
A fast adaptive algorithm for computing

whole-genome homology maps

Chirag Jain1,2, Sergey Koren2, Alexander Dilthey2,3, Adam M. Phillippy2,*

and Srinivas Aluru1,*

1School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,
2Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome

Research Institute, National Institutes of Health, Bethesda, MD 20892, USA and 3Institute of Medical Microbiology,

University Hospital of Düsseldorf, Düsseldorf 40225, Germany

*To whom correspondence should be addressed.

Abstract

Motivation: Whole-genome alignment is an important problem in genomics for comparing differ-

ent species, mapping draft assemblies to reference genomes and identifying repeats. However, for

large plant and animal genomes, this task remains compute and memory intensive. In addition,

current practical methods lack any guarantee on the characteristics of output alignments, thus

making them hard to tune for different application requirements.

Results: We introduce an approximate algorithm for computing local alignment boundaries be-

tween long DNA sequences. Given a minimum alignment length and an identity threshold, our

algorithm computes the desired alignment boundaries and identity estimates using kmer-based

statistics, and maintains sufficient probabilistic guarantees on the output sensitivity. Further, to pri-

oritize higher scoring alignment intervals, we develop a plane-sweep based filtering technique

which is theoretically optimal and practically efficient. Implementation of these ideas resulted in a

fast and accurate assembly-to-genome and genome-to-genome mapper. As a result, we were able

to map an error-corrected whole-genome NA12878 human assembly to the hg38 human reference

genome in about 1 min total execution time and <4 GB memory using eight CPU threads, achieving

significant improvement in memory-usage over competing methods. Recall accuracy of computed

alignment boundaries was consistently found to be > 97% on multiple datasets. Finally, we per-

formed a sensitive self-alignment of the human genome to compute all duplications of length �1

Kbp and � 90% identity. The reported output achieves good recall and covers twice the number of

bases than the current UCSC browser’s segmental duplication annotation.

Availability and implementation: https://github.com/marbl/MashMap

Contact: adam.phillippy@nih.gov or aluru@cc.gatech.edu

1 Introduction

Algorithms for inferring homology between DNA sequences have

undergone continuous advances for >3 decades, mainly in the direction

of achieving better accuracy to compare distant genomes, as well as bet-

ter compute efficiency to scale with growing data. Up until the last dec-

ade, reconstruction of a complete reference genome through sequencing

and assembly was deemed a major landmark in genomics (Lander

et al., 2001; Venter et al., 2001). However, it did not take long for high-

throughput sequencing technologies to fuel population-wide genomics

projects through low-cost genome assemblies (e.g. the Genome 10 K

project, Haussler et al., 2009). Analysis of these new genome assem-

blies, for both population-scale biological studies and timely diagnosis

in clinical settings, requires faster and memory-efficient algorithms for

facilitating whole-genome comparisons.

It is well-known that computing local alignments using an exact

dynamic programming algorithm at the whole-genome scale is com-

putationally prohibitive. This bottleneck motivated the development

of seed-and-extend based genome aligners. Within the seed-and-

extend paradigm, the two common approaches adopted to compute

exact matches are either implemented using a hash table for k-mers

(e.g. Altschul et al., 1997; Ma et al., 2002; Schwartz et al., 2003;

Yorukoglu et al., 2016) or suffix trees and its variants (Brudno et al.,

2003; Bray et al., 2003; Delcher et al., 1999; Marçais et al., 2018;

Vyverman et al., 2013). A third category includes cross-correlation

VC The Author(s) 2018. Published by Oxford University Press. i748

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 34, 2018, i748–i756

doi: 10.1093/bioinformatics/bty597

ECCB 2018

https://github.com/marbl/MashMap
https://academic.oup.com/


based algorithms (e.g. Satsuma by Grabherr et al., 2010). However,

these approaches still remain computationally intensive. For instance,

Nucmer (Kurtz et al., 2004) and LAST (Kiełbasa et al., 2011),

two widely used genome-to-genome aligners, require 10 or more

CPU hours to align a human genome assembly to a human reference

genome.

The primary motivation behind this work is to develop a new

genome-to-genome mapping algorithm that is fast and memory-

efficient while maintaining accuracy on par with sensitive aligners.

We seek a new problem formulation that also provides a convenient

handle for users to specify how diverged the input genomes are,

based on their knowledge of which organisms are being compared,

expected quality of genome assembly, and sensitivity requirements

of any further downstream biological analysis.

The inspiration behind our algorithmic strategy stems from re-

cent developments in techniques for long-read analyses. MinHash-

based estimation of Jaccard similarity of k-mer sets between DNA

sequences has been adopted for state-of-the-art long read genome

assembly (Koren et al., 2017) and long read mapping (Jain et al.,

2017). Through our previous work Mashmap (Jain et al., 2017), we

demonstrated that a MinHash-based approximate mapping algo-

rithm can compute long-read mapping boundaries with accuracy on

par with alignment-based methods, while exhibiting two orders of

magnitude speedup. Mashmap operates by assuming an error-

distribution model, links alignment identity to Jaccard similarity,

and provides probabilistic guarantees on output sensitivity.

However, this algorithm is limited to end-to-end mapping of input

sequences, which makes it impractical for contig mapping or split-

read mapping. Here, we introduce new algorithmic strategies to

compute local alignment boundaries for both whole-genome and

split-read mapping applications.

Given minimum identity and length requirements for local align-

ments, we formulate the characteristics of homologies we intend to

compute. Our new algorithm internally makes use of our previous

end-to-end approximate read mapping framework (Jain et al., 2017)

by applying it to non-overlapping substrings of the query sequence.

We mathematically show that all valid local alignment boundaries,

which satisfy the user-specified alignment identity and length thresh-

olds, are reported with high probability. Further, we formulate a

heuristic to prioritize mappings with higher scores. We leverage the

classic plane-sweep technique from computational geometry to de-

velop an Oðnlog nÞ algorithm to solve the filtering problem, with n

being the count of total mappings.

