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Abstract

Motivation: Molecular interactions have widely been modelled as networks. The local wiring pat-

terns around molecules in molecular networks are linked with their biological functions. However,

networks model only pairwise interactions between molecules and cannot explicitly and directly

capture the higher-order molecular organization, such as protein complexes and pathways. Hence,

we ask if hypergraphs (hypernetworks), that directly capture entire complexes and pathways along

with protein–protein interactions (PPIs), carry additional functional information beyond what can

be uncovered from networks of pairwise molecular interactions. The mathematical formalism of a

hypergraph has long been known, but not often used in studying molecular networks due to the

lack of sophisticated algorithms for mining the underlying biological information hidden in the wir-

ing patterns of molecular systems modelled as hypernetworks.

Results: We propose a new, multi-scale, protein interaction hypernetwork model that utilizes hyper-

graphs to capture different scales of protein organization, including PPIs, protein complexes and

pathways. In analogy to graphlets, we introduce hypergraphlets, small, connected, non-isomorphic,

induced sub-hypergraphs of a hypergraph, to quantify the local wiring patterns of these multi-scale

molecular hypergraphs and to mine them for new biological information. We apply them to model

the multi-scale protein networks of bakers yeast and human and show that the higher-order molecu-

lar organization captured by these hypergraphs is strongly related to the underlying biology.

Importantly, we demonstrate that our new models and data mining tools reveal different, but com-

plementary biological information compared with classical PPI networks. We apply our hypergra-

phlets to successfully predict biological functions of uncharacterized proteins.

Availability and implementation: Code and data are available online at http://www0.cs.ucl.ac.uk/

staff/natasa/hypergraphlets.

Contact: natasa@cs.ucl.ac.uk

1 Introduction

Deciphering the complex patterns of interactions between macromo-

lecules in a cell is of crucial importance. Graph theory offers mathem-

atical abstractions to represent and study molecular interactions.

Simple graphs (also called networks) have been widely used to model

the interactions between pairs of molecules. For instance, in protein–

protein interaction (PPI) networks, each node represents a protein and

each edge connects a pair of proteins that can bind to each other (Ito

et al., 2001; Rolland et al., 2014; Stelzl et al., 2005; Uetz et al., 2000).

Exact comparison of networks is a hard problem due to the NP com-

pleteness of the underlying subgraph isomorphism problem (Cook,

1971). Thus, simple heuristics have been used to study PPI and other

molecular networks, such as degree distribution and centralities

(Mason and Verwoerd, 2007). Graphlets quantify the local topology

of a network. They are small, non-isomorphic, induced subgraphs of

a larger network, which precisely characterize the local wiring pat-

terns around each node (Pr�zulj, 2007; Pr�zulj et al., 2004). Graphlets

and their statistics have since been used to compare biological net-

works (Yavero�glu et al., 2014), to uncover their functional organiza-

tion (Milenkovic and Pr�zulj, 2008; Pr�zulj, 2007; Pr�zulj et al., 2004;

Yavero�glu et al., 2014), to guide network alignment algorithms

(Kuchaiev et al., 2010; Malod-Dognin and Pr�zulj, 2015) or to relate

the wiring patterns of genes in these networks with their biological

functions (Davis et al., 2015; Milenkovic and Pr�zulj, 2008; Yavero�glu

et al., 2014).

However, in biological systems, molecules do not interact solely

in a pairwise fashion. Hence, simple graphs do not capture the

multi-scale organization of these systems (Klamt et al., 2009;

Lacroix et al., 2008). In the example in Figure 1, we observe that the

simple graph representation, on the right, of the system on the left
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blurs the higher-order organization of the system. Given only the

network representation on the right, one might, for instance, falsely

assume that the nodes b, c and d form a complex of three elements,

while it is true that b and d form a complex, b and c form a complex,

and c, d and e form a complex.

A solution to overcome this limitation is to model a molecular

system using hypergraphs. A hypergraph is defined by a set of nodes,

V, and a set of edges, E, called hyperedges, where each hyperedge

corresponds to a set of interacting nodes of any size (Berge, 1973).

This means that a simple graph is a special case of a hypergraph in

which all hyperedges are sets of two nodes. The representation of

the system in Figure 1 (left) is a hypergraph. To analyse data mod-

elled as hypergraphs, it is necessary to develop methods to mine the

structure of hypergraphs. A number of simple measures from graph

theory have already been extended to hypergraphs, e.g. the cluster-

ing coefficient (Estrada and Rodrı́guez-Velázquez, 2006), degree dis-

tribution (Latapy et al., 2008) and centralities (Estrada and

Rodrı́guez-Velázquez, 2006; Pearcy et al., 2014). Approaches such

as percolation and random walks (Bellaachia and Al-Dhelaan, 2013;

Pearcy et al., 2016) have also been extended to study hypergraphs.

