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Abstract

Motivation: Digital pathology enables new approaches that expand beyond storage, visualization or

analysis of histological samples in digital format. One novel opportunity is 3D histology, where a

three-dimensional reconstruction of the sample is formed computationally based on serial tissue sec-

tions. This allows examining tissue architecture in 3D, for example, for diagnostic purposes.

Importantly, 3D histology enables joint mapping of cellular morphology with spatially resolved

omics data in the true 3D context of the tissue at microscopic resolution. Several algorithms have

been proposed for the reconstruction task, but a quantitative comparison of their accuracy is lacking.

Results: We developed a benchmarking framework to evaluate the accuracy of several free and

commercial 3D reconstruction methods using two whole slide image datasets. The results provide

a solid basis for further development and application of 3D histology algorithms and indicate that

methods capable of compensating for local tissue deformation are superior to simpler approaches.

Availability and implementation: Code: https://github.com/BioimageInformaticsTampere/

RegBenchmark. Whole slide image datasets: http://urn.fi/urn: nbn: fi: csc-kata20170705131652639702.

Contact: pekka.ruusuvuori@tut.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Digitalization of pathology has been accelerated by improvements in

technology allowing acquisition of whole slide images (WSI)

(Ghaznavi et al., 2013; Griffin and Treanor, 2017). Besides

computer-aided facilitation of pathologists’ tasks, digital pathology

can enable new approaches like 3D histology, where three-

dimensional reconstructions of samples are formed in silico based

on serial sections (Magee et al., 2015; Roberts et al., 2012). While

other techniques allow imaging directly in 3D, they are currently

incapable of matching the subcellular resolution and throughput of

whole slide imaging. Examples of potential applications include con-

struction of data-driven computer models and improved diagnostics

of diseases associated with changes in the 3D microarchitecture of

tissue. Moreover, 3D histology is compatible with established histo-

pathological interpretation techniques and biochemical assays such

as immunohistochemistry or in situ hybridization. This raises inter-

esting prospects in view of recent advances in spatially resolved

omics (Mignardi et al., 2017; Ståhl et al., 2016). Pairing imaging

with genomic, epigenomic, transcriptomic and proteomic data in the

spatial context of tissue holds great promise for pathology and other

fields (Koos et al., 2015). Taking a step further, this could be per-

formed in 3D to truly probe the relationships between structural

and functional features as well as the heterogeneity and interplay

between different cell types in tumors, and significant projects are
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now pursuing these goals (Ledford, 2017; Rusk, 2016). These kind

of approaches have already led to the creation of brain atlases

(Amunts et al., 2013; Johnson et al., 2010; Lein et al., 2007). Such

high-dimensional data also represent an exciting challenge for new

ways of scientific visualization based e.g. on virtual reality techni-

ques (Calı̀ et al., 2016; Ledford, 2017; Theart et al., 2017).

Despite earlier computational and image acquisition bottlenecks

(Roberts et al., 2012), several algorithmic 3D histology solutions

were already proposed before the recent developments in digital

pathology (Ju et al., 2006; Wang et al., 2015). The key methodologi-

cal problem is how to accurately register a sequence of 2D images to

produce a 3D volume. Simply stacking the images does not result in

a coherent volume due to differences between the relative locations

and rotation angles of the sections and tissue deformations intro-

duced during embedding and sectioning (Gibson et al., 2013).

Algorithms for image registration (Sotiras et al., 2013) constitute the

methodological basis of 3D histology. These algorithms are used to

sequentially register each image with its neighbors to bring the entire

series into alignment (Magee et al., 2015; Wang et al., 2015).

Registration is accomplished by estimating transformations relating

the images. Rigid transformations only allow translation and rota-

tion of the entire image, while affine transformations are addition-

ally able to model anisotropic scaling. Locally varying

transformations, also called elastic models, can compensate for

deformations on a local scale. Considering several nearby sections

together (Saalfeld et al., 2012) or applying regularization may be

needed to obtain smooth, continuous 3D volumes (Casero et al.,

2017; Cifor et al., 2011; Gaffling et al., 2015; Ju et al., 2006). After

estimating the transformations, they need to be applied to the

images via interpolation, which is possibly followed by postprocess-

ing such as 3D visualization. Our focus is on the reconstruction step,

which is usually the most difficult and crucial part of the image

processing chain. Numerous approaches have been reported, relying

on manual alignment (Onozato et al., 2012; Paish et al., 2009),

semi-automatic methods using artificial landmarks (Hughes et al.,

2013; Rojas et al., 2015) and automated algorithms (Arganda-

Carreras et al., 2010; Braumann et al., 2005; Casero et al., 2017;

Cifor et al., 2011; Ju et al., 2006; Magee et al., 2015; Saalfeld et al.,

2012; Song et al., 2013; Stille et al., 2013; Xu et al., 2015).

Despite the widely acknowledged need for objective assessment

of algorithms (Meijering et al., 2016), an evaluation of modern com-

putational methodology for 3D histology is lacking. Moreover, the

common practice of relying only on visual inspections or a single

indirect metric is insufficient (Rohlfing, 2012). The previous com-

parison of algorithms was published a decade ago and only included

three basic approaches (Beare et al., 2008). We have previously

demonstrated a framework (Kartasalo et al., 2016) based on a panel

of indirect metrics and manually annotated landmarks allowing

direct quantification of reconstruction accuracy (Rohlfing, 2012). In

this study, we applied an extended version of the framework (see

Fig. 1) to address the problem of comparing algorithms for 3D his-

tology. As the basis of our evaluation, we used two WSI datasets

representing two different tissue types. One obstacle complicating

both the application and fair comparison of most algorithms is sen-

sitivity to various settings or hyperparameters, which typically have

to be selected by the user based on rules of thumb and tuned via trial

and error. Encouraged by their recent application in the context of

digital pathology, we employed automated hyperparameter selection

methods to adjust tunable parameters (Shahriari et al., 2016;

Teodoro et al., 2017).