We demonstrate the practical utility of our algorithm Mashmap2

by evaluating accuracy and computational performance using real

data instances, which include mapping mammalian genome assem-

blies and ultra-long nanopore reads to the reference genomes, and

sensitive self-alignment analysis of the human genome. We compared

the performance of Mashmap2 against a recent fast alignment-free

method Minimap2 (Li, 2018) and the widely used alignment-based

method Nucmer (Kurtz et al., 2004; Marçais et al., 2018).

Mashmap2 operates in about a minute and 4 GB memory, including

both indexing and mapping stages, to map human genome assembly

to a reference when given minimum alignment identity and length

requirements of 95% and 10 Kbp, respectively. This makes it one of

the most resource-efficient software for genome-to-genome mapping,

especially with respect to the memory-usage. This performance is

achieved while maintaining output sensitivity percentage in the high

90 s. We also demonstrate its direct applicability in computing all �1

Kbp long duplications in the human genome with high accuracy. We

expect that the performance and sensitivity guarantees provided by

our algorithm will allow fast evaluation of draft assemblies versus a

reference genome, scalable construction of whole-genome homology

maps, and rapid split-read mapping of long reads to large reference

databases.

2 The Mashmap2 algorithm

We designed Mashmap2 to enable fast computation of homology

maps between two sequences or a sequence and itself. It consists of

two algorithmic components. The first computes approximate boun-

daries and alignment scores for all pairs of substrings that exceed a

user specified length and identity threshold. The second applies a

novel filtering algorithm to optionally weed out redundant, paralo-

gous mappings.

2.1 Computing local alignment boundaries
Consider all local mappings of the form Q½i::j� between sequences Q

(query) and R (reference) of length l0 or more, such that Q½i::j�
aligns with a substring of R with per-base error-rate � �max and

jj� iþ 1j � l0. Alignment algorithms have quadratic time complex-

ity, therefore an exact evaluation of the local mappings between all

possible substring combinations will require at least XðjQjjRjÞ time.

As such, solving this problem exactly is computationally prohibitive

for typical sizes of real datasets. Instead of explicitly computing all

such structures, we seek at least one inexact seed mapping of length

l0=2 along the path of each optimal alignment. Doing so, while

maintaining high sensitivity and sufficient specificity will allow com-

putation of the local alignments efficiently using an appropriate

alignment algorithm.

In our approach, we leverage our previous alignment-free end-

to-end read mapping algorithm, designed for mapping noisy long

reads (Jain et al., 2017). This allows us to benefit from its attractive

properties including probabilistic guarantees on quality, and algo-

rithmic and space efficiency. We continue to assume the same error

model that was used in this work, also restated here. We assume

that alignment errors, i.e, substitutions and indels in a valid align-

ment, occur independently and follow a Poisson distribution. We

also simplify by assuming that k-mers are independent entities in

sequences. For a given per-base error rate threshold �max, the read-

mapping algorithm reports all target mapping coordinates and iden-

tity estimates of a read in the reference, where it aligns end-to-end

with � �max per-base error rate, with high probability. This is

achieved by linking Jaccard coefficient between the k-mer spectra of

the read and its mapping region to the alignment-error rate, under

the assumed error distribution model.

2.1.1 Proposed algorithm

We first split the query sequence Q into l0=2 sized non-overlapping

fragments. If a substring of Q, say Qsub, of length � l0 aligns against

a substring of R with �� �max per-base error rate, then following

statements hold true:

• There is at least one l0=2 sized query fragment that maps end-to-

end along the optimal alignment path. This is because at least

bðjQsubj � l0=2þ 1Þ=ðl0=2Þc�1 fragments completely span Qsub

(see Fig. 1).
• Under the assumed error distribution, the expected count of

errors in a sub-interval is proportional to its length. Therefore,

the above l0=2 sized fragment should map along the optimal

alignment path with � � l0=2 expected errors.

Accordingly, the read mapping routine in Mashmap can be used

to map each fragment with �max error-rate threshold. Let p be the

Algorithm for computing whole-genome homology maps i749



probability that a fragment is mapped to the desired target position

on the reference, computed as described by Jain et al. (2017).

Probability of reporting at least one seed mapping along the optimal

alignment is given by 1� ð1� pÞbðjQsubj�l0=2þ1Þ=ðl0=2Þc. We show that

these probability scores are sufficiently high, between 0.92 and 1.00

for alignment error rate thresholds �max of 10% and 20%, respect-

ively (Fig. 2).

The above seed matches and their alignment identity estimates

are further processed to compute approximate local boundaries

and their scores. After computing all seed matches, matches

which involve consecutive query sequence fragments are merged to-

gether if they are mapped closely in the same order on the reference

sequence. Suppose mappings from the consecutive query fragments

qi; qiþ1; . . . ; qj are mapped to reference positions with begin

positions p0; p1; . . . ; pj�i, respectively, then they are grouped to-

gether as a local alignment segment if p0�p1� . . . �pj�i, and

pkþ1 � pk� l0; ½0�k < j� i�. The alignment boundaries are esti-

mated as the first and last mapping offsets of the group. The corre-

sponding alignment scores are estimated as their average identity

estimate multiplied by the sum of the fragment lengths. We use these

alignment boundaries and the scores as input to a subsequent filter-

ing algorithm.

2.2 A geometric algorithm for filtering alignments
Large mammalian genomes and plant genomes have abundant re-

petitive sequences. As a consequence, a large fraction of inferior

mappings are reported due to paralogous genomic segments or

false positive mappings resulting from simple sequence repeats.

Furthermore, from a biological perspective, closely examining all al-

ternative mappings may not be feasible. Therefore, different strat-

egies are adopted to identify biologically relevant outputs. We

formulate a filtering heuristic for our mapping application, and de-

velop an Oðnlog nÞ algorithm to solve it. We also prove that

Xðnlog nÞ runtime is necessary to solve this problem. The effective-

ness of this algorithm on real genomic data is demonstrated later, in

the Results section.