Hypergraphs have also been used for learning tasks, such as cluster-

ing and nodes classification (Pelillo, 2013; Tian et al., 2009).

However, hypergraphs lack more advanced descriptors of local top-

ology. Hence, we introduce hypergraphlets, an extension of graph-

lets to hypernetworks.

We investigate biological hypernetworks in which nodes are pro-

teins and hyperedges capture PPIs, protein complexes or signalling

pathways. A protein complex connects two or more proteins that

bind together. A pathway connects together any number of proteins

whose interactions, including (but not limited to) PPIs, leads to a

certain product or change in a cell. The main aim is to check if the

topology of these hypernetwork representations of the data carries

biological information that goes beyond the information that can be

obtained from PPI networks. We use hypergraphlets in this

investigation.

2 Contributions

We motivate studying the higher-order molecular interactions as

models that capture additional and different biological information

than the widely studied PPI networks. We introduce hypergraphlets

as a new tool that unveils the pioneering observation of the close

link between the multi-scale molecular organization and biological

function and that can serve as an underlying methodology for many

new tools that will be developed to further study the multi-scale or-

ganization of molecular systems.

We analyse the hypergraph representation of protein interactions

of yeast Saccharomyces cerevisiae and human and show that pro-

teins that are similarly wired in a hypernetwork, independently of

their location in the hypernetwork, tend to have similar biological

functions. Also, we use the canonical correlation analysis (CCA)

(Hardoon et al., 2004) to correlate hypergraphlets around proteins

in these networks with their biological functions. The results con-

firm the link between the local wiring patterns of the multi-scale mo-

lecular organization of the cell and biological functions. We use

these findings to predict biological functions of uncharacterized pro-

teins from the wiring patterns of the multi-scale molecular organiza-

tion. We validate our predictions in the literature.

3 Materials and methods

3.1 Data
We consider six different networks across two species, human and

baker’s yeast. For each species, we consider the PPI network and

two hypernetworks corresponding to protein complexes and bio-

logical pathways. In all networks, nodes correspond to proteins. In a

PPI network, an edge between two proteins represents a physical

interaction. Depending on the hypernetwork considered, a hyper-

edge represents either a protein complex or a biological pathway.

These data are used jointly to build hypernetworks capturing multi-

scale organization of proteins in a cell, as detailed in Section 3.5.

The PPI data is obtained from the BioGRID database (Chatr-

Aryamontri et al., 2017) (version 3.4.145). Both pathways hypernet-

works come from the Reactome database (Fabregat et al., 2016)

(accessed in April 2017). The human protein complexes are down-

loaded from the CORUM database (Ruepp et al., 2007, 2009) (in

May 2017), while the yeast protein complexes are collected from the

CYC2008 database (Pu et al., 2009) (last updated in 2009). Table 1

gives an overview of the sizes of the datasets.

To investigate the links between networks and biological func-

tions, we collect gene annotations from the Gene Ontology (GO)

Consortium database (Blake et al., 2015) (downloaded at the end of

January 2017). For each protein, we keep only the most specific

annotations that are experimentally derived. We separate the anno-

tations based on the three categories: biological process (BP), mo-

lecular function (MF) and cellular component (CC).

3.2 Hypergraphlets: the local topology of hypergraphs
We define hypergraphlets as small, connected, non-isomorphic,

induced sub-hypergraphs of larger hypergraphs. Berge (1973)

defines an induced sub-hypergraph of a hypergraph H ¼ ðV;EÞ on a

set of nodes A � V as the hypergraph HA with set of nodes A and

set of unique hyperedges

EHA
¼ fe \ Aje 2 E; e \ A 6¼1g: (1)

Note that with this definition, hyperedges containing only one

node exist for each node. With this definition, an induced hyper-

graph is simple, i.e. it has no duplicated edges.

Within a given hypergraph, automorphic nodes are nodes whose

labels can be exchanged without changing adjacency relationships.

Formally these nodes can be mapped to each other by an
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Fig. 1. Illustration of a system with higher-order interactions (left) and its sim-

ple graphical representation (right)

Table 1. Sizes of the data

Database No. of proteins No. of (hyper-) interactions

CORUM 3145 2138

Human Reactome 9466 1461

PPI 16 008 216 865

Reactome 1465 400

Yeast Cyc2008 1607 406

PPI 5931 87 225
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automorphism, which is an isomorphism of a hypergraph with itself.

