Skip to main content
. 2018 Sep 8;34(17):i656–i663. doi: 10.1093/bioinformatics/bty554

Table 2.

Performance comparisons for different architectures under stratified 5-fold cross-validation on CRISPOR dataset

Model Min_AUC Max_AUC Mean_AUC Var_AUC
FNN_2layer 0.852 0.891 0.842 0.010
FNN_3layer 0.963 0.977 0.970 0.005
FNN_4layer 0.951 0.960 0.954 0.009
CNN_std 0.954 0.983 0.972 0.010
CNN_nbn 0.929 0.973 0.954 0.022
CNN_nd 0.953 0.974 0.969 0.013
CNN_np 0.720 0.981 0.899 0.093
CNN_pool_win3 0.632 0.979 0.903 0.137
CNN_pool_win7 0.943 0.983 0.967 0.015

Bold values signifies: CNN_std achieved the highest Mean_AUC (0.972) and highest Max_AUC (0.983) under stratified 5-fold cross-validation in predicting off-targets among all neural network based models, FNN_3layer also accomplished the competitive performance (Mean_AUC = 0.970) with the highest Min_AUC (0.963) and the lowest AUC variance (0.005).