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Abstract Positron emission tomography (PET) imaging of

functional metabolism has been widely used to investigate

functional recovery and to evaluate therapeutic efficacy

after stroke. The voxel intensity of a PET image is the most

important indicator of cellular activity, but is affected by

other factors such as the basal metabolic ratio of each

subject. In order to locate dysfunctional regions accurately,

intensity normalization by a scale factor is a prerequisite in

the data analysis, for which the global mean value is most

widely used. However, this is unsuitable for stroke studies.

Alternatively, a specified scale factor calculated from a

reference region is also used, comprising neither hyper- nor

hypo-metabolic voxels. But there is no such recognized

reference region for stroke studies. Therefore, we proposed

a totally data-driven automatic method for unbiased scale

factor generation. This factor was generated iteratively

until the residual deviation of two adjacent scale factors

was reduced by\ 5%. Moreover, both simulated and real

stroke data were used for evaluation, and these suggested

that our proposed unbiased scale factor has better sensi-

tivity and accuracy for stroke studies.

Keywords Unbiased scale factor � Intensity normaliza-

tion � Stroke � FDG-PET imaging � Voxel-wise analysis

Introduction

Positron emission tomography (PET) imaging of functional

metabolism using fluorodeoxyglucose (18F-FDG) [1–5] has

been widely used to investigate brain functions after stroke

in both humans and animals. It images the distribution of

the biological radiotracer at the molecular level with high

sensitivity. The radiotracer FDG is directly correlated with

energy consumption that supports synaptic activities and is

presented as FDG-PET imaging intensity [6]. In each

subject, the voxel intensity of hypo-metabolic regions is

lower and that of hyper-metabolic regions is higher than

normal. Therefore, the mission of FDG-PET data analysis

is to automatically and accurately identify the dysfunc-

tional regions.

However, in group analysis, the FDG-PET image

intensity is not only determined by cellular activity, but

is also affected by several other controllable factors, such

as the injected dose of 18F-FDG, the total scan time, and

the PET imaging count rate, as well as the uncontrollable

factor of basal metabolic ratio in each subject [7, 8].

Therefore, despite the influence of brain diseases, the basic

level of image intensity varies in each individual, and this

should be eliminated prior to statistical analysis. Generally,
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a unified standardized operation is used to eliminate the

controllable factors. To remove the internal influences, an

intensity normalization algorithm is most commonly used.

The intensity normalization of FDG-PET images is

frequently carried out by noise removal and subsequent

global intensity scaling by a scale factor. The global mean

value is one of the most popular scale factors, based on the

assumption of a rather small area of dysfunction, but in

stroke studies this does not perform well. In the acute stage

after stroke, for example, there are large numbers of hypo-

metabolic voxels because of the ischemia and edema [4, 5].

Including these voxels in scale factor calculations would

lead to considerable false-positive results. Several studies

have found that inhibition of the hyper-metabolic regions

promotes functional recovery after stroke, so false-positive

results must be avoided. Therefore, the global mean value

is not a perfect scale factor for stroke studies.

Alternatively, in several studies, a specified scale factor

has been used instead of the global mean value, in which

the mean value of several reference regions is chosen

according to a priori knowledge. These reference regions

are always those that have been demonstrated to have the

least correlation with the corresponding disease, such as

cerebellar and pontine areas in Alzheimer disease studies

[9]. However, in stroke studies, there are not only known

hypo-metabolic regions related to ischemia and motor and

cognitive impairment [10], but also unknown hyper-

metabolic regions related to functional compensation

[11]. So far, there are no commonly used reference regions

in stroke studies [9]. Ideally, the reference region should be

unbiased so that it contains neither hyper-metabolic nor

hypo-metabolic voxels.

Given the above, we designed the current study to

introduce totally data-driven and automatic method of

unbiased scale factor generation for intensity normalization

in FDG-PET imaging analysis. To evaluate the practicality

and accuracy of this method, several sets of simulated

stroke data were generated from a group of FDG-PET

images of healthy rats. To further verify the proposed

method of scale factor setting, a group of FDG-PET image

data from groups of rats with and without left middle

cerebral artery occlusion (MCAO) were compared.