As a baseline, we evaluated three basic methods: a least-squares

fit to landmarks (LS), an optimization-based approach (OPT) and a

method based on the Scale Invariant Feature Transform (SIFT)

(Lowe, 2004). More advanced methods included the Fiji/ImageJ

(Schindelin et al., 2012; Schneider et al., 2012) plugins

HyperStackReg (HSR), which is an extension of StackReg

(Thevenaz et al., 1998), RegisterVirtualStackSlices (RVSS), which is

based on bUnwarpJ (Arganda-Carreras et al., 2006), and

ElasticStackAlignment (ESA) (Saalfeld et al., 2012), which is part of

the TrakEM2 package (Cardona et al., 2012). In addition, we eval-

uated two commercial tools: Medical Image Manager (MIM)

(HeteroGenius Ltd, Leeds, UK) and Voloom (microDimensions

GmbH, Munich, Germany). While LS, OPT, SIFT and HSR are

based on global transformations, RVSS, ESA, MIM and Voloom use

elastic models which make it possible to account for local tissue

deformations. For a summary of the evaluated tools, see

Supplementary Table S1.

2 Materials and methods

2.1 Data collection and preprocessing
A murine prostate and a liver were fixed in PAXgeneTM

(PreAnalytiX GmbH, Hombrechtikon, Switzerland) and formalin,

respectively, embedded in paraffin, and cut into serial 5mm sections.

The liver was processed with a laser prior to embedding in order to

introduce artificial landmarks into the otherwise homogeneous tis-

sue. Four holes were successfully introduced into the sample. The

sections were hematoxylin-eosin (HE) stained and scanned at 20�
(pixel size 0.46mm) to obtain 260 (prostate) and 47 (liver) RGB

images. The images were processed in MATLAB R2016b (The

MathWorks Inc., Natick, MA, USA) to segment tissue from back-

ground and store the results as binary masks.

A total of 2448 landmarks were manually annotated. In the pro-

static tissue, four corresponding points preferably at the centers of

bisected nuclei were selected by two observers from each pair of

adjacent sections. For the liver, the four holes in each image were

marked by the same two observers. Most of the evaluated methods

do not allow direct application of transformations to coordinates

but support re-applying them to another stack of images. Therefore,

we stored the landmarks as images with four disks placed at the

landmark locations, each consisting of red, green, blue or yellow

pixels. Color is invariant to the applied transformations, allowing

Fig. 1. Evaluation framework. A series of tissue images is input to a recon-

struction method for registration. The transformations estimated by the

method are re-applied to masks defining the tissue region and images con-

taining landmarks. The registered tissue, mask and landmark images are

used to evaluate reconstruction accuracy based on numerical metrics and vis-

ual examination. Moreover, tunable settings can be optimized. (Color version

of this figure is available at Bioinformatics online.)
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post-registration detection of the disks. The tissue, mask and land-

mark images were downsampled to different resolutions and stored

as TIF. See Supplementary Methods for details.

2.2 Evaluation of reconstruction accuracy
2.2.1 Target registration error

Pairwise target registration error (TRE) (Fitzpatrick et al., 1998), a

direct measure of registration accuracy (Rohlfing, 2012), was quan-

tified for each pair of adjacent sections. From the landmark images,

we detected each landmark based on the colors of the disks and

obtained their coordinates as the centroids of the detected pixels.

For N pairs of sections, TRE was measured for each point (j¼ {1, 2,

3, 4}) and section pair (i¼ {1, 2,. . ., N}) as:

TREj;i ¼ kX j;i � X j;iþ1k (1)

that is, the Euclidean distance between the location Xj,i of point j on

the section i and the location of the corresponding point on section

iþ1.

2.2.2 Accumulated error

Accumulated target registration error (ATRE) was calculated to

quantify distortion accumulated through the stack, referred to as

‘the banana problem’ (Malandain et al., 2004) or ‘the shear effect’

(Hughes et al., 2013). Each landmark of the prostate dataset is only

present on two consecutive sections and pairwise errors on different

sections should thus be independent of each other. However, in the

presence of accumulated errors, the error vectors on nearby sections

are correlated (Beare et al., 2008). We quantified this effect by treat-

ing the displacement of each landmark (j¼ {1, 2, 3, 4}) for each pair

of sections (i¼ {1, 2,. . ., N}) in vector form as X j;i � X j;iþ1 and aver-

aging the four vectors to obtain the mean displacement of each

entire section. We then computed the cumulative sum of these mean

vectors, proceeding from section 1 to section N. For section k,

ATRE was defined as the Euclidean norm of the cumulative dis-

placement vector:

ATREk ¼
�����
Xk

i¼1

X4

j¼1

X j;i � X j;iþ1

4

����� (2)

