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Abstract

Motivation: Protein pocket information is invaluable for drug target identification, agonist design,

virtual screening and receptor-ligand binding analysis. A recent study indicates that about half

holoproteins can simultaneously bind multiple interacting ligands in a large pocket containing

structured sub-pockets. Although this hierarchical pocket and sub-pocket structure has a significant

impact to multi-ligand synergistic interactions in the protein binding site, there is no method avail-

able for this analysis. This work introduces a computational tool based on differential geometry, al-

gebraic topology and physics-based simulation to address this pressing issue.

Results: We propose to detect protein pockets by evolving the convex hull surface inwards until it

touches the protein surface everywhere. The governing partial differential equations (PDEs) include

the mean curvature flow combined with the eikonal equation commonly used in the fast marching

algorithm in the Eulerian representation. The surface evolution induced Morse function and Reeb

graph are utilized to characterize the hierarchical pocket and sub-pocket structure in controllable

detail. The proposed method is validated on PDBbind refined sets of 4414 protein-ligand com-

plexes. Extensive numerical tests indicate that the proposed method not only provides a unique de-

scription of pocket-sub-pocket relations, but also offers efficient estimations of pocket surface area,

pocket volume and pocket depth.

Availability and implementation: Source code available at https://github.com/rdzhao/Protein

PocketDetection. Webserver available at http://weilab.math.msu.edu/PPD/.

Contact: ytong@msu.edu or wei@math.msu.edu

1 Introduction

The detection of pockets on protein surfaces is a pre-requisite to

various tasks in computational molecular biophysics and bioinfor-

matics, such as the determination of the binding site when one

attempts to dock a ligand to a protein target and the study of protein

functional surfaces. Automatic procedures for potential pocket pre-

dictions have been evolving along with the advance in computation-

al capability. Many methods have been designed for protein pocket

determination and they can be classified as geometry-based, energy-

based, sequence-based, or hybrid (Schmidtke et al., 2011). We re-

view several common categories of these geometry-based methods,

namely, probe based methods, grid based methods, Voronoi dia-

gram based methods and marching surface methods that are rele-

vant to our approach.

Based on the idea of rolling a probe to construct solvent excluded

surfaces, many probe-based methods have been introduced to detect

protein pockets. The pockets are captured by different behaviors with

different probe radii. One type of such methods samples protein

surfaces using many small probes, and then determines pockets

according to surface depressions (Brady and Stouten, 2000; Del

Carpio et al., 1993; Ruppert et al., 1997). Another type of such meth-

ods uses a large probe radius to create an envelope surface surround-

ing a protein surface, and then detect the hollow regions between the

envelope and the protein surface(Masuya and Doi, 1995; Nayal and

Honig, 2006; Yu et al., 2010). There are also methods using combina-

tions of both types of probes (Kawabata and Go, 2007).

The grid based methods, pioneered by Levitt and Banaszak

(1992), place a protein inside a regular grid and then scan the grid in

a specific order to mark grid points as inside pockets if certain crite-

ria are satisfied (Hendlich et al., 1997; Venkatachalam et al., 2003;

Weisel et al., 2007). For instance, grid points can be labeled as not

belonging to pockets either by a cube eraser Venkatachalam et al.

(2003) or by a probe eraser Weisel et al. (2007). Kufareva et al.

(2011) developed a grid potential to assist pocket extraction in grids.

It is not only a geometry-based method but also an energy-based

one.
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Voronoi based methods, introduced by Liang et al. (1998), have

been proposed to compare the differences between alpha shapes and

the Delaunay triangulation (dual structure to Voronoi diagram) to

find pockets, which are represented by the tetrahedra in Delaunay

tessellation but not in alpha shapes. A new shape descriptor was

later introduced to improve the overall efficiency of this approach

(Xie and Bourne, 2007). Voronoi diagram was also used to detect

depression regions Kim et al. (2008).

Marching surface methods, proposed by Kleywegt and Jones

(1994), detect pockets as isolated cavities formed by offsetting a pro-

tein surface along outward normals at a uniform speed. Bock et al.