Materials and Methods

The Unbiased Scale Factor Generation Method

The scale factor in FDG-PET image analysis is used to

account for global confounds, so it should be uncorrelated

with a specific brain disease, such as stroke. In this study,

our concept for unbiased scale factor generation was to

remove regions with abnormal values before calculation.

Therefore, the proposed unbiased scale factor was

generated iteratively in a data-driven manner, in which

the conventional global mean value was chosen as the

initial factor. The generation procedure (Fig. 1) can be

summarized as follows. (1) All the individual images were

preprocessed and divided into several groups. (2) The

global mean value was chosen as the initial scale factor

(SF). (3) Statistical analysis, such as the two-sample t-test

or one-way ANOVA, was performed to quantify the

differences in FDG signals between groups, in which

proportional scaling and intensity normalization based on

SF were applied to account for global confounds. (4)

Several regions with significant FDG changes were

obtained based on a threshold of voxel-level height and

cluster size. These regions were regarded as hyper/hypo-

metabolic voxels and excluded from the new scale-factor

calculation. The mean value of the remaining voxels was

then calculated (SFn). (5) SFn was selected as a new SF and

steps 3–5 were repeated until the residual deviation

between the SFn and SF was reduced by \ 5%. (6) The

last SF was taken as the optimal unbiased scale factor.

Animals and Data Acquisition

Twenty-two Sprague-Dawley rats of either sex (11 males),

10 weeks–13 weeks old, weighing 350 g ± 20 g, were used

for quantitative evaluation of the influence of the scale

factor in voxel-wise analysis. Eleven of the rats (6 males)

were randomly selected for simulated data sets and the

other 11 served as healthy controls. Another group of 16

male rats, 9 weeks–11 weeks old, weighing 300 g ± 20 g,

was also used, of which 8 underwent left MCAO and the

other 8 were healthy controls. Intraluminal occlusion of the

MCA was accomplished using a modification of the Longa

technique [7, 12]. All the rats were deprived of food for 12

h–15 h before 18F-FDG injection, but had free access to

drinking water [13].

Prior to PET scanning, 18F-FDG was prepared at the

PET Center of the China PLA General Hospital. For each

rat, 18F-FDG (18.5 MBq/100 g body weight) was admin-

istered via tail vein injection without anesthesia. Then the

rats were kept in their cages in a room with minimal

ambient noise for 18F-FDG uptake. The uptake period was

40 min for maximization of uptake in the brain [14]. Then

the rats were anesthetized with isoflurane inhalation (2% in

100% oxygen; IsoFlo, Hebei Jiumu Pharma, Ltd, China)

using a nose cone.

For the 22 rats used for simulated data set generation,

FDG-PET imaging was performed at the PET Center of the

China PLA General Hospital in a MicroPET/CT imaging

system (eXplore Vista-CT, General Electric, USA), of

which the radial spatial resolution was 1.0 mm full-width at

half-maximum (FWHM) at the center of the field of view
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(FOV). During FDG-PET scans, all the rats were anes-

thetized with isoflurane (as above) and placed in the

scanner in prone position with a plastic stereotactic head

holder on the scanner bed. The brain was centered in the

FOV for a static acquisition of 10 min. Images were

subsequently reconstructed using the 3D Ordered Set

Expectation Maximization algorithm (General Electric).

Corrections for dead time, decay, attenuation, random

coincidences, and scattering were applied. Images were

reconstructed on a 175 9 175 9 61 matrix, where the voxel

size was 0.39 mm 9 0.39 mm 9 0.77 mm. All scans were

saved in Analyze format.

To demonstrate that our proposed method is not affected

by different imaging techniques, FDG-PET images of the 8

rats with MCAO and 8 without were acquired using

another imaging system. Twenty-four hours after opera-

tion, FDG-PET images were acquired on a Siemens Inveon

PET (Siemens Medical Solutions, USA), of which the

radial spatial resolution was 1.4 mm FWHM at the center

of the FOV. During FDG-PET scans, all rats were

anesthetized with isoflurane (as above) and placed in the

scanner in prone position with a plastic stereotactic head

holder on the scanner bed. The brain was centered in the

FOV for a static acquisition for 20 min. The images were

Fig. 1 Schematic of unbiased,

totally data-driven, scale factor

generation.
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subsequently reconstructed using the Filtered Back Pro-

jection (Siemens Medical Solutions, USA) algorithm.

