of adhesion when bistability is present. Persis-
tence of the previous state depends on the amplitude of the
DI and on where the bistable window (Fig. 7) lies in relation
to the baseline oscillation amplitude, A1. Physiologically,
this will be influenced by differences in the amplitude of
the baseline oscillatory displacement, representing tidal
breathing, and differences in parameters such as the oscilla-
tion frequency, material stiffnesses, and binding affinities
that shift the location of the bistable window (Fig. S1).
DISCUSSION

We have developed a discrete stochastic-elastic model and a
multiscale continuum model to investigate the effect of
oscillatory loading on the dynamics of ASM cell-matrix
adhesions. We have demonstrated that oscillatory loading,
representing deformations due to tidal breathing, can have
a significant impact on integrin dynamics and the persistence
of adhesions, which we expect to affect the level of force that
can be transmitted between intracellular and extracellular
domains. In particular, we observe two distinct regimes in
which either adhesion formation or adhesion rupture domi-
nates, resulting in differences in the steady-state densities
of bound integrins (Fig. 5). Moreover, a window of bistabil-
ity exists for intermediate loading amplitudes (Fig. 7)
because of mechanical cooperativity; shared loading be-
tween preexisting adhesions allows the high-density state
to persist when rupture would otherwise dominate. This bist-
ability generates a hysteresis loop, and we see that the
loading history and events such as perturbations representing
DIs can significantly alter the future adhesion dynamics
(Fig. 10). In previous studies (23,48), similar instances of in-
tegrin cooperativity have been observed, in which shared
loading between integrins aids initial cluster formation. In
addition to the differences in bound integrin densities seen
in the two regimes, cell deformations and adhesive drag
forces also differ significantly in each case, both in terms
of magnitude and dynamics (Figs. 8 and 9). The qualitative
behaviors seen in the discrete model are also observed in
our continuum model, the convenience of which we exploit
to investigate the adhesion dynamics further. The existence
of a threshold at which bond rupture dominates over
adhesion formation is in agreement with the Monte Carlo
simulations in a previous study (22), in which an oscillatory
strain is applied to an initially fully bound substrate. Our
model assumptions differ in some respects from those of
Biophysical Journal 114, 2679–2690, June 5, 2018 2687
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Kong et al. (22), but sudden rupture occurs in both when the
oscillation amplitude is increased. In our model, we addi-
tionally observe bistability and hysteresis. The two adhesion
states reported appear to behave similarly to transient and
firm adhesions observed in other contexts. Integrin-mediated
adhesions can function as either dynamic or stable structures
(6), and in the context of cell migration, switching between
transient and firm adhesion states (mediated by biochemical
signaling) facilitates migration by altering the traction prop-
erties between cells and the ECM. Mechanical signals, in
addition to biochemical signals, are known to be able to
modulate focal adhesion size and dynamics (49), and further
studies into how the mechanical environment of ASM affects
focal adhesions will be worthwhile.

We propose the following in vitro experiment to investi-
gate whether the mechanical cooperativity of integrins could
indeed lead to bistability: using atomic force microscopy,
vertical or lateral oscillations could be applied to ECM-
coated beads that initially have different but controlled levels
of adhesion to the cell. Control over the initial condition can
be achieved by varying the contact time between the bead
and cell, as previously carried out in (50). In addition, by
gradually increasing and then decreasing the amplitude of
oscillation, the hysteresis illustrated in Fig. 7 could be tested.

