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Abstract

The lung’s unique extracellular matrix (ECM), while providing structural support for cells, is 

critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. 

The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and 

phenotype. The composition and function of lung ECM become markedly deranged in 

pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent 

promising novel strategies for regeneration/repair of the lung and treatment of chronic lung 

diseases. In this review, we assess the current state of lung ECM biology, including fundamental 

advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in 

normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the 

regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM 

biology and provide a set recommendations for research priorities to advance knowledge that 

would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung 

diseases.

1. Introduction

Over the last three decades, our understanding of the many, diverse roles of the extracellular 

matrix (ECM) in mammalian biology has greatly advanced. It is now well established that, 

in addition to providing a scaffold for cells, the ECM provides essential biochemical and 

biomechanical cues directing tissue morphogenesis during development, homeostasis and 

injury-repair responses. The lung is characterized by a unique ECM composition and 

function that becomes markedly deranged in childhood disorders such as bronchopulmonary 

dysplasia (BPD), and adult diseases such as chronic obstructive pulmonary disease (COPD) 

and idiopathic pulmonary fibrosis (IPF) (Figure 1).

In this review, we assess the current state of the field of lung ECM biology, and identify 

opportunities to advance knowledge that would inform novel approaches to understand, 

diagnose, and treat lung diseases of childhood and adults. Areas of focus in this review 

include fundamental advances in ECM composition, dynamics, topography, and 

biomechanics; the role of the ECM in normal lung development and aberrant development; 

ECM dynamics and altered deposition in adult lung diseases, namely COPD and IPF; the 

role of ECM in inflammation/autoimmunity; and maintenance of the stem cell niche. The 

potential for ECM-based therapeutics for chronic lung diseases is considered. Our goal is to 

identify specific areas that represent gaps in our understanding of ECM biology, and to 

provide a set of recommendations for research priorities to advance the field of lung ECM 

biology.

2. The ECM in Lung Development

The lung begins as a respiratory diverticulum (lung bud) from the foregut at approximately 5 

weeks post-conception in the human embryo and develops by stages until full development 

is complete. Alveologenesis is thought to proceed well into post-natal life in humans, 

reaching the maximal number of 200–300 million during early adolescence [1]. The stages 

of lung development consist of a pseudoglandular stage (human: 5–17 weeks of gestation; 
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mouse: E9.5-E16.6), canalicular stage (human: 16–25 weeks; mouse: E16.6-E17.4), terminal 

saccular stage (human: 24–32 or 36 weeks; mouse: E17.4-P5), and the alveolar stage 

(human: 32 or 36 weeks to childhood or early teen years; mouse: P5-P28 or P42) [2, 3]. 

During these stages, the initial processes of branching morphogenesis, vasculogenesis and 

angiogenesis transition to alveolar septation and maturation accompanied by marked 

changes in lung ECM composition. The two main concepts regarding ECM in lung 

development are: (1) the lung ECM, not only provides vital physical support or a “scaffold” 

for resident cells of the lung and contributes to its mechanical properties but, is also essential 

for biophysical and biochemical signaling of lung cells, and (2) reciprocally, lung cells 

regulate the production and deposition of ECM over the course of development [4]. The 

processes by which ECM regulates lung cells and lung cells, in turn, produce or break down 

ECM are critical to normal lung development; alterations in these processes may lead to 

impaired lung development such as that seen in BPD. Additionally, abnormal recapitulation 

of developmental processes may contribute to disorders such as IPF, pulmonary arterial 

hypertension, or lung cancer with corresponding alterations in the ECM [5, 6].

The composition and topography of lung ECM changes over the course of lung 

development, and is very heterogeneous depending on location (e.g. close to bronchi, in 

alveolar septum, in pleura etc.) and developmental stage (e.g. saccular stage vs. early 

alveolar septation vs. mature adult lung). The lung ECM in fetal, neonatal and adult tissues 

are distinct, and temporally regulates the shape, migration, differentiation of resident cells 

[7, 8]. For example, during murine embryonic development, all five laminin γ chains are 

present, whereas adult lungs express primarily laminins γ3, γ4, and γ5 [9–11]. Fetal murine 

lung tissues contain more total GAGs and proteoglycans, and higher expression of collagen I 

and III in the pleura and the alveolar septae, in comparison to adult tissues [12]. Collagen 

comprises 16% of the pulmonary artery in young adults, and decreases to 10% in individuals 

over 80 years old [13, 14]. The ECM is constantly remodeled, with multiple post-

translational modifications of various protein components. Various proteolytic enzymes, 

such as the matrix metalloproteinases (MMPs), and their endogenous inhibitors, tissue 

inhibitors of metalloproteinases (TIMPs), are involved in remodeling the ECM during 

development and in ECM homeostasis. The fetal human (and mouse) lung is characterized 

by greater proteolytic profile (higher MMP-2 and less TIMP-3 expression), while the adult 

lung is more anti-proteolytic (less MMP-2 and greater TIMP-3), with similar constitutive 

expression of MMP-14, MMP-20, TIMP-1, and TIMP-2 [15].

Airway branching and ECM

Airway branching (branching morphogenesis) that occurs primarily during the 

pseudoglandular stage of lung development is driven by interactions between the epithelium 

and the mesenchyme with active participation of ECM components, such as fibronectin, 

laminin, tenascin, and syndecan [4, 16]. Transplanting mesenchyme from a region wherein 

branching is occurring can induce branching of epithelial tissue where it does not, otherwise, 

occur [17]. During early human lung development, the collagens I, III, and VI and PGs 

(decorin, biglycan, and lumican) are primarily seen at the epithelial-mesenchymal interface, 

forming a sleeve around the developing airways [18]. The PG component of the ECM may 

regulate airway branching, in part related to the ability of sulfated PGs to bind FGF10, 
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which is necessary for branching [19]. Comprehensive gene expression profiling of murine 

lung development identified patterns of ECM gene expression, and determined possible 

relationships among groups of these genes that coordinate defined developmental processes 

[20].

Alveolar septation and ECM

The saccular stage is characterized by further widening of the air spaces and a thinner air-

blood interface, accompanied by a reduction in the mesenchymal ECM, and organized 

deposition of elastin which is maximal along the sites of the future secondary crests 

(alveolar septa) [4]. Tropoelastin, the precursor of elastin, is produced during alveolar 

septation and is cross-linked by lysyl oxidase, and this modification facilitates alveolar 

septation. The deposition of elastin leads to elevation and suspension of the secondary crest 

that subdivides primary saccules. The secondary crest serves as a ridge that runs along the 

saccular wall, dividing it into two or more parts [21]. It is thought that the elastin and 

collagen fibers in the developing secondary crest tether portions of the primary saccular 

wall, restricting their motion, while the remaining portions of the wall expand further 

outward, forming the alveolus [21]. The process of alveolar septation requires other ECM 

proteins such as tenascin-C and growth factors such as PDGF-A [22]. Alveolar septation is 

followed by maturation of the capillaries that surround the alveolar space [2, 16]. PGs such 

as chondroitin sulfate and decorin are also localized to the secondary septa, and may also 

have a role in alveolar septation [16]. Similar to branching morphogenesis, it is likely that 

the degree of sulfation of the PGs is important for alveolar septation. Mice lacking the 

enzyme sulfatase-modifying factor 1 (Sumf1) which activates all sulfatases manifest an 

arrest in alveolarization associated with increased sulfated GAG deposition and increased 

TGF-β signaling [23]. Membrane-type 1 matrix metalloproteinases (MT1-MMP, also known 

as MMP-14) is involved in alveolar development, although mice deficient in MMP-3, 7, 9, 

or 12 develop normal lungs [24]. MMP-2 deficiency leads to delayed alveolarization in 

association with thickened pulmonary arteries and increased perivascular collagen and 

elastin [25].

Mechanotransduction from hydraulic pressure and airway peristalsis may also contribute to 

lung development. For example, marked reduction in amniotic fluid volume 

(oligohydramnios) is associated with lung hypoplasia in the fetus, presumably due to loss of 

fluid volume and decreased internal stenting force [26, 27]. Recent studies support 

synergistic control of alveolar epithelial cell differentiation by the concerted action of 

mechanical forces and local growth factors [28, 29]. Bronchial myogenesis is regulated by 

intraluminal pressure, and mechanical stretch modulates alternative splicing of serum 

response factor (SRF) and, thereby, regulates downstream myogenic genes [30]. Mechanical 

strain differentially regulates ECM molecules in fetal lung cells [31]. The cross-linker lysyl 

oxidase modulates tissue stiffness, which regulates low-density lipoprotein receptor-related 

protein (LRP) 5 and Tie 2 signaling (increased in cells on stiffer matrices), thus, controlling 

angiogenesis during alveolar septation [32].
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Abnormal lung development

BPD that occurs in preterm infants is characterized by an inhibition of alveolar development, 

with varying degrees of inflammation, fibrosis, and abnormal vascular remodeling [33, 34]. 