Corrections for dead time, decay, attenuation, random

coincidences, and scattering were applied. Images were

reconstructed on a 128 9 128 9 159 matrix, where the

voxel size was 1.4 mm 9 1.4 mm 9 0.79 mm. All scans

were saved in Analyze format.

All experiments were performed with the approval of

the Animal Care and Use Committee of the Chinese

Academy of Sciences.

Simulated FDG-PET Data Sets

The simulated FDG-PET data sets were created by

decreasing voxel values [15] and the details were as

follows. First, the body tissues and background of all 22

images were manually removed using MRIcro (Chris

Rorden’s Neuropsychology Lab) [16] and the origin of the

image was repositioned at dorsal 3rd ventricle (D3V),

which corresponded to the standard FDG-PET template in

Paxinos & Watson space [17]. Then, individual images of

the brain were spatially normalized into Paxinos & Watson

space, comprising scaling up the voxel size in the Analyze

header by a factor of 4 [18–21], registering to the FDG-

PET template, subsequently removing extracranial tissues

via the intracranial image, and shearing the matrix to cut

off the background.

The MCAO data set simulation represented the actual

situation of the acute stage after intraluminal occlusion. At

24 h after the operation, the hypo-metabolic regions in

FDG-PET images not only contained the infarction area,

but also the edematous and functionally impaired areas

(e.g., motor impairment areas). Therefore, according to the

FDG-PET images of the MCAO rat model, several

unilateral regions were selected, comprising the corpus

striatum and sensory cortex (Fig. 2). However, as the

location and extent of hyper-metabolic regions were

unclear, only clearly hypo-metabolic regions were simu-

lated. Because of individual variations, the attenuation of

FDG-PET signal amplitude differed within the range of

10%–70%. Hence, the voxel value was decreased by seven

levels (10%, 20%, 30%, 40%, 50%, 60%, and 70%) to

simulate cellular dysfunction after stroke. The other 11 rats

served as the control group. Finally, all the simulated data

sets of both groups were smoothed by a Gaussian kernel of

2 mm 9 2 mm 9 4 mm FWHM.

Voxel-Wise Analysis of Simulated FDG-PET Data

Sets

Voxel-wise analyses based on different scale factors were

performed in the spmratIHEP toolbox [18, 19] of SPM8

(Wellcome Department of Cognitive Neurology, London,

UK). In each voxel-wise analysis, the simulated MCAO

group was compared with the healthy control group.

In spmratIHEP, all the smoothed simulated data were

analyzed voxel-wise, based on the framework of the

general linear model (GLM). In order to identify differ-

ences in the FDG signals between the simulated data sets

with MCAO and healthy controls, we used the two-sample

t-test in SPM8. Proportional scaling and intensity normal-

ization were applied to account for global confounds, based

on three different scale factors: the truth value, the

conventional global mean value, and our proposed unbi-

ased value. In the simulated data sets, the truth value was

calculated from the contralateral voxels and regarded as the

‘gold-standard’ reference. Our proposed unbiased value

was generated based on the threshold of P \ 0.001

(uncorrected) and a cluster size of no less than 50 voxels.

As detailed above, this unbiased value was generated

iteratively until the residual deviation between the nearest

two values was reduced by\ 5%. Finally, based on these

three scale factors, brain regions with significant FDG

changes were identified. The voxel-level height threshold

was P \ 0.05 (FWE corrected) and the cluster size was

C 50 voxels.

At this point, these results of the voxel-wise statistical

analysis based on different scale factors were ready for

further qualitative and quantitative evaluations.

Quantitative Evaluation of the Simulated FDG-PET

Data Sets

The accuracy of the different scale factors was quantita-

tively evaluated from the voxel-wise analysis results. Using

the statistical result generated by the truth mean value as

the reference standard, the accuracy of the proposed

unbiased value and the global mean value were evaluated

with two volumetric and spatial indexes:

(1) The Dice similarity coefficient (Dc), which describes

the similarity of the volume and position between the

results generated by the truth mean value (Mth) and

the values to be evaluated (Me) (Eq. 1). The

derivation of the Dc has been detailed previously

[22]. An excellent agreement value of Dc is[ 80%.