2.2.1 Problem formulation

Suppose all output mappings of a query sequence are laid out as

weighted segment intervals, with the alignment scores used as

weights (Fig. 3). We propose the following filtering heuristic: a seg-

ment is termed redundant if and only if it is subsumed by higher

scoring segments at all of its positions. Therefore, the objective is to

identify all good (non-redundant) segments. In practice, there can be

multiple alignments with equal scores. Therefore, segment scores are

allowed to be non-unique.

A sub-optimal Oðn2Þ algorithm for solving the above problem

can be readily developed by doing an all to all comparison among

the segments. However, it would lead to practically slow implemen-

tation for typical input sizes. The formulated filtering problem bears

resemblance to the line segment intersection test problem for which

Shamos and Hoey (1976) gave a classic Oðnlog nÞ algorithm using

plane-sweep technique. Accordingly, we summarize their algorithm

next, and subsequently describe the modifications made to solve the

filtering problem.

2.2.2 The Shamos–Hoey algorithm

Similar to the filtering problem, the problem of detecting

whether n segments have an intersecting pair has a trivial Oðn2Þ
solution. Shamos and Hoey solved this problem using a plane-

sweep based Oðnlog nÞ time algorithm. The algorithm defines an

ordering between segments in the 2D plane. The main loop of the

algorithm conceptually sweeps a vertical line from left to right,

and while doing so, the sweep-line status data-structure L dy-

namically holds segments which intersect the sweep-line.

The sweep-line halts at 2n endpoints of the input segments, and

the order of segments in L is evaluated to detect any intersec-

tion. For efficiency, this algorithm chooses a balanced tree to

implement the sweep-line status L. As such, it spends Oðlog nÞ
time at each halting point, and therefore, the total runtime is

bounded by Oðnlog nÞ. This algorithm is popular not only for

its theoretical and practical efficiency, but also for ease of

implementation.

In our problem as well, evaluating segments which intersect the

vertical sweep-line at 2n endpoints is sufficient to identify all good

segments. However, evaluating all intersecting segments at each end-

point is inefficient, and again leads to a quadratic algorithm.

Therefore, we devise a new ordering scheme among segments which

will enable us to evaluate only a subset of intersecting segments at

each endpoint.

2.2.3 Proposed algorithm for alignment filtering

We define an order between segments as follows: Between two seg-

ments, the segment with higher score is considered as greater, but if

the scores are equal, then the segment with the latter starting pos-

ition is considered as greater. This particular ordering helps avoid

redundant computations, and will be crucial for bounding the run-

time later.

Similar to the Shamos–Hoey algorithm, we also use a height-

balanced Binary Search Tree (BST) as the data-structure for the

sweep-line status L, which tracks the segments that intersect the

vertical sweep line. L is required to support the following opera-

tions in our algorithm:

Fig. 1. A local alignment depicting the inclusion of a length l0=2 fragment of

the query sequence

Fig. 2. Probability of mapping at least one seed fragment for two different

error-rate thresholds �max ¼ 10%; 20%. As true error rate � decreases, the

probability values accordingly improve as expected. Similarly, longer align-

ments spanning more fragments are more likely to be reported. Most import-

antly, all the sensitivity scores are consistently above 90%. To compute the

probability values, sketch size for Minhash based Jaccard estimation was

assumed as 200, and the k-mer size was set to 16. These parameter values

are internally computed by Mashmap (Jain et al., 2017)

i750 C.Jain et al.



1. insert(s). Insert segment s into L.

2. delete(s). Delete segment s from L.

3. mark_good(). Mark all segments with highest score as good

in L.

Note that the insert and delete operations are naturally sup-

ported in Oðlog nÞ time in BSTs, whereas the mark_good function

can be realized as a sequence of maximum and predecessor opera-

tions. If there are k segments with equal and highest scores in L, the

function mark_good uses Oðklog nÞ time. With the data-structures

and the operations defined above, we give an outline of the complete

filtering procedure in Algorithm 1. The main loop of the algorithm

iterates over the 2n segment endpoints, which is analogous to the

sweep line moving from left to right, halting at the 2n points. In

each iteration, we update the sweep-line status L so that it holds the

segments which intersect the sweep line, and mark the highest-

scoring segments as good using the mark_good function.

Lemma 1. Algorithm 1 solves the filtering problem correctly.

Proof. Consider a function S : N! f0;1gn from positions in the query

sequence to subsets of segments f1; 2; . . . ; ng. A segment si 2 fSðposÞg if

and only if it is among the highest scoring segments which overlap with

the query sequence at position pos. Clearly, a union of all subsets in the

domain of function S equals the set of good segments. If we perform a

linear scan on the domain, from begin to end position of the query se-

quence, then value of S can change only at the 2n endpoints of the seg-

ments. Therefore, the highest scoring segments overlapping at the 2n

endpoints constitute the set of good segments, which is precisely what

Algorithm 1 computes. h

We make an additional modification to the above algorithm for

efficiency, specifically in the mark_good function. In this function,

we mark the highest scoring segments in the tree L as good. We

execute this by traversing the segments in decreasing order in L,

starting from the maximum. However, we terminate the traversal if

a segment is observed as marked good already. This helps to avoid

redundant computations, and the algorithm still remains correct due

to the following property:

Lemma 2. Consider all the segments with equal and highest scores in L:

s1; s2; . . . ; sj; . . . ; sk, ordered in non-increasing manner. Suppose segment

sj has been marked good in one of the previous iterations of the algo-

rithm, then the segments sjþ1; sjþ2; . . . sk must have already been marked

good as well.

