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Abstract

Motivation: Software pipelines have become almost standardized tools for microbiome analysis.

Currently many pipelines are available, often sharing some of the same algorithms as stages. This

is largely because each pipeline has its own source language and file formats, making it typically

more economical to reinvent the wheel than to learn and interface to an existing package. We pre-

sent Plugin-Based Microbiome Analysis (PluMA), which addresses this problem by providing a

lightweight back end that can be infinitely extended using dynamically loaded plugin extensions.

These can be written in one of many compiled or scripting languages. With PluMA and its online

plugin pool, algorithm designers can easily plug-and-play existing pipeline stages with no know-

ledge of their underlying implementation, allowing them to efficiently test a new algorithm along-

side these stages or combine them in a new and creative way.

Results: We demonstrate the usefulness of PluMA through an example pipeline (P-M16S) that

expands an obesity study involving gut microbiome samples from the mouse, by integrating mul-

tiple plugins using a variety of source languages and file formats, and producing new results.

Availability and implementation: Links to github repositories for the PluMA source code and

P-M16S, in addition to the plugin pool are available from the Bioinformatics Research Group

(BioRG) at: http://biorg.cis.fiu.edu/pluma.

Contact: tcickovs@fiu.edu

1 Introduction

A pipeline is a software design strategy that is applicable to software

packages within and outside of bioinformatics. The idea is to assem-

ble a software execution using sequential modules or stages, with

the output of a stage serving as input to one or more future stages.

Stages are often developed independently, with file I/O serving as

the bridge between adjacent stages. Software pipelines are particu-

larly useful in -omics analysis because it is very likely that, independ-

ent of the type of -omics, there will at least be some distinct stages of

processing raw data or intermediate results, followed by some

downstream analysis to yield useful conclusions. Figure 1 shows a

basic pipeline often used for metagenomics, with raw sequence data

passing through a preprocessing stage that removes poor-quality

reads, followed by a stage that groups or clusters reads by some

similarity metric into operational taxonomic units (OTUs), and fi-

nally a stage that taxonomically classifies these OTUs using data-

base queries into the closest taxon match within a phylogenetic tree.

At this point, many software pipelines have been assembled for

microbiome analysis. This is especially true now that multi-omics

approaches (Segata et al., 2014) are being used. Currently, Biostars

(Parnell et al., 2011) contains references to forty pipelines for meta-

genomics alone. A closer look at these pipelines shows that their dif-

ferentiating factor is often one stage, and usually not the entire

metagenomics analysis. For example, TETRA (Teeling et al., 2004)
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and MEGAN (Huson et al., 2011) differ in the clustering stage; the

first clusters based on composition and the latter based on similarity.

In cases where the overarching purposes are the same—i.e. Qiime

(Caporaso et al., 2010) and Mothur (Schloss et al., 2009) are both

microbial diversity analysis tools, their implementation differs.

Mothur offers Cþþ functionality that is transparently invoked

through domain-specific language (DSL) commands, while Qiime

implements its stages as scripts.

This explosion in analysis pipelines with little variation between

them demonstrates that a significant amount of reinventing the

wheel is currently taking place, slowing down the development and

dissemination of new and useful algorithms. Although all stages of a

pipeline other than a newly developed one may currently exist else-

where, integrating this new stage often requires (i) basic knowledge

of another pipeline including its input formats and how to run it, (ii)

some knowledge of its underlying software design and languages

and/or (iii) a heavy installation process. These issues become more

acute when a developer wants to combine multiple stages from mul-

tiple pipelines to produce something new. Considering the time this

may require, it is conceivably faster to simply reconstruct these

stages in a language with which they are more familiar, resulting in

yet another pipeline.

This issue has not gone unnoticed in the bioinformatics field.

The National Institute of Health (NIH) developed Nephele (Battré

et al., 2010) as a centralized portal of publicly available pipelines for

microbiome analysis. Their strategy is to try to anticipate all com-

monly used pipelines and file formats and provide a ‘pipeline pool’.