The airway response to DIs is known to be different in
asthmatics and nonasthmatics: in healthy subjects, DIs pro-
mote bronchodilation, but this effect is either transient or
non-existent in asthmatics (9–11). DI-induced bronchodila-
tion has previously been attributed to disruption of actin-
myosin cross-bridges (11), which mediate contractile force
generation within the cell. However, because intracellular
contractile force transmission to the extracellular domain
is reliant on cell-matrix adhesions, the density of adhesions
that survive under oscillatory loading in each case could also
play an important role; we expect the high and low density
adhesion states predicted by the model to produce signifi-
cantly different levels of strain transmission between con-
tracted ASM cells and the ECM. Our results show either
persistence of the high adhesion state or a transition from
the high to low adhesion states in response to DI-like pertur-
bations (Fig. 10). The ability of a DI to induce a switch be-
tween states is influenced by a difference in 1) the position
of the bistable region, which shifts in response to changes
in parameters such as oscillation frequency, material stiff-
nesses, or binding affinities (see Fig. S1); 2) the amplitude
of the unperturbed oscillatory displacement, which we use
to represent the magnitude of tidal breathing; or 3) the
magnitude of the DI. All of these factors could differ
between individuals as well as between asthmatics and non-
asthmatics. To fully understand the bronchodilatory effect
of DIs, it will be crucial to consider the combined dynamics
of actin-myosin cross-bridges and integrins; we expect them
both to contribute, but their relative importance will only
become clear when considered together. Although actin-
myosin cross-bridge cycling, which mediates contractile
2688 Biophysical Journal 114, 2679–2690, June 5, 2018
force generation within the cell, undergoes changes during
DIs, by considering the possible integrin response to breath-
ing and DIs we have illustrated that strain transmission
(via integrins) could also be a highly dynamic process.
Integrin-mediated adhesion is therefore an important pro-
cess to study further in this context.

Further motivation for understanding contractile force
transmission between ASM cells and the ECM in the context
of asthma is that contractile force is also known to promote
the activation of TGFb, a growth factor that otherwise
remains latent in the ECM. TGFb promotes long-term
airway remodeling with consequences such as airway wall
thickening and altered material properties (e.g., increased
stiffness) of the airway tissue (51–55). These structural
changes are irreversible and over time lead to obstructed
airflow and a decline in lung function. To fully understand
the effect of cell-matrix adhesion density on levels of
contractile force transmission and the consequences that
this may have for the activation of TGFb, future work will
involve an extension to higher dimensions at which the
constraint on vertical motion will be relaxed. This is an
important step toward a full coupling to models of actomy-
osin dynamics and contractile force generation in ASM cells.

Our results were obtained firstly in a stochastic-elastic
computational model and then in a continuum model. We
find that our discrete and continuum models produce similar
qualitative behavior, and in a future study, we will consider
the formal relationship between the two models. This will
allow for more rigorous quantitative as well as qualitative
comparisons. Although the discrete model is advantageous
for incorporating large amounts of individual detail, the con-
tinuum model can more easily be coupled to existing models
of contractile force generation, for example (56), and is
more efficient when the number of integrins is high. In
(56), cross-bridge cycling and disruption to actin-myosin
contractile units (in response to cell length changes) are
considered, which would allow us to more fully investigate
the combined dynamics of cross-bridges and integrins
during DIs. The continuum model can additionally be
extended to address simplifications made during initial
model development; in particular, we can consider nonlinear
elastic materials to accommodate large deformations, a
more complete reaction sequence including integrin diffu-
sion and activation, and different forms for spatial binding
and rupture rates. Instead of our simplified piecewise linear
rates, a more commonly used description for bond rupture
under force is the Bell model (57), in which rupture rates in-
crease exponentially with force. Other rate functions,
including a power law relation, have also been presented
(58,59), and obtaining precise measurements for individual
integrins using techniques such as atomic force microscopy
(60) remains an area of ongoing research. As we explicitly
account for binding and unbinding rates that depend on
microscale distance, both our discrete and continuum
models can accommodate any of these choices.
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Here, we have discussed cell-matrix adhesion in the
context of tidal breathing and ASM. However, the models
presented could be applicable to other contexts in which
dynamic environments occur. Interesting examples include
the adhesion dynamics that occurs in response to large
volume changes in the urinary bladder or in uterine smooth
muscle during pregnancy and childbirth. In both of these
cases, it is thought that integrins play an important role in
the adaptation of smooth muscle to different lengths and
functions (61,62).

In this article, we have shown that cell-matrix adhesion
strength can be heavily influenced by dynamic loading
(representing tidal breathing and DIs) and by the loading
history. To date, consideration of mechanical ASM-ECM
interactions via integrins has been neglected in investiga-
tions on the effect of tidal breathing and DIs in asthma.
Here, we have shown that integrins could play an impor-
tant role in the level of strain transmission during ASM
contraction in vivo because the bound integrin density
responds dynamically to oscillatory loading. Furthermore,
a simulated DI is shown to induce either transient or per-
manent changes in the bound integrin density depending
on the amplitude of tidal breathing (Fig. 10). This result
could help to explain, in part, previous experimental obser-
vations on the bronchodilatory effect of DIs, which are
transient or absent in asthmatics yet sustained in healthy
subjects.
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