(2007) proposed to trace points on surface along outward normal

direction to check whether it has additional intersections with the

protein surface, based on which protein surface regions are labeled

as pocket or non-pocket.

There are multi-functional tools such as Castp: 3.0 (Dundas et al.,

2006) and FPocket (Le Guilloux et al., 2009) that additionally compute

physicochemical properties and meta tools such as MetaPocket (Huang,

2009) that combine multiple approaches on top of the geometry.

Owing to the advances in protein structural determination, databases

about protein pockets and functional surfaces have been established,

such as SitesBase database (Gold and Jackson, 2006). Structural data-

bases of protein-ligand complexes (Wang et al., 2004) can also be used

to validate pocket detecting tools. Based on large annotated databases

and efficient algorithms, web servers, such as PocketQuery (Koes and

Camacho, 2012) and MSDmotif (Golovin and Henrick, 2008), have

been developed for large scale pocket search.

However, many problems in protein pocket detection remain un-

solved. New analysis based on different sequence identity thresholds

of a non-redundant set of all holo structures in the PDB indicates

that between 47% and 76% of holoproteins can simultaneously

bind multiple, interacting ligands in the same pocket that may be

comprised of several small but significant sub-pockets (Tonddast-

Navaei et al., 2017). The detailed understanding of protein-multi-

ligand binding remains of profound importance on many fronts, not

least of which includes drug discovery. The hierarchical structure be-

tween pockets and sub-pockets is a key to the understanding of the

binding of multiple interacting ligands Tonddast-Navaei et al.

(2017). Unfortunately, none of the aforementioned methods is

designed to describe the hierarchical structure of protein pockets.

Additionally, the analysis of protein-ligand binding and drug targets

requires computational tools that are able to not only detect protein

pockets but also provide more geometric details, including possible

sub-pockets and pocket area, volume and depth. Although grid

based methods can provide a rough estimate for pocket volume,

they typically suffer from efficiency issues. These algorithms usually

use the entire grid for the calculation, incurring extra memory con-

sumption and computation time on grid cells far from the protein

surface. Further process based on the whole grid will also introduce

huge time complexity. Voronoi diagram based methods are efficient

in providing area and volume estimates, but lack depth information.

Finally, the performance of many current methods depends on many

parameters that are not intuitive to tune for given specific pocket

requirements. The objective of the present work is to address these

difficulties by using geometric partial differential equation (PDE)

and algebraic topology.

Inspired by a physical simulation used for surface coloring in 3 D

printing, in which air pockets are detected and treated (Zhang et al.,

2017), we start from a convex hull surface wrapping around a

protein and then press the surface inward until it is tightly in contact

with the protein. The space between the convex hull surface and the

protein surface is potential locations of pockets, and we use the time

that the deforming surface passes through the point as a Morse func-

tion to build an evolving topological structure that helps define a

pocket hierarchy with desired information.

Lagrangian (mesh) representations are often used in surface de-

formation as in (Zhang et al., 2017). We opted for an Eulerian

(grid) representation, due to the complex surface geometry of the

protein, large distortion and potential topological change, which are

difficult to handle with a mesh. We encode the surface with an im-

plicit function on a Cartesian grid. This type of methods was origin-

ally introduced in simulating two-phase flow by Sussman et al.

(1994). The interface can be defined by the zero level set of an impli-

cit function which has a good control flexibility (Osher and Fedkiw,

2006; Peng et al., 1999). We simplify the procedure significantly for

efficiency, by combining a simple surface offsetting and mean curva-

ture flow to achieve our goal.

To detect protein pocket hierarchies associate with geometric

PDEs, we use persistent homology in the cubical setting. Persistent

homology has flourished recently for analyzing geometry and top-

ology of certain space. Early effort dealt with 0-th order topological

persistence (Frosini and Landi, 1999), while high dimension topo-

logical persistence was formulated by Edelsbrunner et al. (2000).

General mathematical theory of persistent homology has been devel-

oped by Zomorodian and Carlsson (2005). An efficient software for

computing persistent homology on filterations of simplicial complexes

and cubical complexes has been developed (Mischaikow and Nanda,

2013). While researchers keep enriching persistent homology theory,

its practical applications in biomolecular analysis and landscape ana-

lysis have been developed (Xie and Bourne, 2007; Xia et al., 2015).