For the liver, a more direct quantification of ATRE was possible

due to the landmarks extending through the sample. Ideally, the

landmarks should lie on four parallel lines. In practice, parallelism

could be violated due to slight movement of the sample between

repeated applications of the laser. In a distorted volume, the land-

marks deviate from the linear trajectories when proceeding through

the stack. To measure this, we fitted a line in 3D to each of the four

series of landmarks, minimizing mean squared error on the image

plane. ATRE was then quantified for section i and landmark j as the

Euclidean distance between the location of the landmark Xj,i and

that of the fitted line Yj,i, on the image plane:

ATREj;i ¼ kX j;i � Y j;ik (3)

2.2.3 Tissue shrinkage and overlap

As certain reconstruction methods tend to shrink the tissue, relative

change in tissue area (DA-%) was computed based on the tissue

masks for each section. Overlap was quantified based on the masks

for each section pair using the Jaccard index (Rohlfing, 2012). The

Jaccard index can be considered a quality measure for pixel-wise

metrics, as computing them for a pair of sections with little overlap

can provide misleading results. Let A denote the set of tissue pixels

of section i and B the set of tissue pixels of section iþ1. The Jaccard

index is defined as:

Jaccardi ¼
A \ Bj j
A [ Bj j (4)

2.2.4 Pixel-wise similarity

For each section pair, we evaluated the similarity of corresponding

pixels. After conversion to grayscale we computed the following

measures: root mean squared error (RMSE), normalized cross corre-

lation (NCC), mutual information (MI) and normalized mutual

information (NMI) (Studholme et al., 1999). Only the set of over-

lapping tissue pixels A\B was considered. These indirect metrics

provide information from the entire tissue area and complement the

TRE evaluation.

2.2.5 Reconstruction smoothness

We quantified the smoothness of the reconstruction using contrast f2
and correlation f3 based on gray-level co-occurrence matrices

(GLCMs) (Cifor et al., 2011; Gaffling et al., 2015; Haralick and

Shanmugam, 1973). Low contrast and high correlation indicate a

smooth reconstruction. We formed the GLCM for each pair of gray-

scale images based on pixels A\B and summed them to obtain a sin-

gle GLCM for the whole volume.

2.3 3D reconstruction

• LS: Least-squares fitting of an affine transformation to the land-

marks was implemented in MATLAB R2016b. The result is in

principle unaffected by error accumulation (Xu et al., 2015).
• OPT: Optimization-based reconstruction implemented in

MATLAB R2016b was used to estimate pairwise affine transfor-

mations by minimizing the value of pixel-wise MSE.
• SIFT: Feature-based reconstruction was performed by computing

SIFT keypoints (Lowe, 2004) for each image pair, establishing

putative matches and robustly fitting an affine transformation to

the point pairs (Fischler and Bolles, 1981). We used the

RegisterVirtualStackSlices (Arganda-Carreras et al., 2006) imple-

mentation in Fiji, also used as an initial step in RVSS and ESA.
• HSR: HyperStackReg v. 5 (Ved P. Sharma, Albert Einstein

College, https://sites.google.com/site/vedsharma/imagej-plugins-

macros/hyperstackreg) was run in Fiji to perform reconstruction

using affine transformations.
• RVSS: Elastic reconstruction based on the bUnwarpJ algorithm,

which is a combination of SIFT and optimization based methods,

was applied using the RegisterVirtualStackSlices plugin in Fiji.
• ESA: The algorithm implemented in the ElasticStackAlignment

plugin (Saalfeld et al., 2012) was run via the TrakEM2 package

(Cardona et al., 2012) in Fiji to perform elastic reconstruction

based on a combination of SIFT and optimization methods.
• MIM: Medical Image Manager, trial v. 0.94, was applied using

images subsampled by a factor of 4 (magnification of 5�) as

input. Sections 130 and 24 were used as references for the pros-

tate and liver, respectively. We varied the initial magnification

(0.3125�, 0.625�, 1.25� or 2.5�) and the number of non-

rigid levels (1, 2, 3 or 4), thus modifying the image resolution

used.
• Voloom: Trial v. 2.7.1 was used for elastic 3D reconstruction.

Fiji (Schindelin et al., 2012; Schneider et al., 2012) (v. 1.51h) plugins

were run via ImageJ-MATLAB interface (v. 0.7.1) (Hiner et al.,

2016). Transformations were re-applied to the mask and landmark

Comparative analysis of algorithms for 3D histology 3015

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty210#supplementary-data
Deleted Text: .
Deleted Text: .
Deleted Text: &hx2009;
Deleted Text: .
Deleted Text: .
Deleted Text: .
Deleted Text: 1
Deleted Text: &hx2009;
Deleted Text: ,
https://sites.google.com/site/vedsharma/imagej-plugins-macros/hyperstackreg
https://sites.google.com/site/vedsharma/imagej-plugins-macros/hyperstackreg
Deleted Text: X
Deleted Text: X
Deleted Text: X
Deleted Text: X
Deleted Text: X
Deleted Text: &hx2009;


images. Output was saved as TIF. See Supplementary Methods for

details.

2.4 Parameter optimization
In the case of MIM, which had to be operated interactively, we eval-

uated each combination of tunable values by a parameter sweep.