An isomorphism is a mapping of nodes of the hypergraph that pre-

serves the adjacency of the nodes (Bondy and Murty, 1976). A set of

automorphic nodes form what is called an orbit. Here, we consider

all 1- to 4-node hypergraphlets, which contain a total of 6369 differ-

ent orbits. For 5-node hypergraphlets, we estimate that there are

more than a hundred thousands orbits, hence we restrict ourselves

to 4-node hypergraphlets. In Figure 2, we illustrate all 65 orbits that

occur in the 1- to 3-node hypergraphlets.

Analogous to graphlets, we use hypergraphlet orbits to quantify

the wiring patterns around each node in a hypergraph. For each

orbit i in hypergraphlet h, we define the ith hypergraphlet degree of

a node in the hypergraph H as the number of hypergraphlet orbits i

that the node touches.

For each node in a hypergraph, we compute all 6369 hypergra-

phlet degrees resulting in a 6369-dimensional vector where entry i

corresponds to the ith hypergraphlet degree of the node. We term

this vector capturing the local wiring around a node the hypergra-

phlet degree vector (HDV).

Considering a hypergraph with n nodes, with maximal hyper-

edge of size l and with maximal degree of a node d, where the degree

of a node corresponds to the number of hyperedges that contain it,

an upper bound on the complexity of counting all 1- to k-node

hypergraphlets is OðnðldÞk�1Þ.
Lugo-Martinez and Radivojac (2017) introduced an alternative

definition of hypergraphlets in the context of binary classification

problems. They define kernels based on their definition of hypergra-

phlets and use support vector machines to classify the proteins. The

key difference with our definition of hypergraphlets is that they do

not consider the hypergraphlets of a hypergraph as induced sub-

hypergraphs, thus ignoring some overlaps between hyperedges

(Lugo-Martinez and Radivojac, 2017). In particular, in the first

step, they ignore all hyperedges containing more than four nodes.

Instead, hyperedges with more than four nodes are taken into con-

sideration independently in the second step, which decomposes a

hyperedge of size n>4 into the
n
4

� �
subsets of four nodes. Hence,

with their definition and counting process, an important part of the

topology of the hypernetwork is overlooked and therefore topo-

logical information is lost, which motivates our redefinition that is

also a direct extension of the definition of graphlets for simple

graphs. However, we could not compare the two approaches, as

their implementation is not publicly available and they recently

agreed with us that their definition needed to be changed to alleviate

these issues (personal communication).

3.3 Topological distance
We define a distance measure to compare the wiring patterns of two

nodes in a hypernetwork (or network, depending on the model con-

sidered) as follows. Consider a set of proteins P ¼ fp1;p2; . . . ;pmg
and let M be the matrix representing our data where row i corre-

sponds to the HDV (or GDV) of protein pi. Then, we define the dis-

tance, d, between two proteins pi and pj as

dðpi; pjÞ ¼
X
k2K

log ðMik þ 1Þ � log ðMjk þ 1Þ
rk

� �2
" #1

2

; (2)

where K corresponds to the set of orbits considered, Mik denotes the

entry of M on the ith row and kth column and rk denotes the stand-

ard deviation of the distribution of the kth hypergraphlet (or graph-

let) orbit degree across our set of data value. Note that to reduce the

impact of very large orbit counts, we apply to M an element-wise

log transformation.

3.4 Linking local structure to function
We explore two ways to evaluate the link between the local struc-

ture of a molecular network and the biological functions of its mole-

cules. First, we cluster the nodes based on the similarity of their

wiring patterns defined in Section 3.3, and we do the enrichment

analysis of the resulting clusters (Section 3.4.1). Second, we use

CCA to test if biological functions tend to be characterized by spe-

cific wiring patterns (Section 3.4.2).

3.4.1 Cluster enrichment

We cluster proteins that are similarly wired in a graph or a hyper-

graph as measured by distance d [see Equation (2)] and test if the

proteins within the same cluster share GO functions.

Clusters are obtained by using k-means method (Hartigan and

Wong, 1979) based on the distance defined in Equation (2).