Differential geometry based persistent homology was proposed to

proactively predict fullerene isomer curvature stability (Wang and

Wei, 2016). Topological landscape tool was built to analyze real

world terrain model (Harvey and Wang, 2010). In our approach, as

the convex hull surface is deformed, we analyze the persistence of the

0-th dimensional topological invariant induced by the moving surface

level set to detect potential pocket (equivalent and dual to membranes

around cavities formed between the deforming surface and the protein

surface Fig. 1). This approach enables us to analyze pocket area, vol-

ume, depth and hierarchical pocket-sub-pocket relation.

The rest of the paper is organized as follows. Section 2 discusses the

preliminary mathematical background. Section 3 introduces the overall

procedures. The implementation of our algorithms is given in Section 4.

Section 5 presents the results and applications of the proposed protein

pocket detection method. This paper concludes in Section 6.

2 Math background

2.1 Signed distance function
We consider a real-valued function / defined on a regular Cartesian

grid. An implicit surface is defined by the level set

C ¼ fr j/ðrÞ ¼ 0; r 2 R
3g; (1)

which is our surface in the Eulerian form. It is possible to take a

Lagrangian mesh as the input surface, since the conversion is a

standard routine. During surface deformation, we rely on the

Eulerian representation to handle the inevitable topological changes.

Level set propagation is governed by a general level set equation

@/
@t
þ v � r/ ¼ 0; (2)

where v is the velocity of the flow. As tangential velocity does not

change the shape, we can describe surface deformation by the
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normal component without loss of generality. Thus, one can rewrite

the velocity field v as vn, where n ¼ r/
jr/j ; jvj is the propagation speed

and the sign of v indicates inward or outward motion. The level set

equation can be rewritten as

@/
@t
þ vjr/j ¼ 0: (3)

For uniform offset, we can set v to a constant c. A typical surface

smoothing deformation is achieved by the mean curvature flow,

which offsets each surface point at the speed given by the mean

curvature, i.e. v ¼ �H ¼ �r � n. The mean curvature flow level-set

equation is given by Osher and Fedkiw (2006)

@/
@t
� jr/j r � r/

jr/j

� �
¼ 0: (4)

We can simplify the above two flows if jr/j ¼ 1, which can be

achieved by choosing / to be the signed distance function, i.e. j/ðrÞj
stores the distance from r to the zero level set, with its sign being

positive (negative) for outside (inside) locations. As such, the

constant-speed normal flow is given by

@/
@t
þ c ¼ 0; (5)

and the mean curvature flow becomes

@/
@t
� D/ ¼ 0: (6)

The use of the mean curvature flow for biomolecular surface

generation was introduced by Bates et al. (2008). Our procedure

will drive the surface inward, so the constant c is negative.

Before propagating the zero level set, we first initialize the signed

distance function / by the eikonal equation to transform the

Lagrangian mesh C which is the boundary of a 3 D domain X into

an Eulerian grid embedded signed distance function,

jr/ðrÞj ¼ 1; r 2 X � R
3 (7)

with boundary condition

/jC¼@X ¼ 0: (8)

Fast marching method (FMM), which shares similar ideas from

the Dijkstra algorithm, is commonly used to solve the eikonal equa-

tion on a regular grid (Sethian, 1996). Alternatively, fast sweeping

method can be used (Zhao, 2005). When the regular grid is large,

solving this problem in the whole grid is inefficient for both space

and time. Typically, a narrow band is used to reduce the memory

size. We specify a distance threshold w. Any voxel with a distance

above the threshold w will not be used in the calculation. We use the

typical choice of w¼3, which guarantees the accurate solution

allowed by the resolution of the grid, since the gradient will be cor-

rectly calculated for the 0-th level set. Using any larger w will only

slow down the calculation without changing the results.