Dc ¼ 2� Mth \Me

Mth þMe

ð1Þ

(2) False-negative (FN), which describes the proportion

of false-negatives (Eq. 2). The optimal value of FN

is 0%.

FN ¼ Mth � ðMth \MeÞ
Mth [Me

ð2Þ
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Real FDG-PET Data Sets of the MCAO Rat Model

Images of the MCAO rat model were processed in the

spmratIHEP toolbox [18, 19] similar to the simulated data

set. In detail, the real MCAO data set was preprocessed by

skull stripping, repositioning of the origin point, and spatial

normalization and smoothing (as above). Then, based on

the GLM framework, the two-sample t-test was used to

assess differences between the MCAO rats and the healthy

controls. Proportional scaling and intensity normalization

were also performed based on either the global mean value

or our proposed unbiased value. This unbiased value was

generated iteratively based on P\0.001 (uncorrected) and

a cluster size of C 50 voxels, as described above. Finally,

based on these two scale factors, the brain regions with

significant FDG changes in rats with MCAO were iden-

tified. The voxel-level height threshold was P\0.05 (FWE

corrected) and the cluster size was C 50 voxels.

Results

Evaluation of the Simulated FDG-PET Data Sets

The accuracy of different scale factors was first inspected

qualitatively by overlaying the voxel-wise analysis results

onto an MRI T2WI single-brain image in Paxinos &

Watson space (Fig. 2). Compared with the truth mean

value, both the unbiased mean value and the global mean

value were comparable in detecting hypo-metabolic voxels

(Fig. 3). However, the unbiased mean value performed

better than the global mean value in reducing the false-

positives. When the voxel value decreased by[ 30%, the

global mean value produced increasing numbers of false-

positive regions, while this did not occur for the unbiased

mean value (Fig. 3).

Furthermore, to quantitatively evaluate the accuracy of

the unbiased scale factor, correspondence measures of three

statistical results were calculated for the volumetric and

spatial positions (Table 1). The statistical result generated

by the truth mean value was selected as the reference, then

the two correspondence measures were calculated between

the reference and the result generated by our suggested

mean value or the global mean value. The mean Dc of our

suggested unbiased value was 89.03 ± 13.07, while it was

84.64 ± 11.84 for the global mean. The mean FN of our

suggested unbiased value was 14.96 ± 21.09, while it was

20.68 ± 21.22 for the global mean (Table 1).

Evaluation of Real MCAO Data Sets

The brain regions with significant FDG changes in rats

with MCAO, generated by either the global mean value or

the unbiased mean value, were overlaid on an MRI T2WI

image of a rat brain in Paxinos & Watson space (Fig. 4).

The hypo-metabolic regions generated by the unbiased

mean value were exclusively related to the left MCA, and

were similar to those generated by the global mean value.

However, the hyper-metabolic regions generated by the

unbiased mean value were far fewer than those generated

by the global mean value.

The voxel-wise analysis results from MCAO and control

rats generated based on the unbiased mean value are shown

in Figure 5, in which nine coronal (Fig. 5A) and an axial

(Fig. 5B) plane are presented. The hypo-metabolic voxels

lying in regions of the motor cortex, somatosensory cortex,

caudate-putamen, thalamus, amygdaloid body, and audi-

tory cortex of the MCAO rats might be associated with the

infarction damage of the lesioned hemisphere. The hyper-

metabolic voxels lay in regions of the contralateral

(unlesioned) motor cortex, somatosensory cortex, thala-

mus, retrosplenial cortex, and auditory cortex of the

MCAO rats compared with the healthy control rats.

Discussion

In this study, a data-driven method of generating an

unbiased scale factor for intensity normalization in FDG-

PET imaging analysis was proposed for stroke studies.

With this method, almost all of the dysfunctional voxels,

comprising both hyper-metabolic and hypo-metabolic

voxels, were automatically excluded from the unbiased

scale factor calculation, with no need for prior knowledge.

Fig. 2 Superimposition of the simulated stroke region on the

corresponding structural rat brain image in Paxinos & Watson space.