Their site already illustrates how quickly these pipelines can ex-

plode, i.e. they have six different pipelines that perform 16S analysis

with Qiime, that use six different file formats. Their targetted audi-

ence, data analyzers, differs from ours. Algorithm developers will

still have the same issues with Nephele because their pipelines are

built with existing tools, mainly Qiime and Mothur. Looking at

these two packages, Qiime has traditionally offered flexibility

through scripting. An algorithm developer could design their pipe-

line stage as a script (or program invoked by a script) and insert it

alongside other Qiime scripts, forming a complete pipeline. While

flexible, this design still requires compatibility with Qiime file for-

mats, and also some underlying knowledge of Qiime scripts so that

the developer can invoke them appropriately. Mothur removes this

latter issue by performing stage invocation through a higher level

domain-specific language (DSL) but still requires compatibility with

their file formats, and in addition any new pipeline stage would

need to be callable from the Mothur DSL, requiring some C/

Cþþ interfacing. BPipe (Sadedin et al., 2012) and NextFlow (Di

Tommaso et al., 2017) provide bridges between scripted stages that

are heterogeneous with respect to programming language, but still

require knowledge of how to run each script and their file formats

because the user must specify the command(s) to execute each stage.

Snakemake (Koster and Rahmann, 2012) performs a similar task by

defining a pipeline as a sequence of rules, but each rule requires the

command for running its respective package, creating a similar issue.

This leads us to our first desirable quality for the type of framework

we envision: for an algorithm developer to channel all of their

energy into developing and testing their algorithm, there should

ideally be zero interfacing to an existing computational core

required. All of these standalone pipelines that we mention each re-

quire some form of interfacing to their software, through code or in-

put formats (or both), as we show in Table 2. Note that language

flexibility and lightweightness (our other two desirable qualities, see

Table 1) are hit or miss with these pipelines depending on design;

for example Qiime is more than ten times the size of Mothur but

users can develop in their language of choice since everything is

scripted. Mothur requires you to use their DSL or build

Cþþ libraries for interfacing so this language flexibility is taken

away, although their software is more lightweight. As we will see,

this tradeoff extends even to other categories of pipelines that suc-

ceed at achieving zero interfacing.

One possibility to gain zero interfacing is through more general

workflow engines like Taverna (Wolstencroft et al., 2013) and

KNIME (Berthold et al., 2007). They offer an interactive develop-

ment environment (IDE) where developers can both construct new

algorithms as components and establish workflows with compo-

nents as stages. However, their component development language is

limited to Java. Kepler (Altintas et al., 2004) similarly restricts de-

velopment of new extensions to R, and Ruffus (Goodstadt, 2010)

can handle only Python extensions. This can be a cost of a homoge-

neous development and user environment, since IDEs often are

catered to a specific programming language. Therefore we observe

that while workflow engines achieve minimal to zero interfacing a

user must use the programming language supported by their engine,

taking away the desirable quality of language flexibility as we illus-

trate in Table 2. Language flexibility, or the ability to prototype in a

programming language of choice, allows a developer to construct an

algorithm with no additional overhead in learning a new syntax for

expressing their thoughts. Lightweightness with workflows will

once again depend on design.

The alternative to attaining zero interfacing is to anticipate all

possible user needs, and encapsulate a union of all these require-

ments into the package itself (we refer to these as superpipelines).

This was the idea behind Dockerized containers (Merkel, 2014),

which can be chained together to form pipelines (Narayanasamy

et al., 2016). Superpipelines by definition facilitate language flexibil-

ity, since multiple language tools can be included. These can be

Fig. 1. A basic metagenomics pipeline. Raw sequence reads are filtered for

quality during a denoising step, followed by clustering into groups (called

OTUs) and a labeling of each OTU with the closest corresponding phylogentic

classification

Table 1. The three characteristics that we envision as most import-

ant for facilitating algorithm development and testing, and the

question(s) they attempt to answer

Quality Question

Zero Interfacing Can I avoid learning an existing platform?

Language Flexibility Can I develop in my language of choice?

Lightweightness Can I test/debug with minimal resources?

Table 2. Comparing and contrasting the three popular types of ana-

lysis pipelines, and how they facilitate what we envision as the

three most important qualities when facilitating algorithm develop-

ment and testing

Type Zero

Interfacing

Language

flexibility

Lightweight

Standalone (Qiime, Mothur) No Depends Depends

Workflows (Taverna, KNIME) Yes No Depends

Superpipelines (Galaxy, Docker) Yes Yes No
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chained together and sequentially executed. However, the additional

requirements for the runtime environment (which includes system

tools in addition to language tools) will likely increase the weight of

these containers to well beyond the algorithm itself. Also, some of

these additional requirements will likely be replicated (i.e. two con-

tainers built for the same system with the same dependencies), add-

ing unnecessary additional weight. Galaxy takes a slightly different

approach, providing flexibility through a generalized interface by

which a user can insert complete software packages as pipeline

stages. To maximize generality, their software includes accessibility

to multiple large-scale online databases, allowing the user to choose

the best option for their work. Their package also interacts with a

large number of existing software packages (more than forty), once

again improving its generality. The downside to this is that the in-

stallation is not lightweight, requiring more than 40 additional

packages and hundreds of MB of storage. Thus in general, we ob-

serve with superpipelines a general loss of our third desirable quality

of lightweightness, since almost by definition these will try to encap-

sulate a large set of possible user requirements to maximize flexibil-

ity. We illustrate this in the final row of Table 2. Lightweightness is

desirable particularly in algorithm development and test stages

where small datasets are typically used, because a heavy installation

process with many large packages may not be practical for an algo-

rithm developer and their often limited resources, and certainly not

desirable if test datasets can be stored locally.