We evolve an initial surface inward without creating sharp cor-

ners, so we iteratively update the sign distance function via

Equations (5) and (6). The normal flow guarantees that the zero

level set moves inward while the mean curvature flow offers a

smooth surface representation. The property of jr/j ¼ 1 is funda-

mental in simplifying our updating equations. However, the mean

curvature flow makes / deviate from a signed distance function. As

typically done in level set methods, we reinitialize the signed dis-

tance function by solving the eikonal equation with the zero level set

as the boundary every few iterations.

2.2 Persistent homology
Another technique we employ in our algorithm is persistent hom-

ology, a widely applied algebraic topology tool for data analysis, es-

pecially in the field of computational biology and chemistry. It

significantly reduces geometric complexity by representing essential

geometric properties in terms of a sequence of topological invariants

parameterized by a geometric function.

2.2.1 Homology group

For a topological space X , we define a series of complexes

CiðXÞ; i ¼ 0;1; 2::: describing different dimensional information of

the topological space. Each complex is an Abelian group. The com-

plexes are linked by the boundary maps, which include the homeo-

morphisms @i : Ci ! Ci�1 satisfying the condition

@i�1 � @i ¼ 0; i 2 Z; i > 0: (9)

The algebraic construction by connecting the complexes by the

maps is called a chain complex,

� � � !@iþ1 Ci!
@i Ci�1 !

@i�1 � � �!@2 C1!
@1 C0!

@0
0 (10)

The i-th homology is constructed based on two subsets of com-

plex Ci, the boundary Imð@iþ1Þ, the image of map @iþ1 and the cycle

group Kerð@iÞ, the kernel of map @i. The property in Equation (9)

implies that

Imð@iþ1Þ � Kerð@iÞ (11)

More precisely, the homology group is defined as the quotient

group

HiðXÞ ¼
Kerð@iÞ
Imð@iþ1Þ

: (12)

When Ci are generated by i-dimensional cells of a tessellation

of X , homology provides topological information of X . Intuitively,

HiðXÞ contains independent i-dimensional (i-D) holes in X .

For instance, the quotient group H1 of a torus describes holes on

it. It is constructed from Imð@2Þ, the group of 1 D curves that are

boundaries of certain 2 D sub-spaces of X , and Ker ð@1Þ, the group

of all closed 1 D curves. There are two independent types of closed

1 D curves that are not a boundary curve of X , which are the genera-

tors of the homology. This, in fact, shows the 1 D topological fea-

tures, a loop around the tunnel and another around the handle of

the torus.

2.2.2 Persistent homology

In order to provide relevant geometric information, a geometric par-

ameter can be introduced to provide a dynamic homology analysis

for a topology space through filtration, which is a series of sub-space

X i of X ,

Ø ¼ X0 � X1 � X2 � � � � � Xm ¼ X : (13)

For our evolving surface, the index is related to the time param-

eter. A homology class d 2 HkðX iÞ is referred to be born at time i if

it is not an image from the inclusion map from X i�1 to X i, and to

die at time j if it is no longer in the image of the inclusion map from

X i to X j. The time interval j – i is called the persistence. See, e.g.

(Edelsbrunner et al., 2000; Wang and Wei, 2016) for additional

details. A major topological feature will have a long persistence.

Thus, geometric PDEs can induce persistence to provide a robust de-

scription of protein pocket topological features.

i832 R.Zhao et al.

Deleted Text: ,
Deleted Text:  
Deleted Text: ., .
Deleted Text: ,
Deleted Text: ., 
Deleted Text: Eqs.
Deleted Text: H
Deleted Text: G
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: .
Deleted Text: Eq.
Deleted Text: ,
Deleted Text: .
Deleted Text: .
Deleted Text: ,
Deleted Text: subspaces
Deleted Text: ,
Deleted Text: ,
Deleted Text: 2
Deleted Text: ,
Deleted Text: subspace 
Deleted Text: ,
Deleted Text: ,
Deleted Text: .
Deleted Text: .,


3 Algorithm

The relatively simple pockets and their areas, volumes, depths and

pocket-sub-pocket relations, can be characterized by the persistence

of only homology group H0, which in fact describes the connected

components for the topological space. Describing ring-like pockets

can be performed by homology group H1, but detecting protein cav-

ities requires a different set of the geometric PDEs and would be be-

yond the scope of the present work.