Proof. The aforementioned property is satisfied by default during the

first iteration of the algorithm because there cannot be any previously

marked segments. Suppose this property remains true till iteration i, and

we are currently executing iteration iþ 1. Segments s1; s2; . . . sk 2L, so

we know that the sweep line intersects these segments. Also, the ordering

of the segments is maintained based on their scores and begin

positions, and since the scores of these segments are equal, therefore

beginposðs1Þ� beginposðs2Þ� . . . � beginposðskÞ. Now consider the it-

eration when segment sj was marked good. Then, the sweep line must

have intersected the segments sjþ1; sjþ2; . . . sk as well. Therefore, if the

segment sj was marked, then the segments sjþ1; sjþ2; . . . sk must have

been marked within or before the same iteration. h

The total cost of sorting, insert and delete operations in Algorithm 1

is clearly Oðnlog nÞ. Because the revised mark_good function

marks at most n segments throughout the algorithm, its runtime is

also bounded by Oðnlog nÞ. Thus, we conclude that the runtime

complexity of our alignment filtering algorithm is bounded by

Oðnlog nÞ.

Theorem 1. Given n alignment segments, Algorithm 1 solves the align-

ment filtering problem in Oðnlog nÞ time.

Theorem 2. The above proposed filtering algorithm is optimal given the

objective function.

Proof. The INTEGER ELEMENT UNIQUENESS problem (given n inte-

gers, decide whether they are all unique) is known to have a lower bound

Fig. 3. Left figure is a toy example to illustrate line segments corresponding to multiple local alignments obtained between a query and reference sequence. Each

alignment segment is labeled with an alignment score. Suppose we want to filter best mappings for the query sequence. These segments are laid out as

weighted intervals over the query sequence (right figure). In the above case, two intervals marked with a cross are completely subsumed by higher scoring inter-

vals, and therefore, will be labeled as redundant by our filtering heuristic

Algorithm 1. Plane-sweep based alignment filtering algorithm

Algorithm for computing whole-genome homology maps i751



of Xðnlog nÞ assuming the algebraic decision-tree model (Lubiw and

Rácz, 1991). A simple transformation can be designed to show that

INTEGER ELEMENT UNIQUENESS /n ALIGNMENT FILTERING

Let fx1; x2; . . . ; xng be a set of n integer elements. For each element xi,

construct a segment with begin position, end position and score as xi, xi

and i, respectively. Because each segment is assigned a unique score, all

the n elements are unique if and only if the filtering algorithm reports all

the segments as good.

2.3 Related work for filtering alignments
There can be many alternative formulations of the filtering criteria.

For instance, BLAST (Altschul et al., 1997) filters out alignments if

they are fully contained in �K alignments of higher scores (Berman

et al., 1999). Berman et al. also discussed a weaker alternative filter-

ing condition where a match is filtered out if each position in a seg-

ment is covered by �K segments of higher score. Note that our

filtering formulation is its special case with K¼1. They discussed a

different Oðnlog nÞ time algorithm to solve the problem based on

interval-tree of all input segments. Although a direct performance

comparison is not possible due to unavailability of their implemen-

tation, the tree size in our plane-sweep based algorithm is limited by

the number of overlapping segments which intersect the vertical

sweep-line, which can be (and typically is) orders of magnitude

smaller than the total count for large datasets. As such, even with

the same theoretical complexity, we expect our algorithm to per-

form faster with less memory usage in practice.

2.4 Execution for mapping applications
The above filtering criteria is useful to identify the promising align-

ments between query and reference genomes. For the genome-to-

genome mapping application, we execute the filtering algorithm

twice, once to filter best alignments for query sequence, followed by

filtering best alignments for reference sequence. Mappings which

pass both filters constitute the orthologous matches, required for

building a one-to-one homology map. For read mapping however,

filtering on just the query sequence is appropriate. Accordingly,

Mashmap2 provides two filtering modes: one-to-one and map for

the two applications, respectively.

3 Results

We assess the performance of Mashmap2 for genome-to-

genome and split-read mapping in comparison to recent versions of

state-of-the-art software Minimap2 (Li, 2018) and Nucmer

(Marçais et al., 2018). Results indicate that Mashmap2 provides

output of comparable quality, and yields significant gains in

memory-usage. Subsequently, we demonstrate the utility of

Mashmap2 in accurately computing all 1 Kbp long duplications in

the human genome.

3.1 Genome-to-genome mapping
3.1.1 Datasets

To evaluate and compare Mashmap2 for mapping genomes, we

used six datasets D1–D6 listed in Table 1. Dataset D1 includes com-

parison between microbial genomes E. coli O157: H7 and E. coli

K12. The two instances D2 and D3 require mapping of NA12878

human reference genome assemblies to the hg38 human reference

genome. Query genome assemblies in both instances D2 and D3 are

the recently published assemblies computed using Canu (Koren

et al., 2017), using ultra-long Oxford Nanopore Technology (ONT)

reads (Jain et al., 2018). Dataset D3 includes a long-read only Canu

assembly whereas assembly in dataset D2 is also error-corrected

using Illumina reads. The next two datasets D4, D5 involve inter-

species genome comparisons- human vs. gorilla and chimp vs. gor-

illa, respectively. Finally, to evaluate Mashmap2 for the split-read

mapping task, D6 includes raw ultra-long human ONT reads, gener-

ated using a single flowcell (Jain et al., 2018). We restrict our bench-

marking to real data instances because simulations typically fail to

capture the full complexity of mutational processes.

3.1.2 Defining baseline and methodology

We used MUMmer package (v4.0.0.beta2), which includes the

Nucmer4 alignment program for comparing DNA sequences

(Marçais et al., 2018). Nucmer4 is sensitive enough to report align-

ments for both assembly and read mapping tasks, therefore we con-

sidered its output as truth while evaluating accuracy. In addition,

UCSC genome browser (Kent et al., 2002) hosts high-quality pair-

wise syntenic alignment sets between popular mammalian genomes.

Therefore, for evaluating the inter-species genome comparisons (D4,

D5), we could use these as our truth sets. These alignments were ori-

ginally computed using BLASTZ (Schwartz et al., 2003) with careful

parameter tuning and are more reliable for this purpose. We also

used Minimap2 (v2.7-r659) (Li, 2018) as a baseline for various per-

formance metrics. Minimap2 executes chaining algorithm on fixed-

length exact matches to compute alignment boundaries. To our

knowledge, it is among the fastest tools available to map DNA

sequences in an alignment-free fashion.