Autopsy studies have documented that parenchymal collagen increases through 

development, and that preterm infants before 30 weeks have a delicate and intricate 

interstitial collagen network [35]. In BPD, there is an arrest of septation, with thickened 

collagenous saccular walls and increased interstitial collagen [35]. The volume of elastic 

tissue is also tightly regulated during fetal life, and doubles in the lung parenchyma from 22 

to 30 weeks, and then doubles again over 20 weeks [36]. The amount of lung elastin in BPD 

increases with increasing respiratory distress severity, but the lung elastic tissue is 

disorganized and not in alveolar septa but in aberrant sites such as in the saccular-alveolar 

duct junction, which may represent sites of highest mechanical stress [36]. There is evidence 

that alterations in elastin may be secondary to changes in lysyl oxidase expression and 

activity [37, 38], perhaps combined with increased elastin degradation and uncoupling of its 

synthesis and assembly [39–41]. Impaired alveolar septation is among the most frequent 

histopathologic abnormalities found in children with suspected interstitial and diffuse lung 

diseases, and frequently occurs in association with chromosomal abnormalities and 

congential heart disease [42]. Abnormal alveolar development is also seen in association 

with Down syndrome [43].

3. ECM Composition and Dynamics

The matrisome is defined as the ensemble of ∼1000 genes encoding ECM and ECM-

associated proteins [44, 45]. The nature of many ECM proteins (large size, cross-linking, 

disulfide bonds, glycosylation, unique post-translational modifications, requirement of 

chaotropic agents for solubilizing etc.) has hindered their biochemical analysis and, until 

recently, only surrogate measurements (transcript levels, immunohistochemistry) were 

available to study the composition of in vivo ECMs. Mass spectrometry-based proteomics 

has emerged as a valuable method to study the global composition of the ECM of tissues and 

organs [46–54] (Figure 2). The adult murine lung matrisome comprises 143 matrisome 

proteins that can be divided into core matrisome proteins (glycoproteins, collagens and 

proteoglycans) and matrisome-associated proteins (including remodeling enzymes and 

ECM-affiliated proteins) [48, 53, 54] (Table 1). Proteomics has been applied to study the 

dynamics (turn-over or degradation vs. neo-synthesis) of the ECM compartment in a mouse 

model of lung fibrosis [53, 55], and more recently to human end stage interstitial lung 

disease. These studies have identified sets of matrix proteins upregulated during the course 

of the fibrotic response [56–58]. Such studies will aid in determining how global 

composition and organization of the lung ECM changes over time and in the context of 

disease progression.

The development of an atlas of the lung ECM using experimental models and human 

samples and, using the methods outlined below, has the potential to accelerate knowledge of 

ECM composition and dynamics. The atlas would compile ECM profiles of normal 

(different developmental stages, adults) and diseased lung tissues and would, in addition, 

include regional characterization (pleura, trachea, bronchi, alveolar interstitium, vessels, 
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upper lobe vs. middle lobe vs. lower lobe). The atlas would integrate global “-omics” data to 

include: (1) quantitative proteomics to identify ECM isoforms and post-translational 

modifications (such as cross-linking, phosphorylation, etc.) [59]; (2) ECM degradomics to 

identify the release of active cryptic fragments of ECM proteins that play key roles in 

disease progression, and to identity neo-epitopes within the ECM that could serve as 

biomarkers of disease progression or response to treatment [60, 61]; and (3) glycomics to 

identify the nature and abundance of polysaccharides and glycosaminoglycans (GAGs) in 

the lung ECM [62].

Newer -omics technologies will help unravel the complex interactions of genes, proteins, 

lipids and metabolites at unprecedented levels of detail and resolution. Such methods are 

comprised of proteomics analysis, including post-translational modifications and activity 

measurements at ever-lower protein concentrations, single cell fluorescent in situ 
hybridization (FISH) for multiple gene transcripts, and mass spectrometry imaging 

approaches for proteins, metabolites and lipids [63–70]. For example, a large compendium 

of peptides identified in a large set of tandem mass spectrometry proteomics experiments 

from multiple organisms is publicly available (www.peptideatlas.org). Many of these 

approaches, along with additional imaging platforms (CT, MRI, phase-contrast X-ray, 

cryomicrotome/optical, confocal, and immunohistochemistry) are currently being utilized by 

NHLBI’s LungMAP consortium to create an open-access reference resource and 

comprehensive 3D tissue/cellular/molecular atlas of the late-stage developing mouse and 

human lung (www.LungMAP.net). There are limitations of “omic” type data, specifically 

due to variations in sample processing, analytical techniques, and normalization of resulting 

data. These limitations are primarily evident with low abundance proteins that may exhibit 

marked inter- and intra-sample variation. However, both spatial (location relative to 

structures, cells, and other ECM proteins) and temporal data can be obtained when 

techniques such as in situ proteomics complement “omic” studies, and when samples are 

analyzed in series. Together, these data will provide important clues to the identification of 

structural and regulatory events that occur during lung development, injury, and repair.

In addition to compositional changes of the ECM with disease progression, the architecture 

of the ECM also changes as indicated by methods that monitor the ECM at the 

macromolecular scale; one example of such approaches is second harmonic generation 

microscopy [71]. Finally, technologies are needed to study not just ECM composition and 

remodeling, but also the post-translational modifications that affect the function of various 

ECM proteins. Just as cross-linking of collagens can be measured biochemically with 

lysylpyridinoline, hydroxylysylpyridinoline and pentosidine [72, 73], imaging of such 

crosslinks using nondestructive methods is likely to be informative. There is ample 

experimental evidence that sulfation, glycosylation, tyrosine cross-linking, and glycation 

(among others) are all potentially deranged in human lung diseases [74–77]; visualizing 

such changes in real-time will further enhance our understanding of the functional 

significance of such post-translational modifications.
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4. ECM Topography and Biomechanics

Matrix topography and stiffness are major physical properties of the ECM. Matrix 

topography refers to the structural characteristics of the ECM. It includes the architecture, 

geometry, size and organization of the matrix network, ranging from the nano-scale level to 

the macro-scale level. The most substantial influence of matrix topography on cells is the 

impact on cell morphology. Aligned matrix fibers generate anisotropic stress that changes 

cell shape by a process known as contact guidance [78]. Matrix topography also regulates 

stem cell differentiation and cancer cell invasion. Human mesenchymal stem cells cultured 

on titanium dioxide nanotubes with various dimensions differ in cell morphology. Larger 

nanotubes promote mesenchymal stem cell elongation and differentiation into osteoblasts in 

the absence of osteogenic media, whereas smaller nanotubes permit stem cell adhesion 

without significant osteogenic differentiation [79]. In a 3D cell invasion model, highly 

aligned collagen matrices promote breast cancer cell invasion as compared to low alignment 

collagen matrices [80]. In normal mammary tissues, collagen fibers are arranged in parallel 

to epithelium and along the axis of the gland. However, carcinoma-associated fibroblasts 

remodel tumor ECM and reorient collagen fibers perpendicular to the gland. Such 

reorganized collagen fibers could act as “highways” to facilitate breast cancer cell invasion 

into the neighboring tissues [81]. Interestingly, lung (myo)fibroblasts isolated from patients 

with IPF are characterized by an invasive phenotype [82–84]. Stiffened fibrotic ECM 

promotes IPF lung myofibroblast invasion into the basement membrane through expression 

of mechanosensitive α6 integrin on the cell surface [84]. It has been observed that matrix 

fibers are arranged with their long axis parallel to the long axis of the alveolar septa at the 

fibroblastic foci in IPF/UIP [85]. The highly organized, anisotropic matrix fibers and 

specific integrins may aid IPF (myo)fibroblast invasion to form a continuous fibrotic 

reticular network (Figure 3).

To date, the mechanotransductive mechanisms involved in the conversion of matrix 

topographic and stiffness cues into intracellular signals remain poorly understood. Integrins 

are important signal molecules and membrane receptors that link the cytoskeleton to the 

ECM. The ECM-integrin-cytoskeleton complex potentially acts as a molecular clutch in the 

process of contact guidance. Specific topographic features of the ECM may transmit cell 

signals by spatially biased focal adhesion formation, preferential actin cytoskeletal 

remodeling, and/or confined protein absorption and patterning [86, 87]. Additionally, matrix 

topography induces deformation of nuclear architecture, which may alter the profile of gene 

expression [88].