As we use regular Cartesian grid, cubical complexes and persist-

ent homology at the cubical setting are employed. The associated fil-

tration can be created by a Morse function TðrÞ stored on the 3 D

grid, with sub-spaces

X i ¼ fr jTðrÞ�ti ¼ ihg; (14)

where h is the time step size.

For a deforming surface, we can define the Morse function

through TðrÞ ¼ inf ft j/ðt; rÞ ¼ 0g, i.e. the time when the surface

first sweeps through the location r.

One option to evolve the surface is to start from the protein surface

and move outward, but the PDEs involved are less stable than those for

moving the convex hull inward. Moreover, the time TðrÞ for the in-

ward motion with unit speed also provides a better depth estimate. We

prevent the evolving surface from entering the protein surface since we

are looking for pockets outside the protein. In this case, the total space

X is the space between the protein and its convex hull. As the surface

moves inward, X X i is shrinking, and it will be separated by protein

surface, forming connected components (pieces of the hollow space be-

tween the protein surface and the deforming surface at time ti).

We define these pieces with long persistence as potential protein

pockets. This procedure can be equivalently, and more efficiently

described by a Reeb graph, describing the splitting and merging of

the connected components of level sets of TðrÞ. More precisely, the

Reeb graph contains nodes, each of which represents a connected

component of fr jTðrÞ ¼ tig for certain time ti, and edges connecting

nodes at ti and tiþ1 if they are connected through fr j ti�TðrÞ�tiþ1g.
For our purpose, we only need to construct the Reeb graph to infer

potential protein pockets and sub-pockets Fig. 2.

For our Morse function TðrÞ, the Reeb graph is simply a tree.

Starting from a single root, the tree will bifurcate whenever there is a

splitting of the connected components. Finally, all connected components

will disappear when the surface has deformed to the protein surface.

With persistent homology, we can actually capture all potential

pockets regardless of their sizes and the tree provides us with a hier-

archy among the pocket candidates. Then, we can use arbitrary geo-

metric or physical pocket dimensions to eliminate those with short

persistence as ‘noise’. We elaborate on capturing pockets with high

probability by further examining the geometry in the next section.

4 Implementation

Proper implementation is mandatory for efficiency of Eulerian meth-

ods. To reduce memory space usage, we perform a two-pass algo-

rithm to avoid storing the Morse function explicitly in the 3 D grid.

In the first pass, we record only the necessary information to build

the Reeb graph and extract the major component paths. We then

collect the geometric information for the long persistent pockets by

evolving the surface with a second pass Fig. 3.

4.1 Input and output
Our algorithm is independent of the type of input surface, e.g. solv-

ent excluded surface (SES). A triangulated SES can be computed by

software provided by (Liu et al., 2017). We also use a standard mol-

ecule description file, containing the locations and radii of all the

atoms for future atom query.

Fig. 1. Illustration of detected pockets of protein 1a4r showed by different

colors

Fig. 2. Left: Illustration of Reeb graph. The dashed line represents critical

times for the filtration when there will be components newly born or killed.

We have extracted four components labeled by different colors. Right:

Illustration of a trimmed Reeb graph. The component (i.e. the yellow leaf) that

lives for a short period is eliminated. Note that orange path is divided into

two components (orange and brown), due to pocket hierarchical relation.

Persistent objects are then marked by green, orange, brown and blue regions

extracted from nodes B, F, J and M, respectively. Brown and blue are sub-

pockets of orange

Algorithm 1 Pocket Detection Algorithm

1: function PocketDetection(model, atoms)

2: BuildConvexHull()

3: BuildSignedDistanceFunction()

4: Initialize()

5: while NotAllSurfaceBlocked() do " Figure 4

6: ReinitializeSDFIfNeeded() " Section 2.1

7: EvolveSurface()

8: ExtractConnectedComponents()

9: BuildReebGraph()

10: ExtractMajorPersistencePath()

11: ExtractPotentialPockets()
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The output provides information on protein pocket candidates,

including the depth, area, volume and adjacent atoms for down-

stream applications. The first three geometry properties are obtained

by analyzing the space bounded by the deforming surface and the

protein surface. We build a kd-tree for fast access of nearest atom.