For each of various numbers of clusters, k, we run the clustering al-

gorithm 20 times to account for the randomness in the k-means al-

gorithm. For each clustering, we compute the enrichment of clusters

Fig. 2. Illustration of all 1- to 3-node hypergraphlets (H0 to H33) and the 65 orbits. Each closed set corresponds to a hyperedge and each node is represented by an

integer between 0 and 64 corresponding to the orbit it belongs to
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in biological annotations for each GO category with correction for

multiple hypothesis testing (Benjamini and Hochberg, 1995). We

consider a cluster enriched if at least one GO annotation is signifi-

cantly enriched in the cluster (P-value < 5%). For each value of k,

we also compute the average of sum of squared error (SSE) and the

normalized mutual information (NMI) (Vinh et al., 2010) consider-

ing all 20 repeats. SSE gives a measure of how close proteins within

a cluster are on average according to our similarity measure, while

NMI evaluates the stability of the clustering across the 20 runs, i.e.

if proteins are consistently clustered together or apart. Then, we use

‘the elbow’ analysis of the SSE and NMI with respect to k to choose

the optimal number of clusters. For the resulting number of clusters,

we select the clustering giving the highest percentage enrichment

across the 20 runs of k-means for each GO category. We test the sig-

nificance of the enrichment with random permutation tests: we keep

the same number and size of clusters and randomly assign proteins

to each cluster and measure the enrichments of the resulting clusters.

We repeat this process 1000 times and compute the significance.

To see whether the two models, networks and hypernetworks,

harbour the same or different but complementary biological infor-

mation, at least to the extent that it can be uncovered by the pro-

posed methodologies, we measured adjusted mutual information

(AMI) (Vinh et al., 2010) of the clusters and Jaccard Index (JI)

(Jaccard, 1912) of the enriched annotations in the clusters. AMI is a

variation of mutual information (MI) used to compare two cluster-

ings. It measures if any pair of proteins is consistently clustered to-

gether or apart in both clusterings adjusting for chance. The JI gives

a measure of the overlap between the two sets of GO annotations.

3.4.2 Canonical correlation analysis

CCA is used to infer correlations between two sets of features, X

and Y. Consider features X ¼ ðX1; . . . ;XnÞ and Y ¼ ðY1; . . . ;YmÞ
over the same elements. Then CCA will identify K pairs ðLk

X;Lk
YÞ,

called canonical variates, of linear combinations of features of X

and of features of Y, with K ¼ minðm; nÞ, such that the correlations

of Lk
x and Lk

y are maximal over all k. Each canonical variate is

associated a score corresponding to the correlation between its two

linear combinations.

In our case, the elements are proteins, the first set of features cor-

responds to the wiring patterns of proteins in networks or hypernet-

works, and the second to the biological functions of proteins from

GO. As mentioned above, each protein (node) has a GDV from the

PPI network and an HDV from the hypernetwork. Hence, we have

two matrices of topological features where entries (i, j) correspond

to the jth orbit degree of protein i. Also, we associate to each protein

three vectors of GO annotations, one for each of the categories: BP,

MF and CC. In each of these vectors, an entry is equal to 1 if the

gene is annotated with the corresponding GO term, and 0 otherwise.

Hence, we form three matrices of biological features, where entries

(i, j) correspond to the presence or absence of GO annotation j for

protein i.

We compute CCA for each combination of topological features

and biological annotations to uncover topology–function relation-

ships in the data.

3.5 Summary of the analysis
As stated above, our main aim is to examine if modelling the higher

order of molecular organization harbours additional biological in-

formation and to demonstrate that the wiring patterns of biological

hypernetworks are strongly linked to the underlying biology.

We compute vectors containing topological information around

proteins in the molecular networks: we use graphlets on PPI net-

works and hypergraphlets on hypergraphs, as described above. To

validate our approach, we focus on parts of PPI networks that we

know are rich in biological information: protein complexes and

pathways. Clearly, not all proteins in a PPI network belong to com-

plexes, or pathways (illustrated in Fig. 3). Hence to validate our

method, we consider four sets of proteins: those belonging to path-

ways in human (human–pathways), those belonging to pathways in

yeast (yeast–pathways), those belonging to complexes in human

(human–complexes) and those belonging to complexes in yeast

(yeast–complexes). For each protein in each of these sets, we have

two topological signatures: one from the standard graphlets counted

on the entire PPI network and one from the hypergraphlet counts in

the hypergraph (HG) that we constructed by using only protein

complexes (and equivalently pathways). That is, in an HG, nodes

are proteins and each hyperedge represent a protein complex (or

pathway) and contains the proteins that belongs to the complex

(pathway). For each protein, we also have three biological signatures

corresponding to the three levels of GO annotations: BP, MF and

CC. We use these as input into the methods described in Sections

3.4.1 and 3.4.2. The results of these validations are presented in

Sections 4.1.1 and 4.1.2.