Tunable parameters of the other methods were optimized via

Bayesian optimization (Shahriari et al., 2016; Snoek et al., 2012),

which is well-suited for such problems, where the objective function

is computationally expensive to evaluate, nonconvex, multimodal,

and typically has low to moderate dimensionality. Bayesian optimi-

zation has been shown to perform favorably in comparison to other

global optimization algorithms on benchmarking functions (Jones,

2001) as well as on real WSI data (Teodoro et al., 2017). We used

MATLAB’s bayesopt implementation (https://www.mathworks.

com/help/stats/bayesian-optimization-algorithm.html) with mean

pairwise TRE as the objective function. We utilized a Gaussian proc-

ess model of the objective function and an automatic relevance

determination (ARD) Matérn 5/2 kernel (Snoek et al., 2012) with

‘expected-improvement-plus’ as the acquisition function (Bull,

2011). Reconstructions with output image dimensions over fivefold

compared to the input due to extreme error accumulation were con-

sidered failures. The number of variables to optimize was 2 (OPT),

4 (SIFT), 7 (RVSS) or 15 (ESA). We first optimized SIFT alone and

used the optimal values for the SIFT step of RVSS and ESA. See

Supplementary Table S1 for descriptions of the parameters. The

number of seed points was set to twice the number of variables. We

ran 30 iterations for OPT due to its simple objective function

(Kartasalo et al., 2016) and 100 iterations for the other tools. We

used the prostate images subsampled by factors of 8 and 16, except

for ESA, for which optimization was only feasible using the factor

16. Parameters optimized for ESA using the lower resolution were

scaled to be used with the high resolution images. Computations

were run on a workstation with Intel Xeon E5-1660 v3 3 GHz and

64 GB of RAM (low resolution) and a cluster node with Intel Xeon

E5-2680 v3 2.5 GHz and 128 GB of RAM (high resolution).

3 Results

3.1 Effect of image resolution on evaluation metrics
First, we analyzed whether our metrics depend on image resolution

(see Supplementary Results). TRE, ATRE, Jaccard and DA-% are

essentially invariant to image resolution. They can be compared

across different datasets and resolutions, as long as the accumula-

tion of interpolation errors is avoided. RMSE, NCC, MI, NMI, f2
and f3 depend both on resolution and image content, and these met-

rics should thus only be compared within the same dataset and reso-

lution. In all following analyses, we used images subsampled to

pixel sizes of 7.36 and 3.68 mm, referred to as low and high resolu-

tion, respectively. The pixel sizes are close to the 5mm section spac-

ing and metrics computed from these images are not distorted by

interpolation errors. Furthermore, we will only present RMSE as a

measure of pixelwise similarity and f2 as a measure of reconstruction

smoothness due to their strong correlations with NCC, MI, NMI

and f3 (see Supplementary Table S1 for details).

3.2 Automated parameter tuning
Of the evaluated methods, LS, HSR and Voloom do not have tuna-

ble parameters. For OPT, SIFT, RVSS, ESA and MIM, we tuned the

parameters automatically, minimizing the mean TRE computed for

the prostate dataset. Parameter optimization took approximately

1500 hours in total to compute, producing 23 terabytes of data.

The optimization mostly converged close to the final solution in

a handful of iterations (see Supplementary Results). By inspecting

the variation in mean TRE values obtained during the process it is

possible to reach a semi-quantitative view of the sensitivity of each

method towards parameter adjustments. OPT and SIFT produced

similar results for most parameter combinations while ESA, MIM

and especially RVSS exhibited more sensitivity to parameter tuning.

We evaluated possible connections between accuracy and com-

putation time, which might require the user to make a trade-off

when selecting parameters (see Supplementary Results). The time

taken by OPT varied only by a few minutes, except for the single

inaccurate solutions where the parameters have not allowed proper

convergence of the algorithm. For SIFT, there were no signs of a

connection between accuracy and computation time. The differences

in computation time between the fastest and slowest iterations of

RVSS were roughly twofold and the fastest iterations were generally

the ones with the highest error, indicating that minimizing the com-

putation time of RVSS would sacrifice accuracy. In the case of ESA,

the effect of parameter tuning was dramatic, leading to variation

from approximately 12 min to more than 41 h. However, any clear

relationship between computation time and accuracy was not

observed.

3.3 Comparison of algorithms based on the prostate

dataset
Results for the prostate dataset are listed in Table 1. The TRE values

of LS based on landmarks by the two observers (LS1 and LS2) estab-

lish a baseline of accuracy. The case where the same landmarks were

used for reconstruction and for calculating errors (LS1) is an opti-

mistic estimate, representing the best accuracy reachable using an

affine model. The errors calculated based on landmarks not used for

reconstruction (LS2) represent a more realistic estimate of the accu-

racy of LS, serving as a cross-validation experiment between the two

observers. The discrepancy between the optimistic and cross-

validation results indicates that the LS solutions represent overfitting

to the landmarks. Therefore, any methods with accuracy approach-

ing LS can be regarded as highly accurate, since the other methods

are not provided with any information concerning the landmarks.

The systematic difference between TRE and ATRE calculated based

on the two sets of landmarks (see Supplementary Table S1) is due to

the fact that the two observers were free to select different land-

marks and the error is generally not constant over the entire tissue

section. However, using either set of landmarks leads to the same

conclusions regarding the relative accuracy of the methods, con-

firmed by linear correlation coefficients of approximately 0.999 for

mean TRE, 0.995 for maximum TRE, 0.888 for mean ATRE and

0.901 for maximum ATRE between the two sets of landmarks for

the low resolution reconstructions. This also holds for the high reso-

lution with corresponding values of 0.999, 0.986, 0.894 and 0.922.

This indicates that even though four landmarks per section pair rep-

resent a relatively sparse sampling of the entire tissue section area,

this number of landmarks is sufficient for reliable error estimation.