Our goal is to make algorithm development, testing and debug-

ging as easy as possible. First, we remove any requirement of inter-

facing to an existing back end (zero interfacing), allowing new

extensions to be individually compiled and dynamically loaded

upon runtime reference in a user interface [configuration file or

Graphical User Interface (GUI)]. We also provide a uniform inter-

face for all extensions, removing the requirement of interfacing to

additional extensions in the same pipeline. File format conversion

plugins can be added as necessary to pipelines with no loss of gener-

ality. If a developer wants to test a new algorithm and it follows a

pipeline stage that outputs an incompatible file, they could add a

new stage before their algorithm with the appropriate file converter.

In our tool, Plugin-Based Microbiome Analysis (PluMA), these dy-

namically loaded stages are called plugins (Alexandrescu, 2001).

Many plugins have already been packaged and/or developed and

can be individually downloaded from our online plugin pool. It

should be noted that the newest release of Qiime (version 2) also

offers plugin compatibility, but their plugin source language is lim-

ited to Python. Our final goal runs alongside Mothur, in that we

minimize any need to understand plugin implementation details. An

algorithm developer should be able to construct plugins in a lan-

guage in which they are fluent and/or that makes the most sense

given their requirements, and seamlessly run them alongside plugins

written in languages that they may not know. PluMA thus supports

a range of compiled and scripting languages for plugin implementa-

tion with an interface that remains uniform independent of their

source language, achieving language flexibility. Finally, because plu-

gins are dynamically loaded a user can simply run PluMA’s small

computational core (182 KB) with only the plugins they need and

count on them loading properly at runtime, creating a lightweight

environment for development and testing. Our ultimate goal with

PluMA is to nurture and grow communities that make use of ana-

lysis pipelines, through a transparent and simple interface that

removes reinventing of the wheel (Prlic and Procter, 2012).

The flexible and lightweight design of PluMA also offers add-

itional benefits. With our Plugin Generator (PLUGEN), existing or

newly developed software tools can be converted to plugins and

combined in new and unique ways to suit the needs of a specific

dataset. PLUGEN allows a developer to seamlessly integrate useful

standalone tools such as Qiime and Mothur into a lightweight and

flexible pipeline alongside other plugins (i.e. their algorithm).

Though lightweightness results in some limits when the plugin pool

is small, our philosophy is to provide enough incentive to use

PluMA, then count on the user base itself to grow the plugin pool to

levels that meet their needs. The greatest advantage to this strategy

as a long-term investment is that these features will become plugins

with uniform interfaces that are executable in a lightweight environ-

ment and thus easily insertable into other users’ pipelines, attacking

the problem more at the root by facilitating usability. We illustrate

PluMA through an example metagenomics pipeline (P-M16S) that

analyzes 16S gut microbiome data from the mouse, and finally we

will show the results of P-M16S, their implications and our vision

for the future of PluMA.

2 System and methods

The core software design pattern that makes PluMA extensible and

lightweight is the Plugin (Alexandrescu, 2001). We summarize our

application of this pattern in Figure 2. The idea is to create a small

and for all intents and purposes infinitely extensible executable file.

A simple back end (in this case PluMA) has the sole responsibility of

dynamically loading and executing plugins. New pipeline stages be-

come plugins, which are always compiled (if necessary) as stand-

alone modules and dynamically loaded. The choice of which plugins

to load is governed by a runtime user selection through an interface

(in this case through a configuration file, though a GUI could easily

be substituted). For our example, only plugins A and C would be

loaded, though plugin B could easily be loaded or substituted by

changing the user input.