4.2 Initialization
Open source software packages exist for convex hull surface gener-

ation and solving the eikonal equation. We resort to the

Computational Geometry Algorithms Library (CGAL; Fabri and

Pion, 2009) for building the convex hull surface from a triangulated

SES (Liu et al., 2017) and OpenVDB (Museth, 2013) for the data

structures and sub-routines of surface deformation. A surface mesh

can be converted into a signed distance function by using an

OpenVDB procedure. OpenVDB uses a hierarchical tree structure to

achieve narrow band storage, which contributes to the overall effi-

ciency of our implementation.

4.3 Evolving surface
With the narrow band representation of the signed distance function

(SDF), moving the surface only amounts to update / in each active

voxel. We mark each active deforming surface voxel as either

blocked or free depending on whether the deforming surface is

touching the protein surface at that voxel, which can be determined

by comparing the signed distance functions for the deforming sur-

face and for the protein surface. We update / for the moving surface

only in free voxels and change the signed distance function mono-

tonically in time to prevent moving the surface backwards. The

monotonicity prevents the mean curvature flow from overpowering

the normal flow motion, while preventing sharp corners from devel-

oping near contact regions of the two surfaces. As mentioned before,

reinitialization for every few update steps is necessary, since other-

wise the level set function will deviate from an SDF.

4.4 Connected component
As mentioned above, the connected components of X in the filtra-

tion is memory-intensive to compute. Thus, we opt for the equiva-

lent calculation based on surface voxels, which are the active voxels

containing a piece of the current zero level set. We then compute the

connected components of surface voxels that are not blocked by the

protein surface yet.

The idea is illustrated in Figure 4 in 2D, a snapshot of active vox-

els during the surface deformation. The black curve represents the

protein surface, and the red curve represents the deforming surface.

Note that for stable implementation, we start the deforming surface

from a surface slightly offset outward from the convex hull. Both

the deforming surface and the protein surface are stored as zero-

level sets of the corresponding signed distance functions. All colored

voxels are active. Orange and yellow voxels are surface voxels of the

deforming surface, and brown voxels are surface voxels of the pro-

tein surface. Orange voxels are blocked by the protein surface, but

yellow voxels are still free to move. We further allow the deforming

surface to move within the protein surface by a short distance, again

for robustness. The voxels between brown voxels and yellow voxels

belong to a potential pocket. The free moving piece of the deforming

surface will continue evolving inward until it becomes blocked the

protein surface.

4.5 Reeb graph
We construct the Reeb graph, based on connected components. The

persistence of branches in the Reeb graph indicates how likely it cor-

responds to a real protein pocket. As explained in Section 3, nodes

of the Reeb graph corresponds to connected components and edges

show their connection through temporal evolution of the surface. As

we use a nearly uniform unit speed to evolve the surface along the

normal directions, except for small deviations introduced by the

mean curvature flow, the persistence well captures the depth

information.

Each node is labeled with a persistence computed as the graph

distance from the deepest leaf node among its descents. Branches

with a small persistence can be trimmed. This does not prevent deep

but narrow candidate pockets from being detected. However, the

estimated free moving surface area associated with the component

can be used as an additional criterion to eliminate those candidates.

So both the depth and width thresholds can be easily specified and

applied. Finally, we just need to run the second pass to extract the

desirable pocket information.

4.6 Geometric feature
Our surface deformation procedure can easily produce geometric

features for detected pockets, as each pocket is represented by space

bounded by protein surface patches and deforming surface patches,

rendering the pocket volume and pocket surface area. We can also

extract the opening area by the area of the deforming surface patch,

which indicates the pocket width. Pocket depth is naturally defined

by the persistence of a certain pocket. More precisely, the depth of a

pocket is defined by the persistence measuring the difference be-

tween birth and death times multiplied by the surface evolution

speed, which is 0.5 times the grid spacing in our implementation.