All methods benefited from parameter tuning on both image res-

olutions based on most of the metrics, using either set of landmarks

for evaluation (see Table 1 and Supplementary Results). Of the top

three methods, MIM and RVSS obtained better accuracy using high

resolution images and ESA worked better on the low resolution

images. ESA and MIM reached similar mean TRE values, slightly

better than RVSS and approaching or exceeding the accuracy of LS.

3016 K.Kartasalo et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty210#supplementary-data
https://www.mathworks.com/help/stats/bayesian-optimization-algorithm.html
https://www.mathworks.com/help/stats/bayesian-optimization-algorithm.html
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty210#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty210#supplementary-data
Deleted Text: &hx2009;&hx00B5;m
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty210#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty210#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty210#supplementary-data
Deleted Text: utes
Deleted Text: ours
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty210#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty210#supplementary-data


In terms of maximum TRE and ATRE, the three methods were com-

parable, but RVSS reached slightly lower ATRE than ESA or MIM.

Among all tools, ESA and MIM also obtained the highest Jaccard

index values. The RMSE and f2 metrics do not allow comparison

across different image resolutions and one should note that MIM’s

output was always stored at the lower resolution for technical rea-

sons. Considering these limitations, we can observe that ESA per-

formed best in terms of these metrics on both image resolutions

ahead of RVSS. Changes in tissue area introduced by ESA, MIM

and RVSS were moderate. Behind the top three, most other tools

reached accuracy comparable to each other. The worst results were

obtained using default parameters and for some methods, most

notably ESA and RVSS, they were even comparable to the unregis-

tered original images.

Visual examination in 3D revealed differences in the geometry of

the reconstructions formed using each of the methods (Fig. 2).

Compared to the undistorted reference (LS1), the distortions intro-

duced by OPT, SIFT, HSR, ESA and MIM were a manifestation of

the typical ‘banana-into-cylinder’ issue. This gradual straightening

of curved structures is most clearly seen here in the displacement of

the urethra at the top of the stacks. As indicated by the numerical

ATRE values, the overall magnitude of this effect was rather similar

across the tools. The distortions caused by RVSS and Voloom were

more complex, representing clockwise twisting of the sample when

seen from the top.

3.4 Comparison of algorithms based on the liver dataset
Results for the liver dataset are listed in Table 2. The four artificial

landmarks were annotated by both observers and the two sets of

TRE and ATRE values can be treated as replicates. This is reflected

by linear correlation coefficients of approximately one (ranging

from 0.99993 to 0.99998) for mean TRE, maximum TRE, mean

ATRE and maximum ATRE calculated based on the two sets of

landmarks (see Supplementary Table S1). In this case, LS thus repre-

sents an optimistic estimate of the accuracy reachable with a global

affine model. Compared to the prostate sample, this dataset is more

challenging to reconstruct due to the more homogeneous appearance

of the tissue and the presence of deformations such as folded and

torn tissue. This is reflected by the metrics, which generally indicate

higher errors, except for RMSE and f2 which are lower due to the

more homogeneous image content. Ideally, it would be convenient

to process different datasets without having to readjust parameters.

With this in mind, we reused the parameters optimized for the pros-

tate dataset, treating the evaluation on the liver dataset as an inde-

pendent validation experiment. Based on most metrics, the

optimized parameters generally resulted in an improvement over the

default parameters also when applied to the liver dataset (see

Table 2 and Supplementary Results).

As with the prostate, the lowest TRE values among the auto-

mated methods were achieved by ESA on the lower resolution and

MIM on the high resolution data with RVSS being the third best

method. The other methods reached TRE values comparable to each

other. In terms of maximum TRE and ATRE, the conclusion was

less clear. Voloom performed better on the lower resolution, reach-

ing a maximum TRE second only to LS, while ESA and OPT also

reached comparable values. On this dataset, MIM suffered from

larger maximum errors compared to the higher quality prostate

sample. The lowest mean ATRE values among all automated meth-

ods were obtained by ESA, MIM and Voloom, while in terms of

maximum ATRE Voloom was superior to ESA and MIM. ESA was

the top method in terms of RMSE and f2, and MIM obtained the

highest Jaccard index. Again, the poorest results were obtained

when using the default values of tunable parameters.

Visualization in 3D supported the numerical results (Fig. 3).

ESA, MIM and Voloom formed reconstructions with landmarks

concentrated on four roughly parallel lines as expected, but some

Table 1. Evaluation results for the prostate data at low (top) and high resolution (bottom)

Prostate, low resolu�on

Algorithm TRE1 μ TRE1 max TRE1 σ ATRE1 μ ATRE1 max ATRE1 σ RMSE μ RMSE σ Jaccard μ Jaccard σ Contrast f2 ΔA-% μ ΔA-% σ
Unregistered 0.00
LS 1 8.89
LS 2 22.22
OPT default 7.68
OPT op�mal 7.33
SIFT default 13.20
SIFT op�mal 8.84
HSR 5.32
RVSS default 21.13
RVSS op�mal 5.44
ESA default 0.10
ESA op�mal 2.73
MIM default 2.38
MIM op�mal 2.46
Voloom