Using this pattern offers several advantages. The executable,

which resides on permanent storage, is very lightweight and

involves only PluMA itself. The runtime executable is also light-

weight, only including PluMA plus the exact plugins necessary for

the pipeline. This advantage extends to source code as well; for ex-

ample, even though PluMA could run plugin B, there is no require-

ment to install the code for B if a user will never run a pipeline

with B. Most importantly, extending the package becomes easy be-

cause an algorithm developer can just focus on their individual plu-

gin and not worry about how to interface it to PluMA. As long as

they design their plugin using a compatible Application

Programming Interface (API, which we will see is straightforward),

they can set up pipelines with their new algorithm through the user

interface.

2.1 Heterogeneous plugins
With the source code of PluMA in Cþþwe can run plugins in C/

Cþþ for the CPU or CUDA (Nickolls et al., 2008) for the Graphics

Processing Unit (GPU). These would be compiled into shared libra-

ries, similar to plugin A in the figure. We also allow plugins in (at

Fig. 2. The Plugin design pattern
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the moment) Python, Perl and R—all of which have interpreters that

use this same C runtime environment, becoming compatible through

various interfaces (Eddelbuettel, 2013; Quillan, 1998; van Rossum,

2005). Algorithm developers thus have great freedom of choice

regarding their source language, and through the user interface can

test alongside plugins built using different languages.

2.2 Plugin pool
This methodology enables us to create a public plugin pool of

available plugins written in various programming languages. Our

current plugin pool contains sixty-five plugins, which we hope will

continue to grow with time via a community effort. To execute

PluMA, a developer can just download PluMA and the plugins

they require to assemble a pipeline that tests their new algorithm.

Once completed they can e-mail us the plugin and we will add it to

the plugin pool. As the PluMA user base grows and pipelines are

assembled we immediately expect a growth in file converters for

the most popular formats (indeed about 10% of the pool currently

consists of converter plugins), and that overtime it will become

highly likely that almost all necessary file converters will be avail-

able as plugins. This carries an added bonus that they will also be

accessible within PluMA’s easy plug-and-play environment, which

removes obligation for finding one themselves that could be writ-

ten in any language and use any interface. When developing future

PluMA releases, we will be sure to rerun all plugins in the plugin

pool to ensure compatibility. We thus envision the plugin pool of

PluMA as an ultimate portal from which users can download pipe-

line stages and assemble different types of microbiome analysis

pipelines in an efficient and easy-to-use manner for testing and

debugging. Similar portals can be created for other bioinformatic

analysis pipelines.

2.3 Experimental pipeline: P-M16S
We illustrate the flexibility of PluMA by using it to construct a pipe-

line (P-M16S) that expands the study of (Kozich et al., 2013). They

studied the connections between the mouse gut microbiome and

obesity by placing mice on a specific diet and taking microbiome

samples the first ten days (when they were not yet obese), and the

final ten days (days 141–150 of their new diet), after weight gain.

Their analysis produced interesting results, showing differences in

b-diversity before and after weight gain, and also correlating weight

gain with an increase in the abundance of the Porphyromonadaceae

microbial family. They used the SILVA (Quast et al., 2013) bacterial

reference to align sequences; for classification, they used a Bayesian

classifier in Mothur with a properly formatted training set from the

Ribosomal Database Project [RDP (Larsen et al., 1993)].

P-M16S will analyze the relationships between bacterial OTUs

before and after weight gain. Microbiomes are highly complex be-

cause of ecological relationships (i.e. cooperation, competition, etc.)

between the entities (Costello et al., 2009), and studying these rela-

tionships can help deepen this knowledge. Bacterial co-occurrence

networks (Faust et al., 2012) offer one option, as they provide an

idea of which bacteria tend to occur together and which tend to

avoid each other. P-M16S will apply centrality (Easley and

Kleinberg, 2010) to these networks to infer the most important bac-

terial taxa in this network of relationships (Dempsey and Ali, 2011).

The assumption is that the most critical relationships may be be-

tween taxa that are not necessarily the most abundant.

Figure 3 shows our P-M16S pipeline as a series of PluMA plugins

and their source languages. Since we are performing analysis before

and after weight gain we will run this same pipeline twice, once for

the first ten samples (we call this Early) and once for the last ten

samples (we call this Late). Mothur and Cytoscape (Shannon et al.,

2003) have been installed on our machine, and we use our Plugin

Generator (PLUGEN) to produce a Cþþ plugin for each. The first

portion of the experiment (up to the step of OTU classification) uses

the Mothur plugin and as shown in (Kozich et al., 2013) produces a

set of OTUs and normalized abundances.

The language R offers many useful libraries for computing correla-

tions between OTUs (including Pearson, Spearman, Kendall, etc.) We

thus build this plugin with R, as stage four of our pipeline. We use a file

conversion plugin called CountTableProcessing (written in R) from

the PluMA plugin pool to convert the output of Mothur to Comma-

Separated-Value (CSV) format. Another plugin called CSVNormalize

converts the file to normalized form for further processing.