The reason for doing these validations on the sets of data for

which we know that they are very enriched in biological information

(i.e. pathways and complexes) is to demonstrate that our new model

and method can correctly identify the biological information. After

these validations of the methodology, we use it to perform the ana-

lysis of multi-scale protein interaction network data of yeast and

human and uncover new biological information. In particular, for

each species, we construct a hypergraph that contains all of its PPIs,

all of its protein complexes and all of its pathways; i.e. nodes are

proteins and hyperedges correspond to PPIs, protein complexes and

pathways. The results of analysing these hypergraphs with our

methods are presented in Section 4.2.

4 Results & discussion

4.1 Validation of our methodology
4.1.1 Enrichment analysis

Having computed the topological vectors from both network models

(PPI and HG) for each protein of each of the four sets of proteins

described in Section 3.5 (human–pathways, human–complexes,

yeast–pathways and yeast–complexes), we apply the methodology

4 0

3481

0

843 989

618

Pathways Complexes

PPI

1643 19

6640

23

6388 469

2511

Pathways Complexes

PPI

namuHtsaeY

Fig. 3. The overlaps of the protein sets of baker’s yeast (left) and human

(right). Left: 3481 proteins participate in PPIs only, 843 in PPIs and pathways,

618 in PPIs, pathways and complexes, 989 in PPIs and complexes, while 4 are

in pathways only. Right: 6640 proteins participate in PPIs only, 6388 in PPIs

and pathways, 2511 in PPIs, pathways and complexes, 469 in PPIs and com-

plexes, 23 in complexes and pathways, while 1643 are in pathways only and

19 in complexes only
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detailed in Section 3.4.1 to investigate if similarly wired proteins

have similar functions. Interestingly, the percentage of enriched clus-

ters is relatively stable as we increase the number of clusters. Hence,

any partitioning of the proteins based on the local wiring patterns in

a network, quantified by using graphlets or hypergraphlets, captures

the underlying biological information (see Fig. 4). This underlines

the crucial role played by the way proteins interact in determining

protein function without any information about their sequence, or

interacting partners. Furthermore, when examining the clusterings

obtained at a specific number of clusters, k (see Section 3.4.1 for

details on how k is chosen), we observe that the enrichments (top

table in Fig. 5) are all statistically significant, except for the one in

grey. Importantly, clusters obtained from HG models are more

enriched than those obtained from PPI networks. This result vali-

dates the relevance of our HG modelling in capturing the underlying

biological information and underlines the potential of hypergra-

phlets for mining molecular hypernetworks.

To further investigate the clusterings, we compute for each the

average shortest path distances, in the corresponding (hyper-)net-

work, between pairs of proteins belonging to the same clusters

(‘within-clusters’) and between pairs of proteins which are in differ-

ent clusters (‘between-clusters’; see middle panel in Fig. 5). We ob-

serve a larger gap between within-cluster and between-clusters

average shortest path lengths for clustering obtained from higher-

order molecular organization than from clusterings obtained from

PPI networks. Hence, proteins that are topologically similar in the

HG model in addition to sharing biological functions tend to be at

shorter distance from each other. This result is consistent with the

literature on ‘guilt by associations’, which predicts protein functions

from their neighbourhoods in molecular networks (Vazquez et al.,

2003).

Finally, we observe that the clusterings obtained from the PPI

model are different from those obtained from the HG model both in

terms of GO annotations that are enriched and in terms of clustered

Fig. 4. The panels give the average percentage of clusters enriched with respect to the total number of clusters for yeast–complexes (left) and yeast–pathways

(right), the standard deviation is not represented to avoid overcrowding the panels. The colours represent the models from which the clustering is obtained: HG

in blue and PPI in orange. The type of line represents the category of GO annotations: BP are full lines, MF are dashed lines and CC are dotted line. The black verti-

cal lines signal the number of clusters selected from the set of NMI and SSE curves according to the procedure described in Section 3.4.1

Fig. 5. The top table presents the maximum enrichment measured across clusterings obtained with the ‘optimal’ number of clusters (80 for yeast and 120 for

human). The number in parenthesis is the number of non-empty clusters. The colour indicates the statistical significance of the maximum enrichment with re-

spect to random permutation tests: black indicates a significant value, grey a non-significant one. The middle panel gives, for each type of model (HG in blue and

PPI in orange), the average of the shortest path lengths within the clusters (wc) and between clusters (bc) of the best clustering obtained for GO–BP annotations.