489.26 2392.19 444.68 1153.08 2528.76 728.66 64.29 6.58 0.72 0.23 4260.86 0.00
15.60 133.84 15.84 3.55 7.94 1.45 44.87 8.66 0.97 0.02 2150.63 5.28
36.81 426.21 44.47 318.71 523.71 172.64 44.96 8.48 0.97 0.02 2126.81 31.75
74.39 840.69 103.75 1207.72 2009.45 613.59 48.92 9.48 0.94 0.04 2538.84 –0.19
23.89 350.99 28.67 417.90 648.24 206.70 42.83 8.65 0.97 0.02 1954.89 6.52
24.74 362.78 30.43 442.32 645.14 183.04 43.96 9.16 0.97 0.02 2066.20 –6.77
22.90 383.45 28.62 474.01 680.56 204.64 43.31 8.79 0.97 0.02 2001.13 –1.40
24.02 664.22 36.11 450.51 752.32 245.11 46.26 8.64 0.96 0.02 2280.25 3.18
93.96 4805.50 281.03 1228.69 2659.39 741.15 45.63 10.15 0.93 0.11 2072.08 –33.09
32.18 850.09 67.36 954.97 1353.44 431.53 42.46 8.89 0.96 0.04 1843.81 –8.99

368.07 2278.21 442.01 834.71 1982.43 557.07 57.53 9.22 0.78 0.25 3127.28 0.01
15.81 476.33 35.67 414.62 602.38 184.81 38.41 9.87 0.98 0.02 1603.96 2.34
29.91 401.78 32.29 518.58 934.15 242.96 57.71 7.70 0.97 0.02 3449.70 0.01
24.38 395.29 29.57 551.12 780.07 231.99 56.03 8.05 0.97 0.02 3266.80 –0.62
39.18 730.44 48.39 713.29 1232.42 408.67 53.99 7.13 0.96 0.03 2988.03 –3.61 3.38

Prostate, high resolu�on

Algorithm TRE1 μ TRE1 max TRE1 σ ATRE1 μ ATRE1 max ATRE1 σ RMSE μ RMSE σ Jaccard μ Jaccard σ Contrast f2 ΔA-% μ ΔA-% σ
Unregistered 489.25 2392.11 444.69 1152.97 2526.57 728.25 69.73 6.61 0.72 0.23 5021.08 0.00 0.00

77.819.449.939220.079.004.818.2572.112.580.388.5184.43194.511 SL
80.2282.1304.809220.079.062.818.2557.96119.51563.51325.4419.62407.632 SL
67.957.12–28.404350.049.012.920.7535.43689.310222.723195.30129.40959.47tluafed TPO
40.537.143.317220.079.034.857.0563.10210.33697.20464.9286.54352.42lamitpo TPO
82.5144.31–95.838211.059.078.815.2540.65220.854164.77579.91317.154571.26tluafed TFIS
67.644.1–82.367220.079.074.842.1591.77116.19563.28363.6240.67323.22lamitpo TFIS
06.530.123.099220.079.073.862.3513.93258.33718.63453.6350.06619.32RSH
52.3160.82–03.055260.069.015.962.0522.84102.070116.15381.9602.851153.43tluafed SSVR

l 19.49 446.90 28.31 352.14 579.83 162.65 48.92 8.56 0.97 0.02 2470.84 –4.28 3.62
80.020.040.340452.077.025.895.4689.04607.822234.43944.14472.872295.383tluafed ASE
03.212.112.643230.079.054.0118.6485.01322.48909.32623.8413.56545.12lamitpo ASE
00.373.0–59.923330.069.021.847.6524.09292.501188.38605.5477.56415.92tluafed MIM

l 15.17 456.13 24.97 493.14 706.91 211.23 53.03 8.29 0.98 0.02 2944.42 –0.76 3.40
32.392.4–50.549330.069.096.623.2675.10472.632164.78682.6511.48653.34mooloV

Note: Results for the unregistered images, LS based on landmarks by observer 1 (LS1) or 2 (LS2) and the automated methods (OPT, SIFT, HSR, RVSS, ESA,

MIM, Voloom) using default or optimized parameters. Mean (l), maximum (max) and standard deviation (r) over all sections are shown. TRE and ATRE based

on landmarks by observer 1 are in lm. In the online version, columns with TRE, ATRE, RMSE, f2 and DA-% are colored from low (blue) to high values (red).

Columns with Jaccard are colored from high (blue) to low values (red). (Color version of this table is available at Bioinformatics online.)
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Fig. 2. Reconstructions using (a) LS based on landmarks by observer 1, (b) OPT, (c) SIFT, (d) HSR, (e) RVSS, (f) ESA, (g) MIM and (h) Voloom. Optimized parame-

ters and the most suitable resolution were used for each method. The dots represent the trajectory of accumulated target registration error from section to sec-

tion. The horizontal lines indicate the direction and magnitude of the cumulative mean displacement of each section relative to the ideal error-free trajectory

(vertical line). Magnified views are shown next to each reconstruction. Viewing the high-resolution color version of the Figure online is recommended. (Color ver-

sion of this figure is available at Bioinformatics online.)