For computing centrality we will use the algorithm Ablatio

Triadum [ATria (Cickovski et al., 2017)] which operates on signed

and weighted networks. Note that correlation networks are signed

and weighted. ATria has been shown to find important nodes (posi-

tive and negative) in spatially different regions of the network

(including leaders of subnetworks or clubs, common enemies or vil-

lains, and bridge nodes that connect nodes from multiple clubs). We

implement a plugin for ATria using CUDA, which runs efficiently

by taking advantage of massive parallelism offered by the GPU. The

ATria plugin is preceded by another file conversion plugin from the

plugin pool (written in Python), which pads the CSV file output by

R (using write.table).

Cytoscape is a useful tool for network visualization. However, it

does not support CSV format but does support the Graph Modeling

Language [GML (Himsolt, 1995)]. We thus use one final file con-

verter plugin from the pool, CSV2GML (also Python), to convert our

network into a format that Cytoscape can visualize. The plugin for

Cytoscape, like the plugin for Mothur, was generated by PLUGEN.

3 Implementation

We now describe how to add two new plugins, one in a scripting

language (R) and another in a compiled language (CUDA). Once

completed, we will seamlessly integrate them into P-M16S by sup-

plying PluMA with the configuration file in Program 1. Note this

particular example runs the Early samples, but Late would essential-

ly look the same. We name the plugins Correlation and ATria,

which must be unique. Note that each has an associated inputfile

and outputfile, which can be none.
The generated Mothur plugin accepts Early.mothur, which

contains almost the same set of Mothur commands used in (Kozich

et al., 2013), except that it operates only on the Early (first ten) sam-

ples. The input of each stage gets generated by some previous stage

(Early.mothur automatically produces a set of files that start

with the prefix Early.unique_list). This need not be the imme-

diately preceding stage (i.e. corrP.csv gets passed to both ATria

and CSV2GML, because we need the correlation matrix to compute

centrality, but also to visualize with Cytoscape after a conversion to

GML). Plugins can be easily swapped in and out using comments

(#), and the Prefix specifies a relative path for all input and output

Fig. 3. Our test metagenomics pipeline, P-M16S. Note plugins have been

implemented in various programming languages, and some have been gen-

erated by PluGen. File conversion plugins have been downloaded from the

PluMA plugin pool
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files (this can be done multiple times). Note that we freely specify

these plugins with no knowledge of their underlying implementa-

tion, exposing the necessary parameters only (List et al., 2017).

Furthermore, it is also clear that our techniques allow pipelines that

go beyond just linear dependencies, and can implement a general

acyclic network of dependencies.

3.1 Scripted plugin: Correlation
We now focus on the two missing stages. When adding new plugins,

PluMA will automatically find and load them as long as we put

them in a location specified by the environment variable

PLUMA_PLUGIN_PATH (or in the source tree of PluMA). The only

requirement applies to the functions that will be invoked by PluMA

when executing this plugin: input(), run() and output().

These names are the same independent of the language of choice.

input() and output() accept character string parameters: in-

put() accepts the inputfile (which is automatically linked to its

configuration file value) and output() analogously accepts the

outputfile. We can put code anywhere, but this breakdown main-

tains a consistent interface and will generally be: input() reading

the inputfile and populating internal structures, run() executing

the algorithm and output() taking the internal structures and

sending data to the outputfile. In this sense PluMA plugins achieve

zero interfacing: no effort is required to interface to the computa-

tional core. The computational core instead interfaces to the plugins,

by calling their functions.

R correlation functions are included in the Hmisc library at the

top of the file. Not all code must be in the three mentioned func-

tions, some can be global or in other functions. Globally-scoped

code in a scripted plugin is run when the plugin is loaded, and code

in other functions will run if explicitly called within the plugin. In

our case, input() reads a CSV file (inputfile) and populates the

abundance matrix. run() then preprocesses this matrix, computes

its transpose, and uses the rcorr method of Hmisc to compute the

correlation matrix. Although rcorr defaults to Pearson correla-

tions, others (i.e. Spearman or Kendall) can be easily passed, produc-

ing a matrix with values entirely within the range [–1, 1]. run also

P-value thresholds this matrix. Finally, our output function sends

this matrix to the specified outputfile, also assumed to be in CSV

format. This simple example shows how an R plugin can be devel-

oped and integrated into a pipeline for testing using PluMA. Similar

approaches would be taken for any R plugin, and as mentioned any

general plugin would use the same three mentioned functions.