Many micro/nanofabrication technologies have been developed for tissue engineering 

applications. These technologies can be utilized to create geometrically defined matrix 

structures for the study of matrix topography-cell interactions. For example, electrospinning 

creates fibrous scaffolds with controlled orientation distributions (e.g., random fibers, 

aligned fibers) [89]. Both natural polymers, such as collagen, and synthetic polymers have 

been used to create electrospun nanofibers. In contrast, photolithography employs light to 

produce defined topographic features, such as grooves, pillars and pits [90]. A recently 

developed topography array incorporates thousands of distinct topographical units on a 

single chip to enable systematic and high throughput studies of cell-matrix interactions [91].
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Biomechanics of lung ECM have been studied using atomic force microscopy (AFM) to 

analyze micromechanical tissue properties. While this method is invasive and, thereby, 

imposes substantial alterations from the physiological state of perfused and ventilated lung 

within the intact thoracic cavity, it has the advantages of high sensitivity and spatial 

resolution [92]. Using AFM, it has been possible to compare the elastic or Young’s modulus 

of normal and fibrotic lung tissues, with pronounced increases in tissue elastic modulus 

(stiffening) identified in human IPF-derived lungs both before and after decellularization 

[93], and similar changes are observed in intact tissue obtained from mouse models of lung 

fibrosis [92, 94]. AFM methods have also allowed regional differences in lung ECM 

properties to be measured, including higher modulus values in the pleura and vessels 

compared to the alveolar walls in decellularized lung matrices [95–97], and higher modulus 

values in the airways than in the surrounding parenchyma in intact lung tissue [98]. Some 

systematic differences in measured mechanical properties are observed across these studies, 

in tandem with variations in the specific AFM methodologies applied (e.g. tip size and 

shape, indentation depth and velocity) and methods of tissue preparation (e.g. intact versus 

decellularized tissue, thickness of tissue slice). Thus, while the overall trends consistently 

demonstrate increased tissue stiffness in fibrotic parenchyma, and increased moduli of 

pleura and conducting airways and vessels relative to alveolar regions, it will be important to 

systematically test the influence of tissue preparation and AFM methodology to gain greater 

confidence in the quantitative values reported for lung tissue mechanical properties. Building 

on current approaches, AFM should be coupled with other optical techniques to correlate 

local mechanical properties with the underlying architecture, and perhaps even composition, 

of the ECM, to provide novel insights into structure-function relationships of the lung ECM. 

In addition to the study of fibrosis, AFM mechanical characterization should also be applied 

to the study of other chronic lung remodeling diseases, such as COPD, asthma and 

pulmonary hypertension; additionally, such approaches could be extremely valuable in 

characterizing the mechanical microenvironment of the developing lung [32, 38, 99].

Multiple lung cell types, including fibroblasts, macrophages, epithelial and endothelial cells 

exhibit functional changes that depend on matrix stiffness spanning the range observed in 

normal and diseased lung tissue [32, 92, 94, 100–106]. Matrix stiffness effects are typically 

observed in hydrogels, silicon rubbers, and natural biomaterials through changing bulk 

polymer concentration, crosslink density between polymer chains, or a combination of the 

two; these materials can be fabricated over a wide range of stiffness from 101 to 106 Pascal 

(a unit of stiffness) [107]. Once seeded on these substrates, matrix stiffness-stimulated 

intracellular signaling appears to occur through conserved growth factor- or transcription 

factor-mediated pathways. For example, increasing matrix stiffness enhances the capacity of 

cells to generate tractions, the forces that cells transmit to the ECM [106] and, thereby, 

activate TGF-β from a latent matrix-bound form [94, 108], linking matrix stiffness to 

activation of matrix synthesis. Increasing matrix stiffness also engages and activates the 

mechanoregulatory transcription factors, MRTF [102] and YAP/TAZ [109] in lung 

fibroblasts (see Section 6 for more details). Pharmacological inhibition of Rho kinase 

upstream of MRTF-A [110], or MRTF itself [109], attenuates bleomycin-induced fibrosis, 

while expression of constitutively active YAP or TAZ confers fibrogenic potential to 

fibroblasts adoptively transferred to the lungs [109]. Interestingly, human fibroblasts isolated 
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from patients with IPF remain responsive to inactivation of these pathways [109, 110], and 

to changes in matrix stiffness in general [105], suggesting that targeting the matrix 

mechanical environment or its downstream signaling pathways may be beneficial in diseases 

of aberrant matrix remodeling.

5. The ECM in Emphysema

COPD-emphysema (termed COPD here) is a prototypical disease of aberrant lung ECM. 

The association of excessive elastase activity with alveolar wall breakdown in animal models 

coupled with the accelerated COPD phenotype in persons with alpha-1 antitrypsin 

deficiency supports the concept of a protease-antiprotease imbalance [111]. However, 

several recent observations suggest greater complexity to this paradigm: (a) increased elastin 

and collagen content in distal compartments of COPD lungs; (b) small airway fibrosis in 

COPD lungs; (c) emerging subphenotype of combined pulmonary fibrosis and emphysema 

(CPFE); (d) genetic emphysema syndromes with perturbations in matrix turnover and TGF-

β1 pathways; and (e) impaired antioxidant defenses in COPD lungs. These findings invoke a 

pathogenetic scheme in which altered matrix composition may not only reflect upstream 

signaling disturbances, but also direct adverse sequelae in the distal lung.

ECM content in COPD lungs

The predominant matrix elements in the distal lung are collagen I, collagen III and elastin 

[12]. Collagen I likely confers tensile strength; collagen III, flexibility; and elastin, recoil 

properties. In the COPD lung, the combination of tissue destruction and matrix remodeling 

leads to dynamic changes in matrix content reflecting primary disturbances and 

compensatory responses. Although single time-point analyses of matrix composition do not 

fully describe the sequence of changes throughout the course of the disease, our current 

understanding of the lung ECM is almost exclusively based on such approaches. Cross-

sectional studies albeit with small sample sizes consistently show an increase in collagen 

content and altered fibril morphology in lungs of patients with moderate and severe COPD 

[112–114]. Abnormal elastin fibers (fragmented, clumped) with variable changes in elastin 

content are evident in emphysematous lungs [112, 113, 115, 116]. Animal models of 

emphysema, typically involving airway elastase instillation or chronic cigarette smoke 

exposure, also demonstrate increased collagen and elastin synthesis with matrix deposition 

during the establishment and progression of the airspace lesion [117–121]. Various other 

ECM components such as proteoglycans, basement membrane components and matrix 

binding properties are variably altered in human COPD lungs and animal models of 

emphysema. Lung proteoglycans, known to be increased in COPD, can also inhibit elastic 

fiber assembly [116, 122]. These data support a more complex process of ECM destruction 

and defective repair contributing to altered biomechanical forces, COPD development and 

progression. Whereas much research in patients and animal models has focused on the ECM 

destruction, the mechanisms of aberrant repair are poorly detailed. A better understanding of 

the repair axis is crucial as efforts to reconstruct the damaged COPD lung will need to 

integrate the correction of adverse reparative cascades and the re-initiation of normal matrix 

synthesis and regenerative programs.
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Small airway fibrosis in COPD lungs

Airway obstruction in COPD is primarily caused by architectural and functional changes in 

small airways attributed to both loss of alveolar attachments (feature of emphysema) and 

airway wall thickening [123–125]. Several studies demonstrate a significant component of 

airway wall remodeling with specific matrix alterations in COPD. Increased collagen with 

reduced elastin in the small airways of COPD lungs has been observed [126–128]. More 

recently, a loss of distal airways effectively destabilizing the distal airspace has been found 

to punctuate COPD [129]. How abnormal matrix composition interfaces or contributes to 

airway loss is unclear. Clearly, the widespread notion that matrix alterations are divergent in 

the airway and airspace (increased and reduced, respectively) ignores the consistent 

abnormalities present in both compartments, as described above. However, relative 

differences in the expression of matrix proteins in alveolar versus airway compartments in a 

murine COPD model suggest that there may be temporal and compartmental distinctions in 

the reparative response [130]. By this paradigm, a persistent repair response in the airway 

culminates in airway fibrosis, while an attenuated response in the alveoli manifests in 

airspace enlargement.

Combined pulmonary fibrosis and emphysema

A recently recognized subphenotype of COPD is CPFE, an underdiagnosed disorder 

manifesting in coexisting pulmonary fibrosis and emphysema [131, 132]. Although 

standardized diagnostic criteria are lacking, several cross-sectional and observational studies 

suggest that the prognosis for CPFE may be worse than that for emphysema or pulmonary 

fibrosis alone [133–136]. The demonstration of increased collagen content in the airspace 

and small airways of COPD lungs may provide a unifying mechanism for this phenotype. In 

this view, the primary or compensatory increase in collagen deposition in COPD represents 

an early fibrotic response coincident with developing emphysema. A second hit (cigarette 

smoke, oxidative stress, inflammation) or simply temporal progression may confer the full 

CPFE phenotype. Further studies of the CPFE phenotype are required to determine the 

underlying mechanisms for this mixed phenotype.

Genetic emphysema syndromes

Whether genetic disorders displaying progressive airspace enlargement can inform the 

understanding of acquired COPD-emphysema is debatable. These syndromes do establish 

that defects in ECM composition and TGF-β signaling cascades can lead to airspace 

dysmorphology. Emphysema is a minor phenotype of cutis laxa, Marfan Syndrome and 

vascular Ehlers Danlos Syndrome, single gene disorders caused by mutations in ECM 

proteins (fibulin 5, elastin, fibrillin 1, collagen III, latent TGF-β binding proteins, 

respectively) [137–142]. Whereas several GWAS studies of COPD-emphysema patients did 

not reveal any matrix proteins as candidate genes, a recent tissue profiling analysis identified 

fibulin 5 as a candidate COPD gene [143–146]. Additionally, distinct genes in the TGF-β 
pathway have been implicated in genetic and gene expression studies of COPD [143, 147–

149]. This suggests that COPD may result from either primary disturbance in matrix 

remodeling pathways (e.g. TGF-β1, matrix metalloproteases), secondary mechanisms 

conferring matrix abnormalities (e.g. exaggerated repair cascades), a combination of these, 
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or processes altogether distinct from genetic matrix disorders. Additionally, a distinct subset 

of COPD patients may have low abundance pathogenic alleles in matrix proteins mimicking 

Mendelian disorders of the matrix. Identification of novel candidate genes in well-

characterized subphenotypes of COPD may contribute to our understanding of 

pathophysiologic patterns of matrix remodeling.