The simulated region was extracted from an atlas image in Paxinos &

Watson space, mainly comprising the caudate-putamen, somatosen-

sory cortex, claustrum, and dorsal endopiriform nucleus. Six coronal

planes were selected at coordinates Zbregma - 4.44 mm, - 2.52 mm,

- 0.60 mm, 1.32 mm, 3.24 mm, and 4.68 mm. The simulated region

is indicated in yellow, while the structural brain image is presented in

gray-scale as background.
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Although using the global mean value as the initial scale

factor excluded several normal functional voxels, it was

similar to the concept of selecting a specified reference

region for scale factor calculation, in that only certain

normal functional voxels were used.

For evaluation, simulated data sets were constructed by

decreasing voxel values [15]. To simulate cellular

dysfunction and recovery after stroke, we used 7 decreas-

ing levels. In order to address this problem as straightfor-

wardly as possible, only ischemia was simulated, so that

the unbiased scale factor could be evaluated by both hypo-

metabolic detection and false-positive reduction. As illus-

trated in Figure 3 and Table 1, in the detection of hypo-

metabolic regions, the sensitivity and accuracy of our

Fig. 3 Voxel-wise analysis results of simulated data. Three coronal

planes were selected and are presented in (A), (B), and (C), whose
coordinates were Zbregma - 2.52 mm, - 0.60 mm, and 1.32 mm.

These statistical results were generated based on the truth mean value,

the unbiased mean value, and the global mean value, as shown in the

upper, middle, and lower rows in each panel. The regions with

significant FDG changes of the simulated data sets were superim-

posed on a structural rat brain template image. The results of the

simulated data set with different voxel values at decreasing levels are

presented in different lines, from left to right representing voxel

values decreasing from 10% to 70%. The results of the statistical

analysis are presented as a color scale, while the structural brain

image is presented in gray-scale as background. A warm pseudo-color

indicates hyper-metabolic regions of the simulated data compared

with the healthy controls, while a cold pseudo-color indicates hypo-

metabolic regions. The color bar (right) indicates the t-value.

Table 1 Volumetric and spatial

correspondence measures

between the true mean value

and the unbiased/global mean

value.

Image intensity decrease rate Dcoeff (%) FN (%)

Unbiased Global Unbiased Global

10% 62.47 60.00 60.07 66.63

20% 82.79 79.92 20.79 25.12

30% 89.69 85.86 11.50 16.47

40% 93.68 89.08 6.75 12.26

50% 96.19 91.13 3.96 9.73

60% 98.36 92.67 1.67 7.91

70% 100.00 93.80 0.00 6.61

Dcoeff (%), Dice similarity coefficient (excellent agreement value[ 80%); FN (%), proportions of false-

negatives (optimal value, 0%); Unbiased, volumetric and spatial correspondence measure between the true

mean value and the unbiased mean value; Global, volumetric and spatial correspondence measure between

the true mean value and the global mean value.
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proposed unbiased scale factor were better than the global

mean value. Especially, when the voxel value was

decreased by [ 30%, the accuracy of hypo-metabolic

region detection was improved by[ 5% by our proposed

unbiased scale factor. At all these 7 decreasing levels, no

false-positive regions were generated by our unbiased scale

factor, while there were many more false-positive regions

with the global mean value. Therefore, both sensitivity and

accuracy were improved by our unbiased scale factor.

A set of real MCAO model data at the acute stage was

also used for qualitative evaluation. As shown in Figure 4,

similar to the evaluation results with the simulated data

sets, our unbiased scale factor was comparable with the

global mean value in the detection of hypo-metabolic

regions, but more focused in hyper-metabolic regions. At

the acute stage of stroke, these severely hypo-metabolic

regions are mainly caused by ischemia and edema, which

were specific and macroscopic in FDG-PET images, so that

both factors performed well. On the other hand, functional

compensation also occurs at the acute stage of stroke, but

its mechanisms and structural locations are still unclear;

this is also one of the desired objectives of MCAO model

studies. The hyper-metabolic regions generated by the

unbiased scale factor were more focused than with the

global mean value. This focus is important for stroke

studies.

Moreover, the voxel-wise analysis results generated by

our proposed unbiased scale factor are detailed in Figure 5.