3.2 Compiled plugin: ATria
Since the source code for ATria is a bit involved and our goal is not

to present that algorithm but to illustrate the features of PluMA, we

use skeletons of our plugin code for ATria, written in CUDA to take

advantage of the parallelism offered by GPUs. CUDA was developed

by NVIDIA and runs on a graphics card using a shared memory

architecture, allocatable to different threads and processors. The

hardware is thus both highly multithreaded and highly multicore.

CUDA also extends C, and more recent releases of the NVIDIA

compiler accept Cþþ syntax, which we also use here. Program 3

shows a template of our header file, with our new ATriaPlugin

class extending the Plugin class of PluMA. We use the same in-

put(), run() and output() methods as public member func-

tions. Similar to the scripted plugin, we can declare any other

functions or variables that we choose. In this particular case we use

two GPU functions or kernels, written in CUDA. _GPU_Floyd

includes an implementation of the Floyd-Warshall (Floyd, 1962)

shortest path algorithm on the GPU, modified to use multiplication

(since with signed and weighted networks with edge weights in the

range [–1, 1] the longest magnitude path between two nodes will be

the product (not sum) of its edges). The second, _GPU_Pay, will add

largest-magnitude paths of gain and loss between a node and all

other nodes to determine its ‘Pay’ or centrality. We have additional

kernels as well, set up similarly.

Our source file contains the full implementation of each member

function as well as the CUDA kernels, although once again we leave

out implementation details. We call both CUDA kernels from

run(). Assuming this code resides in the PluMA source tree or

within the PLUMA_PLUGIN_PATH PluMA will automatically com-

pile it into a shared object, detecting the compiler based on file ex-

tension. Interfacing to PluMA is performed through a plugin proxy

(Gamma et al., 1994), which is registered with the PluMA back end

through a singleton plugin manager, which accepts our unique plu-

gin name.

The plugin proxy demonstrates an additional advantage to plu-

gins over scripts, in that they are all executed within one execution

time environment, as opposed to a sequence of multiple environ-

ments. PluMA plugins additionally can (independent of their lan-

guage) access a global log file output by a single PluMA execution

through the PluginManager, instruct the PluginManager to

Program 1: Configuration file for P-M16S.

# Metagenomics analysis pipeline: Early

Prefix data/Early

Plugin Mothur inputfile Early.mothur outputfile none

Plugin CountTableProcessing inputfile Early.unique_

list outputfile abund.csv

Plugin CSVNormalize inputfile abund.csv outputfile

abundN.csv

Plugin Correlation inputfile abundN.csv outputfile

corr.csv

Plugin CSVPad inputfile corr.csv outputfile corrP.csv

Plugin ATria inputfile corrP.csv outputfile

corrP.ATria.noa

Plugin CSV2GML inputfile corrP.csv outputfile corrP.gml

Plugin Cytoscape inputfile corrP.gml outputfile none

Program 2: Our R plugin for correlations,

CorrelationPlugin.R.

libs<- c(“Hmisc”);

input<- function(inputfile) {

abund�- read.csv(inputfile, header¼TRUE);
}

run<- function() {

otus�- colnames(abund)

otus�- otus[2: length(otus)]

abundT�- t(apply(abund[,-1], 1, as.numeric));

result�- rcorr(abundT[,]);

corr�- as.matrix(result$r);

corr[which(result$P>0.01)]�- 0;

}

output<- function(outputfile) {

write.table(corr, file¼outputfile, sep¼“,”,
append¼FALSE, row.names¼unlist(otus),
col.names¼unlist(otus), na¼““);}
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check for dependencies, and in the future when we implement paral-

lel plugins, send messages to the PluginManager. Note that none

of this computational core communication is required to construct a

plugin, but it can be useful and easy if necessary.

4 Discussion

4.1 Pipelines and plugins
Through our example P-M16S pipeline for 16S next generation

sequencing data analysis, we have demonstrated PluMA’s ability to

execute plugins that are heterogeneous with respect to programming

language, how to wrap existing software packages as plugins, how to

create new plugins, and how to easily use plugins to create flexible

and lightweight pipelines that can be run on standard operating

systems. As mentioned PluMA’s executable size is only 182K and for

P-M16S the average plugin size on disk was 118K, requiring a total of

only about 1.1 MB on disk. While runtime memory utilization will in-

evitably depend on data size to a degree, the design of PluMA ensures

that with respect to code only PluMA and the currently executing plu-

gin are required to be in RAM. As plugin dynamic loading and

unloading needs to be done only once between these stages, we expect

this penalty to be dominated by a plugin’s internal execution time for

any reasonably involved algorithm or dataset.