Such volume and area calculation for level sets is well estab-

lished. Here, we offer a highly efficient estimation. We simply count

the number of voxels that are bounded by the two surfaces as an es-

timate for volume. The pocket area and horizontal span are esti-

mated by the corresponding surface voxel counts on protein surface

patches and deforming surface patches, respectively. We only pro-

vide a rough estimate of the surface area, but more accurate results

can be calculated as efficiently by weighting different types of sur-

face voxels as in (Mullikin and Verbeek, 1993). Since the voxel

count times the volume of voxel provides the volume of a thin shell

Fig. 3. Illustration of the convex hull surface evolution on protein 3kgp. The

surface moves inward from the convex hull and finally reaches the protein

surface in (a), (b) and (c). (d) Shows the detected pockets

i834 R.Zhao et al.

Deleted Text: ) (
Deleted Text: subroutines
Deleted Text: S
Deleted Text: C
Deleted Text: .
Deleted Text: 2-Dimension
Deleted Text: G
Deleted Text: .
Deleted Text: ,


of about two grid spacing, we estimate the area by dividing this vol-

ume by this approximate thickness of the thin shell.

All our thresholds, the minimum required depth, the minimum

required horizontal span, and the minimum required volume, are all

intuitive parameters, that can be either user-specified or application-

determined. The final detected pockets will thus not be too shallow,

too narrow or too small.

5 Results and discussion

We validate our method with pocket detection performed on the

PDBbind database (Wang et al., 2004) which contains high quality

crystal structures of diverse protein-ligand complexes. A residue or a

ligand can be represented as sets of atoms, R ¼ faigi or L ¼ fbjgj. A

protein can then be represented as a set of residues P ¼ fRigi. All

protein atoms are considered. Then we define a set of confirmed

pocket residues within a distance d from the surface as

POCðP;L;dÞ ¼ fRi 2 P j min
a2Ri ;b2L

jja� bjj�dg: (15)

Let POCcompðPÞ be the set of residues in P that are identified as

pockets by the program. We say the pocket detection succeeds for a

protein if

RðP; dÞ ¼ jPOCcompðPÞ \ POCðP;L; dÞj=jPOCðP;L; dÞj�r; (16)

where r is a ratio (required recall rate). The success rate SðP; d; rÞ
¼ jfP 2 P : RðP; dÞ�rgj=jPj is the percentage of proteins that our

method succeeded to detect the pockets.

One set of proteins and its two subsets are used for validation.

The first one containing 4 414 entries is the union of all proteins

from the PDBbind refined sets v2007, v2013, v2015, and v2016,

and is denoted Pall. The second set containing 2 430 entries is the

subset of Pall containing all single chain proteins denoted Psc. The

third set containing 290 entries is the PDBbind 2016 core set

denoted Pcr16. The atomic radii are first generated by PDB2PQR

software (version 2.1.0; Dolinsky et al., 2007) with CHARMM

force field. The pockets are computed for the chain closest to the lig-

and if a protein contains multiple chains. The performance of the

proposed method on the three sets is shown in Table 1.

Our method successfully captures the majority of the real bind-

ing pockets in Table 1. We found that there are three cases where

our method cannot detect the provided ligand binding references.

(i) The ligand is bound at a rather shallow place. (ii) The ligand

is bound at pockets which are formed by more than a single chain.

(iii) The ligand is bound at closed cavities, which is beyond the cases

that our current method handles. Note that the success rate may ap-

pear to drop with increasing d in some cases because the denomin-

ator jPOCðP;L; dÞj may increase.

In addition to the known pockets, we are able to provide many

other pocket candidates with detailed geometric information. For

example, in Figure 5, in addition to the binding site of protein 3ao4

confirmed by PDBbind database marked purple, our method also

provides other potential candidates.

Figure 5 shows a specific example of the detected pockets for

protein 3ao4. The colored branches in the Reeb graph are among

the major persistent candidates, whereas gray paths are elimi-

nated as noise. The color of the major component path is consist-

ent with that for pockets. The pockets are extracted at the stage

marked by a star. It can be noticed that pockets detected are

highly reliable and resistant to noise. Figure 6 shows that our

hierarchical detection procedure finds two sub-pockets (cyan and

purple) from a large ancestor pocket (yellow), from which multi-

ligand binding with ligand interactions may be suggested (red and

green).