Antioxidant defenses in COPD

Oxidative stress is a known contributor to COPD development and progression, evident in 

both patient-based studies and animal models [150, 151]. An interesting connection between 

the abnormal matrix of COPD and oxidative stress is the antioxidant superoxide dismutase 3 

(SOD3). This isoform of SOD is secreted and distributes in the extracellular space. Recent 

studies provide evidence of SOD3 binding to the ECM proteins, fibulin 5 and collagen I 

[152, 153]. Reduced SOD3 levels have been documented in murine models of BPD and 

COPD, likely through inhibition of ECM fragmentation and subsequent chronic 

inflammation [154, 155]. Genetic studies have also implicated SOD3 as a candidate gene for 

reduced lung function and COPD [156, 157]. Further exploration of the lung matrix as a 

repository for regulatory proteins that determine lung homeostasis is warranted.

Recent studies of COPD have allowed investigators to move beyond the 

protease:antiprotease paradigm to incorporate emerging concepts regarding the complex, 

dynamic aspects of matrix deposition and turnover that define the disease. These 

mechanisms could determine both COPD severity and progression. Future research efforts 

should not only characterize the alterations in matrix content and organization in COPD, but 

also explore strategies to engage reparative and regenerative pathways that restore lung 

structure and function.

6. The ECM in Fibrosis

Alveolar epithelial injury induces a stereotypic response characterized by disruption of the 

alveolar basement membrane and the deposition of a provisional matrix rich in fibrin and 

fibronectin. Reparative fibroblasts are recruited to this milieu where they replace and 

remodel the provisional matrix into a more organized and cross-linked collagen-rich matrix 

[158]. In most cases, the repair response resolves with formation of a physiologic scar that 

does not disrupt tissue architecture or function. Such resolution of wound repair with the 

restoration of homeostatic function requires the clearance of excessive extracellular matrix 

and the apoptosis of the fibroblast/myofibroblast population [158]. These processes must be 

tightly regulated, both temporally and spatially, as the impaired loss of fibroblasts and 

insufficient clearance of matrix is associated with fibrosis while extensive loss of fibroblasts 

and matrix might lead to emphysema [159, 160]. The precise mechanisms regulating 

collagen turnover and fibroblast apoptosis, and the extent to which these biologic processes 

are linked, remain poorly understood.

The capacity of the injured lung to heal is perhaps best exemplified by the clinical course of 

patients with acute respiratory distress syndrome (ARDS). Regardless of cause, ARDS 

manifests as diffuse alveolar damage with a rapid reparative response characterized by the 

upregulation of collagen detected in the alveolar space [161, 162]. Consistent with other 
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studies of wound repair, the resolution of ARDS is associated with evidence of fibroblast 

apoptosis within airspace granulation tissue [163]. Despite the extensive injury and the 

associated fibrotic response, the majority of ARDS survivors have normal or near-normal 

restoration of lung mechanics and gas exchange over the course of a year [164].

The ability of the chronically injured lung with established fibrosis (or emphysema) to heal 

or regenerate is less well established. Evidence in other organs, including kidney, liver, and 

muscle suggests that fibrosis is not, in and of itself, an irreversible process [165–169]. 

Furthermore, existing evidence in both human lung disease and animal models supports the 

concept that fibrosis can resolve [110, 163, 170, 171]. Nevertheless, it is unclear why 

fibrosis is persistent and progressive in certain disease processes such as IPF. An extensive 

body of literature demonstrates that “pro-fibrotic” soluble and matrix factors stimulate 

fibroblast synthesis of collagen and other matrix components. However, the mechanisms 

regulating matrix degradation, and how these mechanisms are perturbed in chronic lung 

disease, have received far less attention [160]. An impaired tissue degradative environment 

has been observed in both pulmonary fibrosis and fibrosis in other organ systems [172, 173]. 

In IPF patients, for example, there is an imbalance between the production of MMPs and 

TIMPs with an increase in the ratio of TIMPs:MMPs at the site of scar formation [173]. 

There is a similar decrease in MMP expression in fibrotic livers [174]. Lysates of tissue 

biopsies taken from the skin and lungs of scleroderma and IPF patients, respectively, have 

reduced ability to degrade collagen in vitro as compared with control biopsy samples [173, 

175].

Matrix turnover involves both extracellular proteolysis and cell-mediated uptake of cleaved 

matrix fragments [176]. Recent evidence has emerged that genetic mutant mice with 

impaired cell-mediated collagen uptake develop more severe fibrosis in response to lung 

injury suggesting that the cell-mediated pathway, in addition to the proteolytic pathways 

[177, 178], is important in regulating the severity of tissue fibrosis [179, 180]. The 

mechanisms by which cell-mediated removal of collagen fragments promote resolution of 

fibrosis is less well understood. One possibility is that collagen internalization negatively 

regulates the production of new collagen/matrix by either the cells ingesting collagen or 

cells adjacent to those ingesting collagen.

A recent RNAi-based genomic screen of cell-mediated collagen internalization has 

identified several other mediators of the intracellular pathway [181]. In addition to 

identifying the flotillin family of vesicle transport proteins as functioning upstream of 

uPARAP/endo180 in regulating collagen turnover, the screen also identified two candidate 

genes, fibroblast activation protein and ATG6/Beclin-1, which have been shown to be 

important in in vivo collagen degradation [182, 183]. The emerging role of autophagy in 

collagen uptake and degradation coupled with recent studies linking impaired autophagy 

with lung fibrosis, warrants further investigation of the mechanisms by which autophagy 

regulates collagen turnover [184–187].

The cells principally responsible for the clearance of collagen have not been elucidated. 

Macrophages, fibrocytes and fibroblasts have all been shown to ingest extracellular collagen, 

and fibrocytes may be even more efficient than fibroblasts [188]. A prominent role for 
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macrophages in collagen resorption is supported by mouse models where genetic deletion or 

pharmacological depletion of macrophages during the remodeling phase of experimental-

fibrosis reduces scar resolution [189–191]. We speculate that fibroblasts may be the 

predominant cell involved in collagen turnover under homeostatic conditions, while 

recruitment of macrophages and/or fibrocytes enhances the capacity for collagen clearance 

in response to lung injury.

The kinetics of collagen turnover in the lungs of patients with IPF remain poorly understood. 

Specifically, while it is accepted that lung collagen is continuously turned over [179, 192–

194], it is unclear whether there exist pools of collagen that are rapidly turned over versus 

pools that are more stable and long-lived or whether all lung collagens turn over at similar 

rates [195]. Scar tissue contains a number of other matrix molecules in addition to fibrillar 

collagens. The relative amounts of each of these matrix molecules are beginning to be 

understood through proteomic analysis [55]. How these molecules physically interact with 

each other remains unclear, as does whether the three-dimensional structure of a scar 

prevents access of proteolytic enzymes to their target sites on collagen, thereby, inhibiting 

the ability for collagen breakdown.

The fate of the matrix is intricately linked with the fate of the (myo)fibroblasts and, in the 

context of fibrotic repair, interactions between the ECM and fibroblasts can establish a 

“feedforward” amplification loop in which myofibroblasts produce matrix and the matrix, in 

turn, activates signaling pathways that support fibroblast survival [92, 196] (Figure 4). For 

example, matrix adhesion is essential for myofibroblast differentiation and survival, and 

these fibroblast phenotypes are further modulated by the biomechanical properties of that 

extracellular matrix [92, 110, 197–200]. The ability of fibroblasts to sense biomechanical 

properties of the ECM affects phenotype, survival and resolution of fibrosis [201, 202], but 

the mechanosensory apparatus of fibroblasts is poorly understood. The pro-fibrotic cytokine 

TGF-β1 is also a potent stimulus for myofibroblast differentiation and survival [159, 197, 

199, 203]. Moreover, the matrix serves as a reservoir for latent TGF-β1 and activation of 

TGF-β1 from its latent form can be achieved either through proteolytic mechanisms or 

through a non-proteolytic mechanism mediated by a stiff extracellular matrix [108]. While 

the ECM and TGF-β1 may each promote myofibroblast differentiation and acquisition of an 

apoptosis-resistant phenotype, and each interacts with and influences the other, matrix 

regulation of fibroblast phenotype may occur independent of TGF-β activation [93, 102, 

204].

Supporting the interactions between TGF-β1 and matrix-mediated signals in the coordinate 

regulation of myofibroblast differentiation and survival, TGF-β1 and rigid extracellular 

matrices utilize common upstream mechanisms, including focal adhesion kinase (FAK) and 

Rho kinase (ROCK) to regulate transcriptional events dependent on serum response factor 

(SRF) and myocardin-related transcription factor (MRTF), and/or YAP-TAZ [102, 110, 205–

208]. Specifically, TGF-β1 and/or matrix stiffness-mediated activation of FAK, RhoK, SRF/

MRTF, and YAP-TAZ have been shown to promote myofibroblast resistance to apoptosis 

through induction of inhibitor of apoptosis proteins including X-linked inhibitor of 

apoptosis, survivin, anti-apoptotic BCL-2 family proteins, and through upregulation of 

plasminogen activator inhibitor-1 (PAI-1), a serpin protease inhibitor that blocks fibroblast 
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apoptosis induced by plasmin-mediated fibronectin proteolysis [110, 198, 200, 209]. 