Each software, including ours, exposes many parameters (e.g.

k-mer or seed length). Default k-mer size in Mashmap2 is 16.

We mostly conform to default parameters with all software tested,

except as noted below. Mashmap2 mainly requires a minimum

length and identity for the desired local alignments. In this test, we

Table 1. List of datasets used for evaluation

Id Query sequences (� 10 Kbp) Reference genome

Source # Sequences N50 (bp)

D1 E. coli O157 genome 2 5.5 M E. coli K12 MG1655

D2 Human genome assembly (ONTþIllumina) 2269 7.7 M Human (hg38)

D3 Human genome assembly (ONT) 2263 7.4 M Human (hg38)

D4 Human (hg38) genome 365 145 M Gorilla (gorGor5)

D5 Chimp (panTro5) genome 3086 137 M Gorilla (gorGor5)

D6 Ultra-long human ONT reads 7656 129 K Human (hg38)

Note: Datasets D1–D5 are included to evaluate Mashmap2 for genome-to-genome mapping application, and D6 for long read mapping application. We dis-

carded a small fraction of contigs and reads with length <10 Kbp.

i752 C.Jain et al.



targeted long alignments, and accordingly fixed the minimum align-

ment length requirement as 10 Kbp. We set the minimum alignment

identity requirement for all the datasets based on their input charac-

teristics as {D1–D2: 95%, D3–D5: 90%, D6: 80%}. Accordingly,

we tested Mashmap2 for reporting the alignment boundaries as per

the provided requirements. Filtering modes were set to one-to-one

and map for datasets D1–D5 and D6, respectively. Nucmer4 was

run with default parameters, followed by running delta-filter, both

components of the MUMmer package. Following its user documen-

tation, delta-filter was executed with �1 parameter to construct

one-to-one alignment map in datasets D1–D5 and –q parameter for

read mapping in D6. Finally, Minimap2 supports genome-to-

genome mapping mode using –x asm5 flag, and nanopore read

mapping mode using -x map-ont. We executed all three software

in multi-threaded mode using eight CPU threads. All comparisons

were done on an Intel Xeon E5-2680 platform with 28 physical

cores and 256 GB RAM.

3.1.3 Runtime and memory usage

The wall-clock runtime and memory-usage of Mashmap2,

Minimap2 and Nucmer4 using datasets D1–D6 are shown in

Table 2. The runtimes represent end-to-end time, from reading in-

put sequences to generating the final output. Minimap2 can report

base-to-base alignments but does not do so by default. Thus,

the final output of Mashmap2 and Minimap2 are alignment

boundaries and scores, whereas Nucmer4 outputs base-to-base

alignments. Both alignment-free methods Mashmap2 and

Minimap2 are able to map most of the query bases to unique posi-

tions in all datasets (shown later), therefore base-to-base align-

ments can be computed quickly for the final output using chaining

heuristics and vectorization techniques (Suzuki and Kasahara,

2018; Li, 2018).

From Table 2, we observe that Mashmap2 uses significantly less

memory when compared to Minimap2, while Minimap2 generally

achieves better runtime. Mashmap2 improves memory-usage by

5.3x, 4.9x, 4.4x, 3.0x, 3.3x and 1.04x for the six datasets, respect-

ively. The performance gap against Nucmer4 is much wider with

speedups of 10.4�, 210�, 19.8�, 72.0�, 58.4� and 1.9�, and

memory-usage improvements by 8.6�, 15.1�, 14.7�, 6.3�, 7.3�
and 5.3� on the datasets D1–D6, respectively. Low memory

requirements in Mashmap2 can allow for larger comparisons (e.g. a

genome against a big, in-memory reference database).

Mashmap2 and Minimap2 follow the same initial step of sam-

pling k-mers using minimizers (Roberts et al., 2004; Schleimer et al.,

2003), followed by computing their exact matches in the reference

genome. Mashmap2 is designed to identify all matches that meet the

criteria, while Minimap2 is designed to find the best. This partly

explains the differences observed in their running times. The option-

al filter in Mashmap2, if disabled, enables it to return all hits, e.g.

for the use-case of finding all repeats (presented later in Section 3.2).

Mashmap2 includes an efficient MinHash-based mechanism to esti-

mate Jaccard similarity and auto-tunes its internal parameters (e.g.

k-mer sampling rate, Jaccard similarity threshold), conforming to

the local alignment identity and length requirements provided by the

user. Auto-tuning can help achieve faster runtime and reduce

memory-usage with increasing identity and length thresholds (Fig.

4). It is important to maintain high accuracy while being fast, there-

fore we next evaluate the quality of output.

3.1.4 Accuracy

Accuracy evaluation of Mashmap2 and Minimap2 in comparison to

the assumed truth sets is shown in Table 3. As stated before in

Section 3.1.2, recall was measured against the assumed true

alignments, i.e. Nucmer4 alignments for intra-species comparisons

(D1–D3, D6) and UCSC browser pairwise alignments for inter-

species comparisons (D4, D5) which satisfy the alignment

requirements in terms of minimum length and identity provided to

Mashmap2. We also expected Minimap2 to report these alignments

because it is designed to compute matches in these identity ranges.

A reported local alignment boundary estimate by Mashmap2

or Minimap2 was assumed to recall a true alignment if it over-

lapped with the alignment on both query and reference sequences,

and if the mapping strand matched. From Table 3, we observe

that both Mashmap2 and Minimap2 consistently achieved high

recall scores �97%, with Minimap2 performing slightly better.

Obtaining high recall scores by itself is not sufficient, because it

can be achieved by mapping a query sequence to all possible posi-

tions. In parallel to achieving high recall scores, both Mashmap2

and Minimap2 mapped a large fraction of query genome assem-

blies to unique mapping positions in the reference genomes. To

show this, we computed the fraction of base-pairs of the query se-

quence that are mapped to a single position on the reference gen-

ome (Table 3).