Compared with healthy controls, the significant hypo-

metabolic voxels of the MCAO rats at the acute stage

mainly lay in the hemisphere with infarction damage,

comprising motor cortex, somatosensory cortex, caudate-

putamen, thalamus, amygdaloid body, and auditory cortex,

consistent with previous research on animals [23–25] and

clinical experiments [26]. At the acute stage of stroke, the

hypo-metabolic regions in FDG-PET images not only

contain the infarction area, but also the edematous and

functionally impaired areas, such as those involved in

motor impairment. Among these significantly hypo-meta-

bolic regions, motor cortex, somatosensory cortex, and

caudate-putamen are known to be involved in gaze,

Fig. 4 Superimposition of brain regions with significant FDG

changes in rats with MCAO on a corresponding structural rat brain

image in Paxinos & Watson space, generated by either the global

mean value (light blue and yellow) or the unbiased mean value (dark

blue and red) (P \ 0.05 with FWE correction and clusters [ 50

voxels). Eight coronal and an axial planes are presented. The results

of the statistical analysis are presented in pseudo-color, while the

structural brain image is presented in gray-scale as background. A

warm pseudo-color indicates hyper-metabolic regions of MCAO

compared with healthy controls, while a cold pseudo-color indicates

hypo-metabolic regions.

Fig. 5 Voxel-wise analysis results in rats with and without MCAO

generated based on the unbiased scale factor (P\ 0.05 with FWE

correction and clusters[ 50 voxels). Nine coronal (A) and an axial

plane (B) are presented. The results of the statistical analysis are

color-scaled, while the structural brain image is presented in gray-

scale as background. A warm pseudo-color indicates hyper-metabolic

regions for MCAO compared with healthy controls, while a cold

pseudo-color indicates hypo-metabolic regions. The color bar indi-

cates the t-value of each significant voxel in Paxinos and Watson

space. AC, auditory cortex; AST, amygdaloid body; CPu, caudate-

putamen; L, left; MC, motor cortex; R, right; RSC, retrosplenial

cortex; SC, somatosensory cortex; Tha, thalamus.
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orientation, and motor skills, which are also known to be

relevant to stroke [27–29].

As shown in Figure 5, the significant hyper-metabolic

voxels of the MCAO rats at the acute stage were mainly

located in the contralateral (unlesioned) motor cortex,

somatosensory cortex, thalamus, retrosplenial cortex, and

auditory cortex. Previous studies have demonstrated that

almost all functional activities are accomplished by

bilateral functional areas in healthy controls [30, 31]. This

indicates that the contralateral (unlesioned) functional

areas may supplement the corresponding lesioned areas,

but this may play a negative role in the functional recovery

after ischemic stroke [11, 32, 33]. The role of the

unlesioned hemisphere might be influenced by the lesion

volume, and this is involved in the functional alterations

after stroke. A number of studies have proposed that

inhibition of the unlesioned hemisphere improves the

motor performance after stroke [33, 34]. However, the

mechanism of functional compensation after stroke awaits

further research, in which our proposed method could

provide more accurate analysis of FDG-PET imaging

results.

Moreover, our proposed method is not only limited to

stroke studies. It can be generalized to studies of other

diseases, such as Alzheimer’ disease [35], and individual

subject analysis. Similarly, the hyper/hypo-metabolic vox-

els of patients and individuals can also be excluded

iteratively by choosing the global mean value or another

reference value as the initial factor. Besides the voxel-wise

analysis, semi-quantitative analysis based on regions of

interest (ROIs) is another widely-used method in PET

image analysis. The standardized uptake value ratio is one

of the most widely used semi-quantitative parameters,

which is computed using PET counts from a selected ROI

relative to reference regions [36, 37]. Our proposed method

can be used to objectively generate unbiased reference

regions.

In addition, there are several limitations of our study.

First, only the acute stage of the MCAO model was

simulated, so that the 7 levels of decreasing voxel values

started from 10%. However, the functional decline in

several other diseases, such as depression, may be\ 10%.

Second, both the location and degree of hyper-metabolic

voxels at the acute stage were unclear, so only hypo-

metabolic voxels were simulated. Nevertheless, in the real

acute stage of MCAO, there were several hyper-metabolic

voxels. Third, as shown in Figure 3, when the voxel value

decreased by\ 30%, our proposed scale factor performed

similar to the global mean value. Therefore, our proposed

scale factor could be further optimized in the future.

In conclusion, we propose a data-driven means of

generating an unbiased scale factor for intensity normal-

ization in FDG-PET imaging analysis after stroke.
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