Although the mechanistic hierarchies have not been established and the interactions between 

matrix and soluble factors in the regulation of each kinase and their transcriptional 

regulators have yet to be delineated, each of these mediators and proteins has been shown to 

be increased within the fibroblastic foci of lung tissue from patients with IPF and/or in lung 

fibroblasts explanted from patients with IPF [110, 209–212]. Moreover, inhibition of each 

has been shown to enhance fibroblast susceptibility to apoptosis in vitro and promote the 

resolution of lung fibrosis in vivo.

In summary, accumulating studies support the concepts that: (1) matrix accumulation is 

necessary for fibrogenesis and resolution of fibrosis requires matrix degradation; (2) matrix-

generated signals maintain an apoptosis-resistant myofibroblast phenotype utilizing 

mechanisms that coordinately regulated by TGF-β1 signaling; (3) disruption of fibroblast-

matrix interactions can induce fibroblast apoptosis while blockade of matrix-mediated 

signals can enhance fibroblast susceptibility to apoptosis; and (4) inhibition of matrix-

derived signals that promote fibroblast survival is associated with resolution of lung fibrosis 

in murine models. There is relatively limited knowledge about the biological pathways that 

regulate matrix resorption and myofibroblast apoptosis, the degree to which these processes 

might be linked, and whether these processes are amenable for therapeutic intervention. 

Understanding the mechanisms regulating matrix turnover and fibroblast apoptosis, and how 

these mechanisms are perturbed, is critical for the identification of novel strategies to 

promote the resolution of lung fibrosis.

7. The ECM in Inflammation and Autoimmunity

The lung microvasculature provides a vast surface area where circulating and activated 

immune cells mount an appropriate response to eliminate invading pathogens. Although an 

influx of immune cells into the lungs is designed by nature to protect the host against 

harmful infectious insults, excessive innate and adaptive immune responses to environmental 

exposures may promote chronic inflammation that destroys the lung parenchyma [213, 214]. 

Specifically, chronic exposure to a variety of inhaled noxious stimuli such as environmental 

pollutants, cigarette smoke, and other sterile toxic fumes could promote recruitment and 

activation of inflammatory cells in the lungs. Adaptive immune cells such as autoreactive T 

lymphocytes, directed against the lung’s structural molecules or it ECM components, can 

induce inappropriate immune responses that could trigger lung destruction. Therefore, while 

activation of innate and acquired immunity are critical in host defense against invading 

organisms, activated immune cells could evoke untoward responses and promote 

autoimmune inflammation in the lungs.

Many of the signals that result in aberrant activation of immune cells are embedded within 

the normal lung stroma that, when altered, are processed and presented by the antigen 

presenting cells (APCs) to lymphocytes in the context of the MHC complex [215, 216]. 

While APCs can take in and process many self- and foreign proteins, they require additional 

signals to become activated and initiate acquired immune responses at the sites of 

inflammation [217]. Proteolytic degradation or modification of ECMs (e.g., proteoglycans, 

fibrillar collagens, glycoproteins, elastin, etc.) could generate new antigens that bind and 
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activate immune cells in the lungs [218–220]. For example, fragments of human lung elastin 

formed through cleavage by neutrophil elastase have been shown to be chemotactic for 

monocytes [221], and are strongly immunogenic as demonstrated by the presence of elastin-

specific autoreactive T cells in smokers with emphysema [222]. Therefore, in susceptible 

smokers, in response to specific antigens (e.g., elastin fragments), T lymphocytes proliferate 

or induce B cells to make autoreactive antibodies to promote chronic inflammation.

Another example of how ECM breakdown can directly affect immune cell activation is the 

potent bioactive tripeptide, proline-glycine-proline (PGP), proteolytic fragments of type I 

collagen. PGP is a molecular mimic of several CXC chemokines, such as IL-8, and attract 

neutrophils through binding to their CXCR1 and CXCR2 receptors [223]. MMPs with 

strong gelatinolytic activity (e.g. MMP2, MMP9, and MMP13) are released by fibroblasts 

and innate immune cells; cleavage of collagen by prolyl endopeptidase (PE) further degrades 

the gelatin fragments to form PGP [224]. Clinical and translational studies in smoking-

induced COPD support the concept that PGP-mediated inflammation in the lungs creates a 

positive feed-back system, which may be independent of acquired immunity [225] (Figure 

5).

In addition to affecting immune cell function by generating effector ECM fragments, MMPs 

can regulate their influx and activation by several other mechanisms [226]. For example, the 

macrophage secreted MMPs, MMP12 and MMP28, can either promote or restrict 

macrophage influx into the lungs [227, 228]; MMP28 and TIMP3 moderate pro-

inflammatory activation of macrophages [229, 230]. With respect to mechanisms, MMPs 

quite often affect chemokine availability or activity either directly, by modifying the protein, 

or indirectly by acting on proteins that modulate their activity [231–233].

Some of the key questions remaining is how newly formed fragments of endogenous 

proteins and peptides activate immune cells and promote chronic indolent inflammation in 

the lungs. ECM molecules collectively play an important role in orchestrating the flow of 

immune cells in and out of the lungs; thus, deciphering how ECM-derived fragments shape 

immune cell activation represents a major challenge for future investigations. More 

importantly, it is not clear how ECM-mediated activation of immune cells selectively 

perpetuate recruitment of inflammatory cells into the lungs. Approaches such as deep 

sequencing and proteome-wide screening may identify the global effects of different ECM-

derived pathways that promote inflammation. Additionally, identification of specific ECM-

derived mediators that act upstream of immune cell activation may provide opportunities for 

therapeutic intervention.

8. The ECM in Regulation of the Stem Cell Niche

Elucidating the regenerative potential of lungs in adult life is critical to the potential 

reversibility of emphysema and/or fibrosis in humans. However, closing gaps in our 

knowledge of lung regeneration is limited by the lack of understanding of the composition 

and maintenance of stem cell niches along the respiratory tract [234–236]. A major 

challenge is to “decode” the mechanisms by which the normal ECM regulates the stem cell 
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niche within the lungs. It also remains to be defined how the altered ECM influences niche 

dysfunction and stem cell behavior in diseased lungs.

Within the alveolar compartment, alveolar epithelial cells (AECs) are closely associated 

with various cell types such as vascular, mesenchymal, and immune cells. Lipofibroblast 

cells localized between capillary endothelial cells and AECs have been shown to regulate the 

proliferation and differentiation of type II AECs which function as facultative stem cells of 

the alveolar epithelium. Deposition of stem cell-active ECM proteins or proteolytic 

deployment of encrypted ECM fragments by niche cells could evoke proliferation and 

modulate differentiation of alveolar stem cells. Thus, uncovering how individual cell types 

deploy ECM to orchestrate regenerative alveolarization would potentially fill a large gap in 

our current knowledge of stem cell niches within the lungs; this would also provide an 

opportunity to mimic these conditions using bioengineering approaches to develop more 

realistic niches ex vivo [236].

There are several potential challenges to decoding the ECM in the lung stem cell niche. 

First, it is critical to generate a “matrix footprint” by identifying niche-derived ECM factors 

that modulate alveolar stem cell function, including MMPs, serine proteases, and specific 

matrix proteins. This will also provide clues to which biochemical and/or biophysical 

properties of the niche may be capable of guiding stem cell fate. Second, determining how 

endothelial cells, mesenchymal/stromal, immune and other supporting niche cells 

coordinately mobilize proper ECM signals to stimulate functional repair and avoid 

maladaptive repair/fibrosis is essential. It is important to recognize that niche ECM may be 

critical to the support and maintenance of niche cells, in addition to the stem cells 

themselves. Third, a long-term goal would be to exploit bioengineering tools to rebuild a 

faithful niche that recapitulates and facilitates the endogenous stem cell-niche crosstalk. To 

engineer such synthetic polymer, hybrid, and natural materials, the required tools should 

include polymer chemistry to create new materials, photolithography to pattern materials, 

electro-spinning to manufacture these materials, and methods to ensure that the intended 

properties to be mimicked in the system are indeed present. Such tools will also aid in 

determining whether the ECM can be manipulated to favor therapeutic lung regeneration.

To this end, there is an urgent need to develop ex vivo “macroscale” models to interrogate 

stem cell niches in the lung. For example, establishing stem cell-niche cell co-culture 

systems and organotypic models would be helpful to interrogate how the niche-derived ECM 

imposes the stemness and modulates the balance between regeneration and fibrosis in the 

injured lung. Generating efficient ex vivo co-culture models encompassing both alveolar 

stem cells and supporting niche cells would permit for mechanistic delineation of cell type-

specific contributions in lung stem cell niche. Traditional biochemical means or high-

throughput screening systems could be employed in these models to uncover the molecular 

basis of stem cell-niche cell crosstalk, including responsible ECM molecules deployed by 

niche cells and corresponding receptors on stem cells. Once the critical ECM components 

and niche cell types are mapped out, niche re-construction using engineered scaffolds would 

be an ideal approach to recapitulate the pro-regenerative “matrix footprint” ex vivo. 