Next, we evaluated the precision, i.e. what fraction of

Mashmap2 mappings yield one or more alignments above the speci-

fied length and identity thresholds. We used LAST (Kiełbasa et al.,

2011) to compute the alignments. The precision score of Mashmap2

averages to 57.5% across all the datasets, varying from 34.8% (in

D6) to 75.9% (in D4). The corresponding scores for Minimap2

using the same threshold values are much lower (average¼15%),

but Minimap2 follows different design principles and lacks similar

guarantees on the characteristics of its output. In the current context

of tasks that require such guarantees, Mashmap2 provides better

precision on all datasets.

Table 2. Total execution time and memory usage comparison of

Mashmap2 against Minimap2 and alignment-based tool Nucmer4

Id Mashmap2 Minimap2 Nucmer4

Time Memory Time Memory Time Memory

D1 0.5 s 16 M 0.4 s 85 M 5.2 s 138 M

D2 1 m 26 s 3.5 G 3 m 3 s 17.3 G 5 h 1 m 53 G

D3 6 m 33 s 3.6 G 3 m 11 s 15.9 G 2 h 10 m 53 G

D4 27 m 33 s 9.0 G 15 m 6 s 26.7 G 33 h 4 m 57 G

D5 25 m 40 s 7.7 G 5 m 54 s 25.7 G 24 h 58 m 56 G

D6 13 m 6 s 10.0 G 3 m 10 s 10.4 G 25 m 2 s 53 G

Note: All software were run in parallel using eight CPU threads.

Fig. 4. Wall time of Mashmap2 decreases with increasing length or identity

thresholds using dataset D3 and eight CPU threads. In this experiment, iden-

tity and length thresholds were fixed to 90% and 10 Kbp while varying the

other parameter. Memory-usage also follows a similar trend (data not

shown)

Algorithm for computing whole-genome homology maps i753



3.1.5 Efficacy of the filtering algorithm

Eukaryotic genomes contain many repetitive sequences, therefore,

the motivation behind our plane-sweep based filtering heuristic is to

discard noisy mappings, and compute promising matches between

the query and reference genomes. We show the importance and ef-

fectiveness of our filtering strategy in Table 4. Note that a large frac-

tion of the initial mappings was pruned out by the filter. While

doing so, high recall scores against the assumed true sets were main-

tained (see Table 4). Although we do not present the contribution of

this phase to the total runtime, the plane-sweep algorithm is fast in

practice; it used an insignificant fraction of the total runtime.

3.2 Computing duplications in the human genome
Soon after the publication of the human genome, it was realized

that the genome is replete with repetitive sequences (International

Human Genome Sequencing Consortium, 2004). Intra- and inter-

chromosomal duplications have been found to play a vital role in gen-

ome evolution, its stability and diseases (Emanuel and Shaikh, 2001;

Pu et al., 2018), and knowing the location of such repeats can be im-

portant for many genomic analyses. Yet, fully annotating all repeats

in a genome can be computationally challenging. To demonstrate the

scalability of Mashmap2, we computed all �1 Kbp duplications in

the human genome (GRCh38, Schneider et al., 2017) with �90%

alignment identity. The importance of these duplications has been

known for a long time (Bailey et al., 2002; Emanuel and Shaikh,

2001); accordingly the UCSC genome browser also maintains them as

a public database (named as segmental duplications) for the human

genome. The goal of our experiment is to recover as many duplica-

tions as possible. Due to the probabilistic guarantees provided by our

algorithm (Section 2.1), we expect it to compute such duplications

with a high recall value. Typical genome-to-genome aligners including

Minimap2, Nucmer4 and BLASTZ do not provide such guarantees,

and typically require extensive parameter tuning as well as

preprocessing of input to perform this task (e.g. Bailey et al., 2001,

2002). We show that Mashmap2 serves as a straight-forward and ac-

curate solution to address such applications.

3.2.1 Methodology

We used 24 chromosome sequences (1–22, X, Y) and mitochondrial

DNA from the hg38 version of the human genome as our input se-

quence set. To compute all �1 Kbp, �90% identity duplications,

we directly used Mashmap2 with the same length and identity

requirements, with filtering disabled. From its output, we discarded

short (�500bp) mappings with < 90% estimated identity, plus the

trivial duplications (i.e. regions matching with themselves), and

were left with 2.1 billion candidate mappings. The count of reported

mappings is high due to several high-copy repeat families in the gen-

ome, not all of which exceed our minimum thresholds. To remove

the shorter or lower identity mappings, each of the approximate

alignments was processed using LAST to compute a base-level align-

ment. This resulted in 210 million validated alignments with �1

Kbp length and �90% identity. We note that a large fraction of the

candidate mappings failed to satisfy the specified cutoffs here. This

is because Mashmap2 looks at the Jaccard similarity of k-mer sets to

evaluate the mappings, but does not consider the distribution of k-

mer match positions. As a result, frequently occurring exact repeats of

length <1 Kbp in the human genome can also qualify as a match in the

output. For example, an exact 300 bp Alu repeat induces many shared

k-mers in a 1 Kbp window, resulting in an artificially high identity esti-

mate for the larger window. It may be possible to improve the specifi-

city by further considering the distribution of k-mer matches. This

experiment took 120 CPU hours for executing Mashmap2 and 24 000

CPU hours for validating all reported mappings using LAST. We show

a dot-plot visualization of the reported alignments in Figure 5, which

appears dense due to extensive duplications in the human genome.

Finally, we converted the alignments into BED format to compare

Table 3. Accuracy evaluation of Mashmap2 and Minimap2 to do an alignment-free computation of mapping boundaries

Id Recall scores Fraction of query bases mapped uniquely Precisiona

Mashmap2 (%) Minimap2 (%) #True alignments Mashmap2 (%) Minimap2 (%) Mashmap2 (%)

D1 100 100% 144 74.0 78.9 72.0

D2 97.5 98.3 35 186 96.8 96.3 50.0

D3 97.1 98.1 37 807 96.9 96.0 55.2

D4 97.0 97.7 63 908 87.5 91.3 75.9

D5 97.5 98.0 65 289 89.8 93.2 57.3

D6 99.3 99.5 4349 89.9 84.6 34.8

Note: Recall was measured against the truth sets assumed (Section 3.1.2).
aFraction of mappings which satisfied alignment thresholds in Mashmap2.