PluMA’s ability to efficiently assemble pipelines where stages can

be easily plugged in and out will be important for progress in -omics

analysis. If for example in the previous section we wanted to try a dif-

ferent centrality algorithm or even develop our own, we could use any

supported language and seamlessly replace ATria with our new plugin

in P-M16S with one configuration file change. Once fully tested, that

plugin could then join the PluMA plugin pool, and other PluMA users

could seamlessly integrate it into their pipelines without modifying

their components. Components of these pipelines now become com-

patible with each other as PluMA plugins, and can be efficiently inter-

changed without reinventing the wheel which would not likely have

been the case with independently developed scripts. Furthermore any

of the multiple file conversion plugins in the plugin pool can be inte-

grated as a pipeline stage just as easily and with no loss of generality,

as we saw with CountTableProcessing and CSV2GML. PluMA

does not even require a user to have access to all supported lan-

guages—i.e. a user may not have an NVIDIA graphics card and thus

be unable to use CUDA, but PluMA would not require CUDA as long

as they do not use CUDA plugins. This is similarly true for R and

Perl. We only require the C runtime environment and Python to com-

pile PluMA. When constructing P-M16S we only added plugins in R

and CUDA but used Python plugins, implying that we could integrate

those plugins into a PluMA pipeline with no knowledge of Python it-

self, and the analogous case holds for all supported languages. Thus

ultimately, P-M16S demonstrates achievement of our goal of provid-

ing a flexible, lightweight environment for algorithm developers to

construct, test and debug their algorithms with minimal integration

overhead. By allowing developers to devote much greater effort to

Program 4 Source file for our CUDA plugin, ATriaPlugin.cu.

#include ‘‘PluginManager.h’’

#include ‘‘ATriaPlugin.h’’

//Other necessary includes. . .

void ATriaPlugin:: input(std:: string file)

{/*. . . Read file, initialize variables. . . */}

void ATriaPlugin:: run() {

//. . .

//At some point call first kernel

_GPU_Floydnx, yo(k, dG, N);

//. . .

//At some point call second kernel

_GPU_Paynx, yo(dG, dPay, (N/2));

//. . .

}

void ATriaPlugin:: output(std:: string file)

{/*. . . Final operations, write file. . . */}

//Other member procedure definitions. . .

__global__ void _GPU_Pay(float* D, float* P, int N)

{/*. . . GPU code. . . */}

__global__ void _GPU_Floyd(int k, float *G, int N)

{/*. . . GPU code. . . */}

//Other kernel procedure definitions. . .

//Proxy

PluginProxy<ATriaPlugin>ATriaPluginProxy

¼PluginProxy<ATriaPlugin>(‘‘ATria’’,

PluginManager:: getInstance());

Program 3 Header file for our CUDA plugin,

ATriaPlugin.h.

#ifndef ATRIAPLUGIN_H

#define ATRIAPLUGIN_H

#include ‘‘Plugin.h’’

#include ‘‘PluginProxy.h’’

//Other necessary includes. . .

class ATriaPlugin: public Plugin

{

public:

//These are required

void input(std:: string file);

void run();

void output(std:: string file);

//Other member procedures. . .

private:

float* OrigGraph;

std:: string* bacteria;

//Other member variables. . .

};

__global__ void _GPU_Floyd(int k, float *G, int N);

__global__ void _GPU_Pay(float* D, float* P, int N);

//Other GPU kernels. . .

#endif
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their algorithm, PluMA can help to increase the rate of advancement

of microbiome analysis algorithms.

4.2 P-M16S results
As mentioned earlier, the P-M16S pipeline was used to analyze the

data from (Kozich et al., 2013). Through our final Cytoscape plugin,

produced by PLUGEN, we were able to visualize both bacterial co-occur-

rence networks (one for Early and one for Late), as shown in Figure 4.

The output GML file from our CSV2GML plugin served as the input

network, and we use the output NOA file from ATria as an input

table, allowing Cytoscape to color nodes based on their centrality val-

ues. Edge thickness indicates weight magnitude (thicker¼higher). We

ran the Fruchterman-Reingold algorithm (Fruchterman and Reingold,

1991) within Cytoscape to more clearly visualize clusters of bacterial

taxa that tend to occur together, and used the abundance of an OTU

to determine node size (larger¼higher). In both networks we circle

and label the five most central OTUs. We also put boxes around

highly-abundant OTUs from the Porphyromonadaceae family, which

as we recall was found in (Kozich et al., 2013) as a key differentiating

OTU between the two datasets.