Decellularized tissues may be used as a bioreactor that expands different types of lung stem 

cells and fosters the crosstalk between stem cell and their niches [237]. In addition to these 
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biochemical considerations, it is also critically important to ensure that cells in this artificial 

niche experience the appropriate mechanical environment. Lung is a very dynamic tissue, 

and it is important that, in addition to passive stiffness, the niche is also capable of 

recapitulating cyclical strain typically placed on it during the breathing cycle. Approaches 

such as these may inform strategies for more effective cell-based therapies in the future, and 

provide more fastidious pre-clinical models to assess the efficacy of pro-regenerative 

therapies.

Establishing animal models of lung regeneration is also pivotal for defining the important 

characteristics of a lung stem cell niche. Further characterization of animal lung injury 

models such as hyperoxia, influenza infection, and pneumonectomy would be crucial for 

revealing the molecular and cellular basis of lung regeneration. By combining “cell-type 

specific” lineage tracing and “gain and loss function” genetic tools, these animal models 

would allow us to unravel and verify the functional contribution of key niche ECM 

molecules during regenerative alveolarization. Of note, one of the most rigorous assays to 

demonstrate stem cell activity is to test the diverse cell lineage reconstitution in an in vivo 
transplantation system [238]. While limiting dilution transplantation assays have been 

widely used for the study of hematopoietic stem cells, lung stem cell research has been 

hindered by the paucity of a faithful cell transplantation system. Developing a lung 

regeneration/repair model that facilitates functional engraftment of lung stem cells would be 

invaluable to test, not only the attributes of particular stem cells but, the mechanisms by 

which host niche cells regulate the homing, adhesion, engraftment and differentiation of 

transplanted stem cells. As such, mechanistic revelation of the ECM biology in lung stem 

cell niches requires establishment of both animal models of lung regeneration and cell 

lineage-specific genetic approaches. These in vivo platforms will allow for stringent 

interrogation of the in vivo crosstalk between stem cells and niche cells in lung regeneration 

that will potentially enable design of pre-clinical models for regenerative therapy.

9. ECM-Based Therapeutics

Recent Phase II/III clinical trials in IPF have targeted ECM composition, crosslinking, 

and/or matrix-driven signaling [239]. Matrix crosslinking, in particular, seems to be a 

promising therapeutic target [240, 241]. Targeting the balance of proteases and antiproteases 

has long been recognized as a potential therapeutic strategy for disorders of excessive matrix 

accumulation; however, this strategy is complicated by the promiscuity and redundancy of 

protease-antiprotease pathways, which activate and inactivate a broad array of biochemical 

signals in addition to, or as a direct result of, their effects on matrix turnover. For example, 

MMP-8, which is a collagenase, is actually pro-fibrotic via inactivation of particular 

chemokines [242]. Additionally, matrix fragments may have potent and deleterious 

inflammatory activity. Nevertheless, altering the balance of collagen production and 

degradation (collagen turnover) remains an important therapeutic strategy to promote 

resolution of fibrotic remodeling. An intracellular pathway of collagen turnover may be 

advantageous, in that it avoids the “friendly fire” problems associated with extracellular 

proteolysis [179, 180]. Emerging strategies for promoting beneficial matrix turnover include 

engineering collagenolytic cells for adoptive transfer, or engineering collagen-degrading 

bacteria.
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Another promising approach is targeting or mimicking microRNAs (miRs) which regulate 

ECM biogenesis. For example, miR-29 mimicry with synthetic RNA duplexes blocks 

fibroblast collagen synthesis and attenuates bleomycin-induced fibrosis [243]. Matrix 

signals, particularly those associated with mechanical force, are transmitted through 

integrins; thus, there are numerous strategies to target particular integrin subunits or integrin-

activated signaling cascades [84, 110, 244–246]. Integrin targeting should be undertaken 

with caution, however, as exemplified by the findings that broad targeting of αv integrin 

may be beneficial for fibrosis [245], whereas targeting αvβ3 specifically promotes fibrosis 

progression in the liver [247]. Increased understanding of mechanosensing and 

mechanotransduction is likely to uncover novel approaches for limiting deleterious 

responses of cells such as fibroblasts to an altered matrix environment.

10. Emerging Technologies to Study the ECM

The capability to monitor dynamic changes that occur in ECM, in living individuals over 

time, is a crucial aspect of comprehending the clinical significance of such changes in 

particular lung diseases. For example, recent technological advances in magnetic resonance 

imaging (MRI) and ultrasound have allowed us to begin addressing this goal. Magnetic 

resonance elastography (MRE) is a new tool being used to study hepatic fibrosis in the 

research setting. Using an ultrasound device compatible with magnetic resonance scanners, 

mechanical sound waves are generated through the liver while the individual is undergoing 

magnetic resonance scanning. Using specialized software with a modified phase-contrast 

gradient-echo sequence, data can be used to generate elastograms and calculate liver 

Young’s modulus [248]. Similarly, ultrasound-based approaches such as transient 

elastography, in which a controlled vibration produces a mechanical shear wave with 

consistent amplitude and frequency, clinicians can track the speed and depth of shear wave 

propagation through the tissue, represented in graphic form and as Young’s modulus 

(stiffness) [249]. Application of ultrasound for the assessment of the lung has been limited to 

qualitative and semi-quantitative assessments of projections from the lung surface and have 

not previously allowed a direct assessment of lung physiology or mechanics [250]. However, 

a recent study used ultrasound combined with speckle tracking software to analyze pleural 

displacement and showed that this method could be used to estimate lung strain in normal 

human volunteers and in a murine model of pulmonary fibrosis [250]. This study provides 

proof-of-concept that non-invasive imaging by ultrasound is a feasible strategy that may be 

developed as a tool for longitudinal assessments of lung stiffness.

Development and refinement of newer imaging technologies that afford greater spatial 

resolution than currently available must continue. In the lung, computed tomography (CT) 

scanning, either alone or in combination with radioactive tracers, positron emission 

tomography (PET) or single-photon emission computed tomography (SPECT), currently 

provides the greatest resolution and is the method of choice for 3D imaging. The most 

significant impediment to performing repeated CT imaging over time is the risk associated 

with radiation dose, although new CT systems to reduce the radiation dose are being 

developed. Additionally, improved image sequencing and compressed sensing image 

reconstruction algorithms are now being developed for MRI that have the potential for 

creating 3D images of lung tissues, comparable to CT, but without the risk of radiation dose 
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[251, 252]. These new approaches along with advancements in model-based image 

reconstruction that compensate for tissue motion cause by breathing or beating of the heart 

will ultimately facilitate 4D MRI to enhance our ability to evaluate heterogeneities in 

structural and functional changes in the lung. Many of these new image reconstruction and 

analysis approaches developed for MRI may also translate to CT or other complementary 

imaging modalities.

Combining higher-resolution imaging of tissue biomechanics with pulmonary function 

testing (for example, spirometry) could be transformative in patient care by allowing us to 

determine whether therapeutic interventions have the intended consequence of affecting 

matrix dynamics. However, these newer image reconstruction, segmentation, and analysis 

techniques will need to be automated to user-friendly interfaces to achieve broad acceptance 

in clinical settings. Similarly, developing probes or tracers for individual ECM components 

(including second harmonic generation microscopy) that can be imaged in real-time in living 

individuals will enhance our understanding of disease processes such as COPD, IPF, 

bronchiectasis, asthma, and even ARDS.

In parallel with improvements in clinical imaging technologies, there are also many 

developments in tissue engineering, imaging and analysis that will improve our 

understanding of the role of ECM in development, homeostasis and disease. Many of these 

new technologies have been developed using animal models and in vitro methods [253]. For 

example, ultra-high-resolution micro-CT approaches have been developed that can image 

the lungs of mice at 1–2 micron resolution. However, the high radiation doses preclude the 

ability to use such an approach in live animals [254]. Nevertheless, the ability to image the 

structures of the lungs from laboratory animals ranging from the trachea to the secondary 

lobules offers exciting opportunities for measuring changes in 3D structures of the lung, 

including the ECM at unprecedented resolution. Likewise, multiple laboratories are 

developing highly detailed 3D images of tissues including the lung using cryomicrotome or 

vibratome sections of frozen, embedded lungs. By including fluorescent markers for gene 

expression, proteins, inhalation or intravenously administered microspheres, etc., these 

techniques offer additional high-resolution 3D images of the lung that will be useful for 

evaluating the role of the ECM in lung function [255–258].

It is imperative that imaging of ECM degradation/turnover and synthesis be developed with 

enhanced resolution to better understand human disease processes. By making salient 

observations of the patient, we will be in a better position to enhance our model systems for 

studying the human lung. In addition to biochemical surrogates [259, 260], newer imaging 

tools that allow evaluation of collagen dynamics in patients over time would greatly 

contribute to our understanding of collagen metabolism during disease progression. 