Table 4. Effectiveness of the filtering algorithm in Mashmap2

Id Count of output mappings Recall scores

Without filter With filter Ratio (without/with) Without filter (%) With filter (%)

D1 145 82 1.77 100.0 100.0

D2 6, 541, 930 3985 1642 99.9 97.5

D3 53, 331, 538 3137 17 001 99.7 97.1

D4 152, 536, 106 4756 32 072 100.0 97.0

D5 152, 266, 777 13 834 11 007 100.0 97.5

D6 18, 604, 261 12 930 1439 99.9 99.3

Note: A large fraction of mappings were filtered out by the algorithm, while the recall scores remained largely unaffected. Last column in this table is copied

from Table 3 for convenience.

i754 C.Jain et al.



against the UCSC database using Bedtools (Quinlan and Hall, 2010);

the accuracy results are discussed next.

3.2.2 Accuracy evaluation and insights

The UCSC Segmental Duplications database for the hg38 human gen-

ome was computed using a standard pipeline proposed by Bailey et al.

(2001), and was last updated in 2014. It is important to note that prior

to computing genomic duplications, their method removed high-copy

repeat elements (e.g. LINEs, Alus) from the genome. Therefore, this

database is not an exhaustive set of all �1 Kbp, �90% identity dupli-

cations in the genome, but a significant fraction of them. Nonetheless,

low-copy repeat annotations have a higher likelihood of being missed

by a mapper. Therefore, checking the recall against this database serves

as an appropriate test to evaluate Mashmap2 in computing all hom-

ologous mappings of the specified characteristics.

To measure recall on each chromosome, we computed coverage of

those UCSC duplication annotations that have overlap with Mashmap2

duplications, and divided it by the coverage of all UCSC duplication

annotations. Therefore, a 100% recall score would imply that all base-

pairs which are annotated as segmental duplication in the UCSC data-

base are part of one or more Mashmap2 alignments. We show these re-

call scores for each chromosome as well for the complete genome in

Figure 6. Recall is consistently observed to be above 90% for each

chromosome, and the aggregate recall for the complete genome is

97.15%. Among the 2.85% missed alignments, a large fraction of align-

ments were not recalled because difference in the alignment parameters

can affect alignment identity and length. As a result, same regions can

yield slightly different alignments using LAST and BLAST. If we relax

the alignment identity and length cutoff in LAST to 88% and 950bp,

respectively, the recall score improves to 98.28%. High recall scores

achieved here, as well as in our prior experiments, demonstrate high

sensitivity of our algorithm for any specified alignment characteristics

by the user, which is consistent with the theory in Section 2.1.

Finally, we compared the coverage of our alignments versus the

UCSC database. Since our method did an exhaustive search of all dupli-

cations with �1 Kbp length and �90% identity without masking any

genomic repeats, we observe that our algorithm attains either equal or

higher coverage on each chromosome (Fig. 7). For the complete genome,

coverage of our alignments is 10.3%; 5% higher than the coverage of

UCSC annotations. We further examined the subset of our duplications

which do not overlap with UCSC segmental duplications. Indeed a large

coverage fraction (82%) comprises of high-copy repeats (i.e. coverage

Fig. 5. Visualization of �1 Kbp duplications in the human genome computed using Mashmap2. Alignments are colored based on their lengths: blue 1–5 Kbp, red

5–10 Kbp, black >10 Kbp. Majority of blue and red mappings occur due to SINEs and LINEs repeats, respectively. Right plot is a magnification of �1 Kbp duplica-

tions within chromosome 7. Chromosome 7 is known to be one of the most duplicated human chromosomes. Large clustered duplications in red circle are asso-

ciated with Williams-Beuren syndrome (Hillier et al., 2003)

Fig. 6. Recall scores of duplications computed using Mashmap2 against the

UCSC segmental duplication database. Above 90% recall scores are achieved

on each chromosome consistently. The red dotted line shows the aggregate

recall score of 97.15% for the complete genome

Fig. 7. Comparison of genomic coverage between the UCSC Segmental

Duplication database and Mashmap2 output alignments. Both methods

reported equal coverage 83% on mitochondrial chromosome (not shown

above to keep the plot legible). Coverage of duplications computed using our

method is significantly higher, owing to its exhaustive search of all repeats

with �1 Kbp length and �90% identity without repeat masking

Algorithm for computing whole-genome homology maps i755



depth >50), potentially due to common repeat elements, which explains

the wide gap in the coverage observed. The remaining 18% coverage

fraction, however, is composed of low-copy repeats, with coverage

depth �50 indicating the potential to uncover novel segmental duplica-

tions. Validating this possibility requires a more careful inspection of the

output, and will be our future work. Mashmap2 alignments are avail-

able online at https://gembox.cbcb.umd.edu/mashmap/index.html.

4 Discussion

In this work, we presented a fast algorithm for computing homology

maps between whole genomes. We have given both theoretical and

experimental evidence of the sensitivity provided, in terms of comput-

ing local alignment boundaries based on the minimum alignment

length and identity parameters. To the best of our knowledge, this is

the first practical and scalable algorithm to provide such guarantees.

This formulation grants a convenient mechanism for users to execute

this algorithm based on the underlying applications, including

(but not limited to) mapping genome assemblies of variable quality,

aligning long reads to reference genomes, or computing segmental

duplications in large genomes. Additionally, we formulated a filtering

heuristic, and proposed an optimal plane-sweep based filtering algo-

rithm for prioritizing alignments based on their scores and locations.