The results are similar for other GO categories and are not presented here due to space limitations. The bottom table presents the results of comparing the

obtained clusterings. We use the HG clustering as baseline and compute the AMI between the clusterings and the JI (in parenthesis) between the sets of enriched

GO terms

i948 T.Gaudelet et al.



proteins (see bottom table in Fig. 5). This is because a JI close to 0

means that the sets of the enriched GO terms in the PPI and HG

clusterings tend not to overlap. Also, AMI scores below 0.1 mean

that pairs of proteins belonging to the same clusters in one clustering

are typically in different clusters in the other clustering. This demon-

strates that modelling the interactomes by hypergraphs will uncover

new biological information that cannot be uncovered from the ana-

lysis of PPI networks. Also, it demonstrates the complementarity of

the two representations and that the two are capturing different

underlying biological information.

4.1.2 Canonical correlation analysis

We investigate the existence of specific topology-function links, i.e.

the connection between specific hypergraphlets (or graphlets) and

GO annotations by using CCA described in Section 3.4.2. We apply

it on the same PPI and HG of yeast and human used in the clustering

and enrichment analysis (Section 4.1.1): for each set of proteins, we

compute the CCA between the topology-containing vectors of each

of the associated models (PPI and HG) and the vector of GO annota-

tions for each category (BP, MF and CC). Due to space limitations,

we present only the results obtained for yeast and GO–BP annota-

tions. We obtain similar results in all other cases and the discussion

below holds for them as well.

We observe that each model has a number of canonical variates

with correlation close to 1 (Fig. 6), which indicates a strong top-

ology–function relationship in these data that was previously high-

lighted in the context of economic network data (Yavero�glu et al.,

2014). In particular, this means that some functions are strongly

linked to specific wiring patterns and thus, local topology can poten-

tially be used for predicting protein functions. For that purpose,

hypergraphlets of HGs have a strong advantage over graphlets of

PPI networks in the number of canonical variates with a score close

to 1, which is 3 to 13 times more variates with HGs. This is also

expected, since we chose our hypernetworks to model already func-

tion rich parts of molecular networks, protein complexes and path-

ways, and it validates our methodology.

In Figure 7, we take a closer look at the most significant CCA vari-

ate. The variate score of 1.0 links a linear combination of GO annota-

tions to a linear combination of hypergraphlets orbits. For instance,

this means that a gene annotated with positive regulation of barrier

spectrum assembly (GO: 0010973) will likely have a relatively large

2644th orbit degree in the hypernetwork. Why these specific orbits

are linked to these functions is a question that is outside of the scope

of this study and that needs to be further investigated. We find that

the GO terms identified here are also biologically coherent: each of

the GO–BP terms denoted in blue text in Figure 7 is annotating at

least one protein conjointly with at least one other annotation, that is

also denoted in blue text in Figure 7, according to QuickGO search

engine (Binns et al., 2009). Furthermore, the only remaining annota-

tion, cell cycle arrest (GO: 0007050), has been linked to the MAPK

pathway in the literature (Pumiglia and Decker, 1997), as have been

most of the other terms (Gustin et al., 1998; Madhani and Fink,

1998). Hence, the entire set of GO annotations presented in Figure 7

is biologically coherent, which validates the relevance of the canonical

variate and of our hypergraph-based methodology in capturing func-

tional information.

4.2 Analysing multi-scale molecular organization
To explicitly capture the multi-scale organization of protein interac-

tions, we model them by a hypernetwork containing all PPIs, all pro-

tein complexes and all biological pathways as hyperedges (detailed

in Section 3.5). To assess if the wiring patterns in our new HG

model capture the biological functions of proteins, we do the cluster-

ing and enrichment analysis (Section 3.4.1), as well as the CCA

(Section 3.4.2) on these hypernetworks of baker’s yeast and human.

We compare the results with those that we obtain by applying the

same methodologies to PPI networks. In these unifying HG models

of multi-scale molecular organization, we observe that clusterings of

the proteins based on their topological vectors in a network,

obtained by using graphlets or hypergraphlets, capture the underly-

ing biological information (see the top panels of Fig. 8).

Furthermore, the clusters obtained from the hypernetwork topology

lead to higher enrichments in GO–BP, GO–MF and GO–CC annota-

tions. This shows that our newly proposed model, regardless of the

choice of the total number of clusters, k, captures more protein bio-

logical function in its topology than the standard PPI networks.

When choosing the number of clusters, k, according to the criteria

detailed in Section 3.4.1, we observe that all enrichments are statistic-

ally significant and that the HG models allow for an increase of over

15% in the number of enriched clusters when compared with the PPI

networks. This finding underlines the link between multi-scale inter-

action patterns and biological functions. Interestingly, when investi-

gating the clusters, we observe that a majority of the proteins in the

non-enriched clusters only have reported PPIs, but not any pathways

Fig. 6. Canonical correlation score distribution for yeast–complexes (top) and

yeast–pathways (bottom). The canonical variates represented are all statistic-

ally significant (P-value � 5%) and are sorted by correlation score. The col-

ours represent the model and the topological signatures from which the

canonical variates are obtained: HG in blue and PPI in orange
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or complexes that they belong to. This is true for 59% of the proteins

in the HG model of yeast and 38% of the proteins in the HG model

of human. This might be due to incompleteness of the pathways and

protein complexes data. Our results indicate that when more com-

plete data on complexes and pathways becomes available, our meth-

odology will be able to extract additional biological information.