Table 2. Evaluation results for the liver data at low (top) and high resolution (bottom)

Liver, low resolu�on

Algorithm TRE1 μ TRE1 max TRE1 σ ATRE1 μ ATRE1 max ATRE1 σ RMSE μ RMSE σ Jaccard μ Jaccard σ Contrast f2 ΔA-% μ ΔA-% σ

49.851.652.522170.009.093.696.4369.5351.41378.5226.5587.69303.721 SL
01.955.757.032170.009.014.667.4355.6314.81325.9207.5572.10425.332 SL

69.999.51–14.025160.029.062.672.8300.3813.70451.81161.71158.81799.68RSH

Unregistered 726.81 2558.97 528.95 543.56 1706.62 298.02 44.90 5.03 0.67 0.15 2031.62 0.00 0.00

OPT default 200.11 1120.63 197.43 189.74 933.68 154.81 39.70 5.90 0.86 0.08 1663.83 –40.28 21.10
l 84.86 617.62 112.51 97.28 482.65 80.44 35.26 6.44 0.92 0.06 1293.17 –10.76 8.69

SIFT default 178.38 3900.82 383.37 729.60 2096.57 511.87 36.28 7.08 0.86 0.12 1327.28 –6.61 10.43
l 173.15 3755.45 453.05 668.41 2837.41 572.90 35.07 6.91 0.87 0.14 1258.35 –0.78 7.44

RVSS default 330.02 3764.99 600.79 656.13 2186.17 494.23 36.85 7.46 0.92 0.08 1338.65 –13.23 14.70
l 252.32 2689.75 436.63 855.53 1677.06 334.83 35.20 7.45 0.85 0.16 1261.35 –0.39 3.31

ESA default 717.22 2558.97 539.55 538.28 1702.38 302.25 44.44 6.07 0.67 0.16 1992.03 0.00 0.01
l 46.32 618.27 92.03 63.72 599.97 68.07 32.23 7.03 0.90 0.08 1075.18 –0.44 2.27

MIM default 121.44 2241.90 327.01 380.34 1500.07 370.61 42.83 5.70 0.90 0.11 1857.95 0.41 3.49
l 79.74 1767.90 169.53 75.82 1233.78 108.02 42.58 5.59 0.92 0.08 1841.03 2.34 6.68

15.578.190.444170.019.093.596.7321.1787.28321.0818.30164.55589.09mooloV

Liver, high resolu�on

Algorithm TRE1 μ TRE1 max TRE1 σ ATRE1 μ ATRE1 max ATRE1 σ RMSE μ RMSE σ Jaccard μ Jaccard σ Contrast f2 ΔA-% μ ΔA-% σ

29.878.598.455170.009.078.512.9359.5383.41328.5206.5510.89352.721 SL
80.972.738.065170.009.088.582.9345.6309.71315.9226.5543.10435.332 SL

78.0170.91–96.638170.029.037.542.2499.02188.89534.35155.33136.711180.88RSH

Unregistered 726.87 2559.07 528.92 543.55 1706.53 298.04 48.79 4.90 0.67 0.15 2396.69 0.00 0.00

OPT default 202.50 1115.20 198.27 185.80 961.31 154.84 43.85 5.48 0.86 0.08 2000.94 –40.49 20.46
l 83.68 625.48 112.30 97.24 481.94 79.82 39.75 5.90 0.92 0.06 1628.50 –14.25 9.50

SIFT default 145.16 1388.05 173.41 223.89 1052.81 146.44 41.91 6.28 0.88 0.08 1782.81 –6.94 6.81
l 84.94 1026.27 130.96 157.17 630.95 117.20 39.51 6.01 0.90 0.08 1590.79 0.18 4.62

RVSS default 179.82 1097.54 165.98 332.02 1052.27 165.93 42.31 5.84 0.92 0.06 1813.05 –7.96 8.40
l 79.26 1135.00 135.65 167.36 602.79 123.38 38.97 6.17 0.90 0.08 1548.98 –1.57 3.64

ESA default 693.75 2559.07 544.51 538.73 1711.11 301.12 47.90 6.70 0.68 0.16 2315.71 0.00 0.02
l 60.60 929.16 142.25 56.58 832.23 99.19 37.68 6.44 0.90 0.09 1448.05 0.44 1.20

MIM default 95.74 1150.34 156.76 150.75 866.23 134.37 43.27 5.98 0.90 0.09 1896.02 0.85 3.79
l 65.42 1060.78 122.46 66.54 646.40 78.31 42.00 5.70 0.92 0.07 1792.75 3.38 6.73

Voloom 144.08 3335.29 399.41 113.82 3159.53 274.36 42.77 4.84 0.91 0.07 1848.66 1.45 5.41

Note: Results for the unregistered images, LS based on landmarks by observer 1 (LS1) or 2 (LS2) and the automated methods (OPT, SIFT, HSR, RVSS, ESA,

MIM, Voloom) using default or optimized parameters. Mean (l), maximum (max) and standard deviation (r) over all sections are shown. TRE and ATRE based

on landmarks by observer 1 are in lm. In the online version, columns with TRE, ATRE, RMSE, f2 and DA-% are colored from low (blue) to high values (red).

Columns with Jaccard are colored from high (blue) to low values (red). (Color version of this table is available at Bioinformatics online.)
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distortion is visible at the bottom part of the stack reconstructed by

MIM. These kind of distortions were more severe in the case of

OPT, SIFT, HSR and RVSS.

4 Discussion

Based on this study, methods utilizing locally varying transforma-

tions (ESA, MIM, RVSS, Voloom) were superior to those con-

strained to global affine models (OPT, SIFT, HSR). ESA was the

only method to consistently outperform or match the other

approaches on two datasets based on the majority of metrics. In the

case of the higher quality prostate dataset, differences in accuracy

between the tools were rather subtle. All three top-performing meth-

ods on this dataset incorporate an elastic transformation model:

MIM and RVSS use a B-spline grid and ESA is based on a piecewise

linear mesh. While methods relying on a global transformation

model also performed reasonably well, the additional accuracy

offered by elastic transformations could be crucial when microstruc-

ture at the cellular scale is of interest. In the case of the liver sample,

more profound differences between the methods were observed,

likely due to the more challenging tissue content and the presence of

deformations, which cannot be compensated for using a global

model. ESA, MIM and Voloom stood out from the other methods.