The filtering algorithm is practically fast, accurate and easy to imple-

ment in few lines of code using standard libraries. When mapping a

human genome assembly to the human reference genome, Mashmap2

takes only about a minute from reading input sequences to generating

the final alignment boundaries, identity estimates, and a dot-plot for

visualization. Because of the underlying auto-tuning mechanism in

Mashmap2, performance depends on the sensitivity requirements pro-

vided to the algorithm. As the pace of whole-genome sequencing con-

tinues to increase, faster practical algorithms and theoretical advances

will help analyze available and forthcoming data.

Although our algorithm optimizes mapping of a single genome

assembly to a single reference genome, its runtime would scale lin-

early when mapping to multiple reference genomes. Planned future

work includes development of sub-linear algorithms using existing

ideas of non-linear reference genome representations. We also plan

to evaluate biological novelty of the human segmental duplications

computed in this work.

Acknowledgements

We thank Pavel Pevzner for motivating evaluation of segmental duplications.

We also acknowledge the use of computing resources provided through the

Partnership for an Advanced Computing Environment (PACE) at the Georgia

Institute of Technology, and the Biowulf system at the National Institutes of

Health, Bethesda, MD (https://hpc.nih.gov/).

Funding

This research was supported in part by the Intramural Research Program of

the National Human Genome Research Institute, National Institutes of

Health, and the U.S. National Science Foundation under CCF-1816027.

Conflict of Interest: none declared.

References

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Bailey,J.A. et al. (2001) Segmental duplications: organization and impact within

the current human genome project assembly. Genome Res., 11, 1005–1017.

Bailey,J.A. et al. (2002) Recent segmental duplications in the human genome.

Science, 297, 1003–1007.

Berman,P. et al. (1999) Winnowing sequences from a database search. In:

Proceedings of the Third Annual International Conference on

Computational Molecular Biology. ACM, pp. 50–58.

Bray,N. et al. (2003) AVID: a global alignment program. Genome Res., 13, 97–102.

Brudno,M. et al. (2003) Fast and sensitive multiple alignment of large genomic

sequences. BMC Bioinformatics, 4, 66.

Delcher,A.L. et al. (1999) Alignment of whole genomes. Nucleic Acids Res.,

27, 2369–2376.

Emanuel,B.S. and Shaikh,T.H. (2001) Segmental duplications: an ‘expanding’-

role in genomic instability and disease. Nat. Rev. Genet., 2, 791–800.

Grabherr,M.G. et al. (2010) Genome-wide synteny through highly sensitive

sequence alignment: satsuma. Bioinformatics, 26, 1145–1151.

Haussler,D. et al. (2009) Genome 10K: a proposal to obtain whole-genome se-

quence for 10 000 vertebrate species. J. Hered., 100, 659–674.

Hillier,L.W. et al. (2003) The DNA sequence of human chromosome 7.

Nature, 424, 157.

Human Genome Sequencing Consortium,I. (2004) Finishing the euchromatic

sequence of the human genome. Nature, 431, 931–945.

Jain,C. et al. (2017) A fast approximate algorithm for mapping long reads to

large reference databases. In: International Conference on Research in

Computational Molecular Biology. Springer, pp. 66–81.

Jain,M. et al. (2018) Nanopore sequencing and assembly of a human genome

with ultra-long reads. Nat. Biotechnol., 36, 338–345.

Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res.,

12, 996–1006.

Kiełbasa,S.M. et al. (2011) Adaptive seeds tame genomic sequence compari-

son. Genome Res., 21, 487–493.

Koren,S. et al. (2017) Canu: scalable and accurate long-read assembly via adap-

tive k-mer weighting and repeat separation. Genome Res., 27, 722–736.

Kurtz,S. et al. (2004) Versatile and open software for comparing large

genomes. Genome Biol., 5, R12.

Lander,E.S. et al. (2001) Initial sequencing and analysis of the human genome.

Nature, 409, 860–921.

Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics. doi: 10.1093/bioinformatics/bty191.

Lubiw,A. and Rácz,A. (1991) A lower bound for the integer element distinct-

ness problem. Inf. Comput., 94, 83–92.

Ma,B. et al. (2002) Patternhunter: faster and more sensitive homology search.

Bioinformatics, 18, 440–445.

Marçais,G. et al. (2018) MUMmer4: a fast and versatile genome alignment

system. PLoS Comput. Biol., 14, e1005944.

Pu,L. et al. (2018) Detection and analysis of ancient segmental duplications in

mammalian genomes. Genome Res., 28, 901–909.

Quinlan,A.R. and Hall,I.M. (2010) Bedtools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

Roberts,M. et al. (2004) Reducing storage requirements for biological se-

quence comparison. Bioinformatics, 20, 3363–3369.

Schleimer,S. et al. (2003) Winnowing: local algorithms for document finger-

printing. In: Proceedings of the 2003 ACM SIGMOD international confer-

ence on Management of data. ACM, pp. 76–85.

Schneider,V.A. et al. (2017) Evaluation of GRCh38 and de novo haploid gen-

ome assemblies demonstrates the enduring quality of the reference assembly.

Genome Res., 27, 849–864.

Schwartz,S. et al. (2003) Human–mouse alignments with BLASTZ. Genome

Res., 13, 103–107.

Shamos,M.I. and Hoey,D. (1976) Geometric intersection problems. In: 17th Annual

Symposium on Foundations of Computer Science. IEEE, pp. 208–215.

Suzuki,H. and Kasahara,M. (2018) Introducing difference recurrence relations for

faster semi-global alignment of long sequences. BMC Bioinformatics, 19, 1–45.

Venter,J.C. et al. (2001) The sequence of the human genome. Science, 291,

1304–1351.

Vyverman,M. et al. (2013) essamem: finding maximal exact matches using

enhanced sparse suffix arrays. Bioinformatics, 29, 802–804.

Yorukoglu,D. et al. (2016) Compressive mapping for next-generation

sequencing. Nat. Biotechnol., 34, 374.

i756 C.Jain et al.

https://gembox.cbcb.umd.edu/mashmap/index.html
https://hpc.nih.gov/

	bty597-TF1
	bty597-TF2
	bty597-TF3
	bty597-TF4
	bty597-TF5