We observe that proteins clustered using topological features

derived from representations of multi-scale molecular organization

tend to also be closer in terms of shortest path distances compared

with those obtained by clusterings based on the topology of PPI net-

works (see bottom left panel in Fig. 8). Interestingly, most proteins

clustered together in the HG models are direct neighbours or second

neighbours. Hence, the fact that we obtain enriched biological func-

tions in those clusters is consistent with empirical evidences showing

that 70–80% of interacting proteins share at least one function.

Those evidences were the motivation for the majority rule used in

the literature for functional prediction (Vazquez et al., 2003).

Finally, we observe that the clusterings obtained from the PPI

models are different from those obtained from the HG models both

in terms of GO annotations that are enriched, with a JI below 0.25,

and in terms of similarity of clusters, with an AMI below 0.35 (see

bottom right panel in Fig. 8). This confirms that our multi-scale

model is not equivalent to the standard PPI network and uncover

additional biological information complementary to that of the PPI

network.

Using CCA (Section 3.4.2), we observe that each model has high

scoring canonical variates, which indicates that some functions are

strongly linked to specific wiring patterns (see Fig. 9). For that pur-

pose, hypergraphlets of our new HG models have an advantage over

graphlets of PPI networks in the number of canonical variates with

high correlation score: it has over 300 canonical variates with score

greater than 0.9 compared with only 10 for PPI networks. This indi-

cates that the HG model’s local wiring patterns are more correlated

with the underlying biology that those of the PPI networks.

Finally, we use the clusterings to investigate the potential of our

newly proposed models in conjunction with our hypergraphlets to

predict protein functions. As demonstrated above, we identified

clusters of proteins with significantly enriched GO annotations. We

use these clusters to predict the functions of proteins. For each GO

category, we identify two disjoint sets of proteins in each of our

hypernetworks: the set of proteins that are experimentally annotated

with at least one of the enriched GO terms in their cluster (on which

the enrichment computations are based) and the set of proteins that

have some predicted annotation in the GO database.

First, we consider the second set and investigate how many of

those proteins have at least one of the enriched terms of their cluster

as their predicted GO annotation (Blake et al., 2015). For GO–BP,

this set contains 11 686 proteins for human (4161 for yeast). For

GO–MF, it contains 7243 proteins for human (3586 for yeast). For

GO-CC, it contains 6589 proteins for human (3510 for yeast). We

show that out of these proteins, about 5% for yeast and 15–23% for

human have been putatively annotated in GO with at least one of

our enriched functions in their clusters (see Fig. 10), which validates

our approach.

Second, we focus on the proteins of the hypernetworks that are

unannotated in GO database (this corresponds to 994 proteins for

human and 97 proteins for yeast) and investigate the GO–BP anno-

tations we predict for them. We predict function for each of these

proteins by associating it with the enriched experimentally obtained

GO term that annotates the most proteins in its cluster. We survey

the literature to validate some of our predictions for human (the top

predictions correspond to the most statistically significantly enriched

GO terms). All predictions are available online at http://www0.cs.

ucl.ac.uk/staff/natasa/hypergraphlets/. We predict that HIST1H2AJ

is involved in nucleosome assembly (GO: 0006334), which is con-

firmed in the literature (Dı́az-Jullien et al., 1996). We further predict

that XIST is linked to chromatin organization (GO: 0006325),

which has also been highlighted in past studies (Brockdorff et al.,

1992). We also predict that NME1–NME2 (an unknown protein

encoded between NME1 and NME2 in the DNA) is involved in cell

GO:0010973: positive regulation of barrier septum assembly

GO:0046827: positive regulation of protein export from nucleus

GO:0043409: negative regulation of MAPK cascade

GO:0010526: negative regulation of transposition, RNA-mediated

GO:0046777: protein autophosphorylation

GO:0007050: cell cycle arrest

GO:0000750: pheromone-dependent signal transduction involved in

conjugation with cellular fusion

GO:0001403: invasive growth in response to glucose limitation

GO:0043433: negative regulation of sequence-specific DNA binding

transcription factor activity

GO:0000747: conjugation with cellular fusion

Fig. 7. The most significant CCA variate between HDVs of the proteins of

yeast–pathways and their GO-BP annotations. The correlation score between

the linear combination of annotations and the linear combination of hyper-

graphlet orbits is 1. The annotations (orbits) illustrated above correspond to

the 10 that have the highest Pearson’s correlation scores with respect to the

linear combinations of annotations (orbits). Each GO term in blue font is

annotating at least one protein conjointly with at least one other annotation

that is also denoted in blue font, according to QuickGO ontology search en-

gine (Binns et al., 2009)
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proliferation (GO: 0008283). The function of this protein is not yet