While Voloom appeared to be less accurate on average compared to

ESA and MIM based on mean TRE, it demonstrated the lowest

maximum and accumulated errors of all automated methods, indi-

cating capability to avoid propagation of errors even in the presence

of considerable deformations. The ability of the algorithms to toler-

ate such deformations is a significant benefit. Due to the mostly

manual nature of histological sectioning and brittleness of the thin

tissue sections, deformations in the form of folds and tears often

occur. This challenge is especially encountered in 3D histology,

when uninterrupted sequences of sections are desired.

Another important property of algorithms to consider is sensitiv-

ity to adjustable parameters. Even an algorithm that produces highly

accurate results with a carefully selected set of parameter values will

be useless if the user has little chance of finding this set of values.

Comparing algorithms from this perspective is difficult. Each algo-

rithm has a different set of parameters and the range of values to

evaluate has to be selected for each parameter, which can in turn

affect the amount of variation observed in the results. Nevertheless,

this study still provides a semi-quantitative view of the sensitivity of

the studied algorithms against parameter adjustments. Of the eval-

uated methods, LS, HSR and Voloom are the most convenient due

to their lack of tunable parameters. OPT and SIFT also produced

similar results with most parameter values. The results produced by

ESA varied greatly depending on parameters, but we discovered

numerous combinations leading to almost optimal results. In the

case of MIM, there are only a handful of tunable parameters and

they are relatively easy to tune. Moreover, ESA and MIM appear to

Fig. 3. Reconstructions using (a) LS based on landmarks by observer 1, (b) OPT, (c) SIFT, (d) HSR, (e) RVSS, (f) ESA, (g) MIM and (h) Voloom. Optimized parame-

ters and the most suitable resolution were used for each method. The locations of the four landmark points on each section are indicated with dots, shown

together with lines of best fit to each of the four series of points. Note that the scale of the vertical axis is different from the horizontal axes in the visualization.

Viewing the high-resolution color version of the Figure online is recommended. (Color version of this figure is available at Bioinformatics online.)
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be well-behaving in the sense that parameters optimized for the

prostate dataset also suited the liver dataset. In contrast, RVSS was

found to be difficult to optimize and even though its accuracy using

optimized settings was close to ESA and MIM on the prostate data-

set, reaching this level of accuracy without automated parameter

tuning would be challenging.

An open question common to all of the methods is how image

resolution affects reconstruction accuracy. A pixel size close to the

section spacing is often recommended (Amunts et al., 2013;

Braumann et al., 2005; Dauguet et al., 2007; Ju et al., 2006;

Kartasalo et al., 2016; Saalfeld et al., 2012) based on the assumption

that objects smaller than this are only visible on a single section and

are thus not useful for registration, and may even introduce errors

(Beare et al., 2008). However, suitably oriented elongated structures

such as blood vessels can be observed on several sections even if

their diameter on the image plane is smaller than the section spacing.

In principle, some algorithms might thus benefit from a smaller pixel

size. We evaluated reconstruction accuracy using pixel sizes of 3.68

and 7.36 mm. Based on the rule of thumb above, it is unclear which

one of these should be preferred given a section spacing of 5 mm.

Our results indicate that using a pixel size close to the section spac-

ing is a reasonable starting point, but the optimal image resolution

depends on the algorithm and also somewhat on the image content.

Furthermore, we cannot rule out the possibility that algorithms

which performed better on the high resolution images, most notably

MIM, might benefit from an even smaller pixel size. In conclusion,

the image resolution thus needs to be selected experimentally for

each application and algorithm.

The two samples selected for this study are markedly different in

their histological composition. The fact that the top methods per-

formed well on both the prostate and the liver dataset without any

retuning of parameters indicates that these methods are not overly

sensitive to tissue appearance, and that the results obtained in this

study are not specific to a single dataset. However, some variation

in the relative performance of the algorithms on the two datasets

was still observed. Thus, collecting and annotating additional data-

sets representing diverse tissue types and other histological stainings,

such as immunohistochemistry, remains an important goal for

future studies.

While we evaluated a comprehensive set of methods for 3D his-

tology, it might be worthwhile to adapt general-purpose image regis-

tration algorithms to this context. Another opportunity, not

supported by any of the methods here, could be the exploitation of

additional data obtained e.g. by magnetic resonance imaging or in

the form of blockface images (Amunts et al., 2013; Casero et al.,

2017; Dauguet et al., 2007; Gibson et al., 2013; Johnson et al.,

2010; Stille et al., 2013). Furthermore, although advances in image

acquisition and processing have enabled the first steps towards 3D

histology, sample preparation still constitutes a significant bottle-

neck. In the future, emerging technologies for automated sample

preparation (Onozato et al., 2011) or integrated sectioning and

imaging (Li et al., 2010; Ragan et al., 2012) might potentially trans-

form 3D histology into a high-throughput process.

Acknowledgements

We thank Ignacio Arganda-Carreras, Martin Groher, Derek Magee, Stephan

Saalfeld and Ved Sharma for their helpful advice. Katja Liljeström, Marja
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