Fig. 5. Visualization of detected pockets of protein 3ao4 with the correspond-

ing Reeb graph

Fig. 4. Illustration of basic algorithmic concepts. All colored voxels are active,

and the rest inactive. Orange voxels are blocked surface voxels, while yellow

voxels are free surface voxels of the deforming surface (indicated by red curve).

The black curve indicates the protein surface. The brown voxels represent the

currently untouched region of protein surface, which is a pocket in this case

Table 1. Performance measured by Sð�;d ; rÞ on the three sets with

different distance thresholds (d) and ratio cutoffs (r)

Pall (4414) Psc (2430) Pcr16 (290)

d 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

3Å 0.91 0.86 0.78 0.94 0.89 0.83 0.95 0.89 0.81

4Å 0.91 0.86 0.76 0.94 0.89 0.80 0.95 0.89 0.77

5Å 0.91 0.86 0.68 0.94 0.89 0.71 0.94 0.90 0.71
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Table 2 provides details of geometric properties for all pockets in

figures. We also provide statistics for all the test cases. Figure 7a

shows memory consumption distribution, which is roughly propor-

tional to Oð
ffiffiffi
n
p
Þ, where n is the number of atoms. Figure 7b shows

execution time distribution, which is within a reasonable amount of

time, no more than 120 s.

6 Concluding remarks

This work introduces the geometric partial differential equation

(PDE) based convex hull surface evolution and associated topologic-

al persistence for accurate, efficient and robust detection of protein

pockets. The level set function is governed by the unit speed normal

flow to measure the pocket surface area, volume and depth. The

mean curvature flow is incorporated to ensure a smooth surface rep-

resentation of protein pockets. These equations are iteratively

integrated in the Eulerian representation to allow potential topo-

logical changes. The transformation from Lagrangian mesh to the

Cartesian grid is accomplished via the eikonal equation. The convex

hull surface evolution naturally induces a Morse function and topo-

logical persistence. The resulting Reeb graph is utilized to describe

the hierarchical relation between protein pockets and sub-pockets, a

crucial information for protein-multi-ligand interactions that is

not available ever before. Topological persistence also enables the

classification and visualization of significant and insignificant pock-

ets and sub-pockets.

Three intuitive parameters describing geometric features are

designed for user interaction and control. Efficient algorithms are

carefully implemented to avoid potentially excessive memory con-

sumption or execution time pitfalls. On a regular CPU (Intel Xeon

3.77 GHz), the user can obtain results in about a minute without the

need to worry about computational resource limitation. Our method

Fig. 6. Visualization of ligand interaction suggestions for multi-ligand binding

on protein 1tok. (a) A large detected pocket (yellow). (b) Two sub-pockets

(cyan and purple) that bifurcate from this large pocket. (c) The corresponding

branches in the Reeb graph. Yellow branch bifurcates into two sub-branches

(cyan and purple). (d) Our suggestion for multi-ligand (red and green) binding

with ligand interactions

Table 2. Geometric properties of all detected pockets in figures

Pocket Volume(Å3) Area(Å2) Depth(Å)

1a4r top 964 475 4

1a4r mid 1227 558 5

1a4r bottom 935 463 4

3kgp 973 436 8

3ao4 blue 569 326 9

3ao4 green 521 293 5

3ao4 cyan 508 266 7

3ao4 purple 672 373 9

3ao4 red 828 409 7

3ao4 yellow 447 243 5

1tok yellow 1252 600 9

1tok cyan 533 272 7

1tok purple 173 90 6

(a)

(b)

Fig. 7. Statistics for all 4 414 test cases
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has a high locality, which means that the efficiency can be further

improved significantly by parallel computing techniques either with

GPU such as CUDA, or CPU such as TBB. The resulting implemen-

tation of our method exhibits high accuracy in pocket detection in

our tests. One limitation of our method is that we do not incremen-

tally handle deforming flexible proteins, but we can treat them

frame by frame and establish the correspondence by mapping the

pockets to atoms.
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