Similarly, tools that would allow visualization of collagen ultrastructure within areas of 

fibrosis should help determine whether the three-dimensional structure of collagen 

embedded within a scar is stereotypically similar in different scars within the same diseased 

lung or different for each particular scar. Dynamic synthesis and breakdown of ECM (i.e. 

“remodeling”) result in the development of novel epitopes of ECM molecules that may be 

suitable for tracking fibrogenesis and resolution of fibrosis. Similarly, real-time, longitudinal 
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imaging of lung ECM during development of COPD may help us better understand the 

nature of alveolar enlargement and septal destruction.

Over the past five years, production of decellularized scaffolds from native lungs has proven 

feasible. Detergents are commonly used in decellularization to solubilize cell membranes, 

disengage cytoskeletal proteins from cells, and detach DNA remnants from proteins [261]. 

As reported by many groups, these scaffolds often retain many of the essential ECM proteins 

present in the original organ [262–265]. Although decellularized lung tissue can provide a 

model to study ECM changes during aging or lung disease [93, 266], it is important to 

recognize that many decellularization protocols render a depleted scaffold that may not be 

optimal for long-term cell culture or for cell adhesion, survival and proliferation [267]. 

Currently, next-generation proteomic approaches are under development that will allow 

quantification of lung matrix composition, and benchmarking of decellularized samples 

against native tissues.

Successful decellularization should include the removal of cell membrane epitopes, DAMPs, 

and DNA remnants from the scaffold as these components may induce inflammatory and/or 

immune reactions [268–271]. Host responses to acellular matrices may include pro-

inflammatory or pro-constructive macrophage responses [272, 273]. The threshold level of 

nuclear material that induces pro-inflammatory responses or adaptive immunity has not yet 

been established, and hence acceptable levels of decellularization for various organs remain 

undefined [273, 274]. Despite the lack of clear benchmarks for what constitutes 

“decellularized”, it has been generally accepted that DNA fragments that are less than 300 

bp in length will not elicit negative remodeling responses [274]. In terms of the impact of 

non-nuclear donor material on adverse immune responses, it remains unclear if 

proteinaceous cell debris, such as cytoskeletal elements, are problematic. Currently, there are 

multiple reports of decellularized tissues with detectable cytoskeletal debris, such as actin, 

[263, 275], although the functional consequences of these remnents have yet to be 

determined. In the very long term, acellular lung matrices may serve as a bioengineering 

platform for construction of functional lung tissue. To be functional, a regenerated lung 

should fulfill specific “design criteria”, including the ability to: (1) maintain lung-specific 

epithelial, mesenchymal, and vascular cells; (2) provide a barrier to separate blood from air; 

(3) incorporate a hierarchical branching geometry that provides suitable surface area for gas 

exchange; (4) contain a perfusable microvasculature that is resistant to thrombosis; and (5) 

be sufficiently mechanically robust to withstand ventilation and physiological mechanical 

stresses [276]. Although some progress has been made [262–264, 277–281], these functional 

criteria have not yet been met. The quality of the underlying matrix scaffold will determine 

whether these critical design criteria can be met.

11. Critical Questions and Emerging Opportunities in Lung ECM Biology

This review of the role of the ECM in lung development, homeostasis and repair has served 

to identify several key questions and knowledge gaps in the field. The authors have 

identified the following critical questions and emerging opportunities in lung ECM biology:
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Critical Questions

1. What is the regenerative capacity of the lung in adult life? This question is 

confounded by the current lack of understanding of the influence of the ECM, 

and changes to the ECM, on the function of stem cell niches in the lung. There is 

a critical need to “decode” the mechanisms by which the ECM regulates niche 

function. Closing these gaps is necessary to answer the question of whether the 

lung can be stimulated to undergo alveolarization and to, potentially, reverse 

chronic lung diseases such as emphysema and fibrosis.

2. The extent to which fibrosis is reversible is unknown. In part, this reflects a gap 

in the tools available to visualize in vivo kinetics of collagen turnover or changes 

in distinct pools of collagen that are responsive to resorptive mechanisms. It is 

also not understood to what degree biochemical and biomechanical properties of 

the fibrotic lung alter cellular behavior toward a “point of no return” or, even 

which cells are the key effectors in collagen turnover. Additional knowledge gaps 

include the mechanisms mediating collagen uptake and degradation, how 

intracellular collagen degradation is regulated by ECM interactions, the effects of 

impaired intracellular collagen processing on cellular behavior, and which cells 

are the key players in collagen turnover in tissue homeostasis and repair.

3. How does the same injury (e.g. cigarette smoke) give rise to different disease 

phenotypes, for example, emphysema, fibrosis or combined? It is thought that 

chronic epithelial stress is relevant to the pathogenesis of both emphysema and 

fibrosis. It is unknown to what degree alterations in the ECM promote or 

attenuate epithelial stress and whether such alterations bias an injury response 

toward one disease pathway or another. Do disease-relevant cellular phenotypes 

that track toward an emphysematous or fibrotic process emerge mainly from cell 

autonomous or ECM-regulated effects? If altered ECM is a critical determinant, 

there remains a lack of understanding of specific alterations in the ECM that 

promote development of emphysema vs. fibrosis.

4. How do MMPs and ECM-derived proteolytic products contribute to lung repair, 

regeneration and inflammation? There is evidence that cellular responses to 

“danger signals” emitted by ECM fragments are an important determinant of 

inflammation and injury in chronic lung disease. However, to what extent ECM 

fragments also function as important regenerative signals is unknown. Are 

adjuvant effects of ECM fragments an important driver of autoimmune adaptive 

immune responses that then promote progression of chronic lung diseases such 

as COPD and pulmonary fibrosis? There is limited understanding of the full 

extent to which ECM fragments contribute to regeneration/recovery or act as 

perpetrators of disease progression.

5. Is it possible to develop a decellularized scaffold that can serve as a functional 

bioreactor for lung regeneration? Such a scaffold would need to: (1) reliably 

maintain lung-specific epithelial, mesenchymal, and vascular cells; (2) provide a 

barrier to separate blood from air; (3) maintain a hierarchical branching 

geometry that provides suitable surface area for gas exchange; (4) contain a 
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perfusable microvasculature that is resistant to thrombosis; and (5) be sufficiently 

mechanically robust to withstand ventilation and physiological mechanical 

stresses.

Emerging Opportunities

1. Develop ex vivo “macroscale” models to interrogate stem cell niches in the lung; 

for example, co-culture systems, organotypic models, or stem cell niche re-

construction on scaffolds that recapitulate the “matrix footprint”. Are 

biochemical and/or biophysical properties of the niche a determinant of stem cell 

function and, if so, can the ECM be manipulated to favor regeneration over 

fibrosis?

2. Establish animal models of lung regeneration as a pivotal avenue for defining the 

important characteristics of a lung stem cell niche. Further characterization of 

animal lung repair models such as hyperoxia, influenza infection, and 

pneumonectomy will be crucial for revealing the molecular and cellular basis of 

lung regeneration. By combining “cell-type specific” lineage tracing and “gain 

and loss function” genetic tools, these animal models would allow us to unravel 

and verify the functional contribution of key niche ECM molecules during 

regenerative alveolarization, as well as their potential clinical value in improving 

lung function.

3. Develop novel imaging technologies that allow evaluation of collagen turnover in 

patients over time. This methodology would greatly contribute to our 

understanding of the dynamic nature of collagen metabolism at different times 

during disease progression. Similarly, tools that would allow visualization of 

collagen ultrastructure within areas of fibrosis should help determine whether the 

three-dimensional structure of collagen embedded within a scar is stereotypically 

similar in different scars within the same diseased lung or different for each scar. 

Establish the goal of functional imaging as a tool to assess drug effects in vivo 
and methods to reach this goal.

4. Define an ECM “map” to include spatial and temporal changes in ECM 

composition, topography, and biomechanics during injury-repair (animal 

models), and in human diseases such as emphysema and fibrosis. The atlas 

should compile ECM profiles of normal (different developmental stages, adults) 

and diseased lung tissues and, in addition, include regional characterization 

(pleura, trachea, bronchi, alveolar interstitium, vessels, upper lobe vs. middle 

lobe vs. lower lobe). The atlas should integrate global -omics data such as: (a) 

quantitative proteomics to identify ECM isoforms and post-translational 

modifications (such as cross-linking, phosphorylations, etc.); (b) ECM 

degradomics to identify the active cryptic fragments of ECM proteins that play 

key roles in disease progression, as well as the neo-epitope within ECM proteins 

that could serve as biomarkers of disease progression or response to treatment; 

and (c) glycomics to identify the nature and abundance of polysaccharides and 

glycosaminoglycans (GAGs) in the lung ECM.
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5. Identify the specific cell types involved in matrix remodeling and how they 

regulate matrix production and resorption. Specifically, more refined definitions 

of fibroblasts and macrophages and their precise roles in matrix dynamics are 

needed. It is currently not known which of these cell types are primarily 

responsible for collagen/matrix turnover, what the relative contributions of each 

cell type is, whether there exist fibroblast and/or macrophage subsets that 

specialize in matrix degradation and, if so, how these cells can be identified. 

Furthermore, if subsets of cells exist that specialize in matrix degradation, is their 

differentiation driven through cellular on acellular cues provided by the fibrotic 

microenvironment surrounding them?