established (Li et al., 2013), however, NME2 has been linked to re-

duction of cell proliferation (Liu et al., 2015) and proteins encoded

in the neighbour locations of the DNA tend to have similar function

(Feuerborn and Cook, 2015). For microRNA mir-3606, we predict

a role in collagen fibril organization (GO: 0030199). Collagen plays

a key role in cell adhesion, which can involve integrin (Jokinen

et al., 2004; Testaz and Duband, 2001) and mir-3606 has been

Fig. 8. The top panels give the average percentages of clusters enriched with respect to the total number of clusters for yeast (left) and human (right), the standard de-

viation is not represented to avoid overcrowding the panels. The colours represent the models from which the clustering is obtained: HG in blue and PPI in

orange. The type of line represents the category of GO annotations: BP are full lines, MF are dashed lines and CC are dotted lines. The black vertical lines denote the

number of clusters selected from the set of NMI and SSE curves according to the procedure described in Section 3.4.1. The middle table presents the

maximum enrichment measured across clusterings obtained with the ‘optimal’ number of clusters (denoted by the black vertical lines in the top panels). The number

in parenthesis is the number of non-empty clusters. All enrichments are significant. The bottom left panel gives, for each type of model (HG in blue and PPI in orange),

the average of the shortest path lengths within the clusters (wc) and between clusters (bc) of the best clustering obtained for GO-BP annotations. The results are simi-

lar for other GO categories and are not presented here due to space limitations. The bottom right panel represents the results of the comparison of the obtained clus-

terings. We use the HG clustering as baseline and compute the AMI between the clusterings and the JI between the sets of enriched GO terms

Fig. 9. Canonical correlation score distribution for the human hypernetwork.

The canonical variates represented are all statistically significant (P-value

� 5%) and are sorted by correlation score. The colours represent the model

and the topological signatures from which the canonical variates are

obtained: HG in blue and PPI in orange

Fig. 10. Percentages of proteins that have at least one of the enriched terms

of their clusters in their set of predicted GO annotations (obtained from the

GO database; Blake et al., 2015). The values correspond to the number of

such proteins out of the number of proteins that have at least one putative an-

notation in the GO database and are not experimentally annotated with any

of the enriched terms of their clusters
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linked to integrin in the literature as it has been suggested that mir-

3606 can bind to ITGA4 (integrin subunit alpha 4) (Wong and

Wang, 2014). Finally, we propose that LOC101929876 (40S riboso-

mal protein S26) is involved in rRNA processing (GO: 0006364),

which is corroborated by the Reactome database in which the pro-

tein is associated with a major pathway of rRNA processing in the

nucleolus and cytosol (Fabregat et al., 2016).

These results confirm the ability of our hypergraphlets to predict

biological functions of proteins from the wiring patterns in our

novel model capturing multi-scale organization of proteins in a cell.

5 Conclusion

We highlight the importance of considering the higher-order

organization of protein interactions in conjunction with the stand-

ard PPI networks. We propose a novel methodology, hypergra-

phlets, to quantify the local wiring patterns of hypergraphs. We

apply it to biological hypernetworks representing protein complexes

and pathways of yeast and human and demonstrate a strong link

between hypernetwork structure and the function of the proteins.

Our novel methodology is able to mine the biological information

hidden in the multi-scale architecture of molecular organization.

Furthermore, our analysis highlights the superiority, in terms of

uncovering the underlying biology, of our multi-scale model when

compared with the standard PPI networks. Additionally, we demon-

strate that our new hypernetwork model, combined with our hyper-

graphlets, can be used for functional predictions.

Despite a simple functional prediction approach, we obtain

promising results when using hypergraphlets on our new multi-scale

model for functional predictions. It would be interesting to train an

advanced machine learning model, such as random forest, using

HDVs as features in an effort to improve predictions. Finally, we

have demonstrated that the union of networks capturing the multi-

scale molecular organization is strongly linked to the underlying

biology of the molecules. It would be interesting to further investi-

gate if different data integration methods could lead to even more

biologically relevant models.
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