We immediately note the differences in the amount of highly-

abundant Porphyromonadaceae OTUs between the Early and Late

networks, which makes sense given the results of (Kozich et al.,

2013). Those five boxed OTUs are the five most abundant OTUs in

the Late network, but only three of the five most abundant in Early.

All of them appear to be negatively correlated to several other OTUs

in the network. Furthermore in the Late network these relations

seem to be much more extreme. The Fruchterman-Reingold algo-

rithm seems to ‘push’ these five nodes towards the center, either

indicating higher magnitude negative connections or more of them

(both appear to be the case). While Porphyromonadaceae is general-

ly considered a ‘good gut bacteria’ for its protective roles (Ferreira

et al., 2011), it has also been shown to decrease in human

patients that pursue effective weight loss treatments (Clarke et al.,

2013). These networks seem to support the theory that

Porphyromonadaceae populations tend to be more ‘out of control’

in obese microbiome samples, and that careful control of the popu-

lation could be a way to combat obesity. Networks like these could

also help to estimate potential side effects of treatments that attack

Porphyromonadaceae.

The central bacteria also show some interesting results in both net-

works. Of the top five nodes in the Early network, four are from the

Lachnospiraceae family and one is from Ruminococcaceae (this one

was the most central). Both of these microbial families have been

associated with healthy guts, particularly because of their roles in

degrading complex plant material (Biddle et al., 2013). These families

did not seem to play as significant a role in the Late network commu-

nity. Ruminococcaceae was only ranked fourth and Lachnospiraceae

did not show up at all, although there were Firmicutes and Clostridia

OTUs that could not be classified further. In their places another

Porphyromonadaceae OTU emerged as central, and also another

from the Oscillibacter genus. Particularly because of its more specific

classification level, this latter OTU becomes interesting, and indeed

Oscillibacter was featured as a key OTU in differentiating obese sam-

ples in another study involving mice (Lam et al., 2012), and also one

involving Korean adolescents (Hu et al., 2015).

We summarize these results in Table 3. While these are prelimin-

ary theories that require further testing and experimentation, our P-

M16S pipeline demonstrates how pipelines that combine ideas in new

and creative ways can yield new knowledge and theories to explore,

and the reusability of PluMA plugins helps to facilitate this process.

4.3 Future work
Several improvements are possible for PluMA. First, we would like

to expand its plugin pool to include tools such as newer correlation

algorithms [e.g. SparCC (Friedman and Alm, 2012)] and search

Fig. 4. Bacterial co-occurrence networks, built and visualized with our PluMA pipeline, using mouse gut microbiome data (a) before and (b) after obesity. Nodes with the

highest centrality have been circled and labeled. Boxes indicate highly-abundant OTUs from the Porphyromonadaceae family. Preliminary results show more abundant

Porphyromonadaceae OTUs in the post-obesity samples that negatively correlate with many other OTUs, and more significant roles played by Ruminococcaceae and

Lachnospiraceae families in the early samples (Color version of this figure is available at Bioinformatics online.)

Table 3. Summary of the importance differences in central nodes

between the Early and Late networks in Figure 4

Rank Early Late

1 Ruminococcaceae (Family) Firmicutes (Phylum)

2 Lachnospiraceae (Family) Clostridia (Class)

3 Lachnospiraceae (Family) Poryphyromonadaceae (Family)

4 Lachnospiraceae (Family) Ruminococcaceae (Family)

5 Lachnospiraceae (Family) Oscillibacter (Genus)

Note: Most notable (in bold) were the general high importance of

Lachnospiraceae OTUs in the Early network, and the presence of

Oscillibacter and highly-abundant Porphyromonadaceae in the Late.
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engines for different databases [i.e. Pathway Tools (Karp et al.,

2002)]. Also, we would like to enhance its flexibility by allowing for

parameterized specifications in the configuration file, and improve

its usability through a Graphical User Interface. PluMA plugins can

currently call some computational core functionality and also use

features of other plugins in the same language, and we plan to ex-

plore SWIG (Beazley, 1996) as a tool for facilitating this compatibil-

ity across plugins written in different languages. We could also

allow parallelism between independent pipeline stages to improve

scalability for larger datasets. Finally, we are currently incorporating

Conda package management into PluMA, allowing automatic in-

stallation of any PluMA-supported languages that the user wishes to

run, to uphold version compatibility over the long haul.
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