Expansion of our knowledge of the structure, biomechanics and functional properties of the 

dynamic lung ECM will enrich our understanding of the development, physiology and 

pathobiology of the lung. This knowledge will advance novel strategies to treat lung diseases 

across the lifespan, and reduce the incidence of chronic lung disease. This goal can be 

realized with a collaborative research effort that encompasses matrix biologists, and extends 

to the larger community of investigators studying lung development, health and disease.
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Highlights

• Recent advances in ECM composition, dynamics, topography, and 

biomechanics

• ECM in normal lung development and aberrant development (BPD)

• ECM dynamics and altered deposition in adult lung diseases, namely COPD 

and IPF

• ECM in inflammation/autoimmunity; and maintenance of the stem cell niche

• ECM-based therapeutics for chronic lung diseases

• Critical questions and emerging opportunities in lung ECM biology research
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Figure 1. Role of the ECM in lung homeostasis and disease
Normal lung ECM is critical for embryonic lung development and the maintenance of lung 

homeostasis in adulthood. Aberrant alterations of the properties of lung ECM, including 

composition, biomechanics, dynamics and topography, are characteristic of a number of 

adult and child lung diseases, including IPF, COPD and BPD. IPF = idiopathic pulmonary 

fibrosis; COPD = chronic obstructive pulmonary disease; BPD = bronchopulmonary 

dysplasia.
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Figure 2. 
A, An experimental pipeline to characterize the lung ECM using proteomics. B, 
Comparison of the lung ECM composition, defined by mass spectrometry-based 

proteomics from 3 independent studies (as denoted in the figure).
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Figure 3. Matrix stiffness and topography guide IPF myofibroblast invasion into the ECM
Stiffened fibrotic matrix upregulates α6 integrin expression by ROCK-dependent activation 

of c-Fos/c-Jun transcription factor complex. Interactions between α6β1 integrin and the BM 

bring lung myofibroblasts into the close proximity to the BM. This facilitates MMP-2/9-

mediated pericellular proteolysis of BM component collagen IV, leading to lung 

myofibroblast invasion (see ref. #84 for details). Matrix stiffness sensing by α6 integrin and 

the highly organized, anisotropic matrix fibers, which could act as “highways” that aid IPF 

myofibroblast invasion through the BM and interstitial ECM to form a continuous fibrotic 

reticular network. MFB = myofibroblast; ROCK = Rho kinase; MMP = matrix 

metalloproteinase; BM = basement membrane; AEC = alveolar epithelial cell.
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Figure 4. miR-29c-mediated positive feedback between the fibrotic ECM and the fibroblast 
amplifies the fibrotic phenotype
miR-29c targets ECM genes and limits ECM production in normal lungs. Downregulation of 

miR-29c activates the synthesis of ECM products by lung fibroblasts and persists in 

response to the fibrotic ECM (modified from ref. #196).
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Figure 5. The central role of MMP-derived PGP in smoking-induced pulmonary inflammation
A, Neutrophil-derived MMP9 and prolyl endopeptidase (PE) degrade lung collagens to 

generate PGP. PGP serves as a chemoattractant to recruit neutrophils to lung interstitium. 

Cigarette smoke induces increases in MMP-9, PE and PGP production which promotes 

neutrophil influx. B, Leukotriene A4 hydrolase (LTA4H) is a pro-inflammatory enzyme that 

possesses aminopeptidase activity. LTA4H serves to degrade PGP and stop the PGP-

mediated neutrophil chemotaxis in acute inflammation. Cigarette smoke selectively 

inactivates LTA4H’s aminopeptidase function, leading to accumulation of PGP and 

neutrophils (see ref. #223 for details). This contributes to the chronic inflammation that 

drives disease progression in COPD.
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Table 1
Lung ECM composition

Proteins were identified by mass spectrometry-based proteomics from three independent studies (see text for 

more details).

CORE MATRISOME

ECM Glycoproteins Collagens Proteoglycans

5430419D17RIK LGI3 COL10A1 ACAN

ABI3BP LTBP1; LTBP2; LTBP3; LTBP4 COL11A1; 11A2 ASPN

ADIPOQ MATN1; MATN2; MATN4 COL12A1 BGN

AEBP1 MFAP2; MFAP4; MFAP5 COL13A1 CHAD

AGRN MFGE8 COL14A1 DCN

AW551984 MGP COL15A1 FMOD

BMPER MMRN1; MMRN2 COL16A1 HAPLN1

CILP NDNF COL17A1 HAPLN3

CILP2 NID1; NID2 COL18A1 HAPLN4

COLQ NPNT COL19A1 HSPG2

COMP NTN1; NTN3; NTN4 COL1A1; 1A2 IMPG1

CRISPLD2 PAPLN COL22A1 LUM

DPT PCOLCE; PCOLCE2 COL23A1 OGN

ECM1; ECM2 POSTN COL24A1 PODN

EFEMP1; EFEMP2 PXDN COL25A1 PRELP

EGFEM1 RELN COL27A1 PRG2

ELN SBSPON COL28A1 PRG3

EMID1 SLIT3 COL2A1 VCAN

EMILIN1; EMILIN2 SNED1 COL3A1

FBLN1; FBLN2; FBLN5 SPARC; SPARCL1 COL4A1; 2; 3; 4; 5; 6

FBN1; FBN2 SPON1 COL5A1; 5A2; 5A3

FGA; FGB; FGG SRPX; SPRX2 COL6A1; 2; 3; 4; 5; 6

FGL2 SVEP1 COL7A1

FN1 TGFBI COL8A1; A2

FRAS1 THBS1; THBS2; THBS3 COL9A1; 9A2; 9A3

GLDN THSD4

HMCN1; HMCN2 TINAG; TINAGL1

IGFALS TNC; TNXB

IGFBP6; IGFBP7 VTN

IGSF10 VWA1; 3A; 5A; 5B1; A9

KCP VWF

LAMA1; A2; A3; A4; A5; B1; B2; B3; C1; C2; C3 WISP2

Matrix Biol. Author manuscript; available in PMC 2019 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 48

MATRISOME-ASSOCIATED

ECM-affiliated proteins ECM Regulators Secreted Factors

ANXA1; 2; 3; 4; 5; 6; 7; 9; 11 1810010H24RIK ANGPT1

C1QA; C1QB; C1QC; C1QL2 A2M ANGPTL2

C1QTNF2; C1QTNF5; C1QTNF7 ADAM10; 17; 19; 9 BMP3; BMP6

CLEC11A; CLEC14A ADAMTS14; 16; 17; 5; 9 CHRD; CHRDL1

COLEC12 ADAMTSL1; L3; L4; L5 CRLF1

CSPG4; CSPG5 AGT CXCL15

FCNA AMBP EGFL7

FREM1; FREM2 CD109 FAM132A

GPC4 CPN2 FGF1; FGF2

HPX CSTB FLG2

ITLN1 CTSB; CTSD; CTSG HCFC1

LGALS1; LGALS3; LGALS7; LGALS8; 
LGALS9

ELANE HGFAC

LMAN1 F13A1; F13B IL16

MBL1 F2 INHBC

MBL2 HRG INHBE

PLXDC2 HTRA1 MEGF6

PLXNA1L PLXNB2; PLXNC1 HYAL2 NRG1

SDC3 ITIH1; 2; 3; 4; 5 PDGFB

SEMA3A; 3B; 3C; 3E; 3F; 3BG KNG1; KNG2 PDGFD

SFTPA1; SFTPB; SFTPC; SFTPD LOX; LOXL1; L2; L3; L4 PF4

MMP19; 1B; 2; 20; 28; 9 RPTN

MUG2 S100A10; A11; A13; A4; A6; A8 A9; B

PLAT SCUBE1; SCUBE2

PLG TGFB1; TGFB2

PLOD1; 2; 3 TNFSF10; TNSF12; TNSF13

PRSS1 VEGFA

PZP WNT2; WNT3A; WNT4; WNT5B

SERPINA1A; 1B; 1D; 1E; 3C; 3G; 3K; 3M; 
3N

SERPINB12; B1A; B1C; B3A; B3C; B3D; 
B5; B6A; B6B; B9; B9B; B9C

SERPINC1; E1; E2; F1; F2; G1; H1

TGM1; 2; 3

TIMP3

Matrix Biol. Author manuscript; available in PMC 2019 November 01.


	Abstract
	1. Introduction
	2. The ECM in Lung Development
	Airway branching and ECM
	Alveolar septation and ECM
	Abnormal lung development

	3. ECM Composition and Dynamics
	4. ECM Topography and Biomechanics
	5. The ECM in Emphysema
	ECM content in COPD lungs
	Small airway fibrosis in COPD lungs
	Combined pulmonary fibrosis and emphysema
	Genetic emphysema syndromes
	Antioxidant defenses in COPD

	6. The ECM in Fibrosis
	7. The ECM in Inflammation and Autoimmunity
	8. The ECM in Regulation of the Stem Cell Niche
	9. ECM-Based Therapeutics
	10. Emerging Technologies to Study the ECM
	11. Critical Questions and Emerging Opportunities in Lung ECM Biology
	Critical Questions
	Emerging Opportunities

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1

