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Abstract

Motivation: Creating large datasets for biomedical relation classification can be prohibitively expen-

sive. While some datasets have been curated to extract protein–protein and drug–drug interactions

(PPIs and DDIs) from text, we are also interested in other interactions including gene–disease and

chemical–protein connections. Also, many biomedical researchers have begun to explore ternary

relationships. Even when annotated data are available, many datasets used for relation classification

are inherently biased. For example, issues such as sample selection bias typically prevent models

from generalizing in the wild. To address the problem of cross-corpora generalization, we present a

novel adversarial learning algorithm for unsupervised domain adaptation tasks where no labeled

data are available in the target domain. Instead, our method takes advantage of unlabeled data to

improve biased classifiers through learning domain-invariant features via an adversarial process.

Finally, our method is built upon recent advances in neural network (NN) methods.

Results: We experiment by extracting PPIs and DDIs from text. In our experiments, we show

domain invariant features can be learned in NNs such that classifiers trained for one interaction

type (protein–protein) can be re-purposed to others (drug–drug). We also show that our method

can adapt to different source and target pairs of PPI datasets. Compared to prior convolutional and

recurrent NN-based relation classification methods without domain adaptation, we achieve

improvements as high as 30% in F1-score. Likewise, we show improvements over state-of-the-art

adversarial methods.

Availability and implementation: Experimental code is available at https://github.com/bionlproc/

adversarial-relation-classification.

Contact: zhiyong.lu@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Relation classification has a broad range of applications in biomedi-

cal research and healthcare. For example, protein–protein interac-

tions (PPIs) are instrumental in a multitude of biological processes

that facilitate the discovery of novel drug targets for treating diseases

(Pedamallu and Posfai, 2010). Likewise, adverse drug reactions

(ADRs) have detrimental effects on the general populace. In 2009,

the Institute of Medicine (IOM) reported at least 1.5 million

(Council et al., 2009) adverse drug events occur each year. The IOM

estimates that over 4 billion dollars are spent each year in order to

treat preventable ADRs. A significant portion of these ADRs are

caused by adverse drug–drug interactions (DDIs). Unfortunately, to

the best of our knowledge, a single comprehensive source for DDIs

is unavailable. While there has been work using natural language

processing (NLP) to form a complete knowledge source for DDIs

(Ayvaz et al., 2015), this is still an active area of research.
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Finally, there are many other forms of biomedical relations. For

example, gene–disease, chemical–protein and protein–point mutation

are all interactions of interest in the biomedical field. Furthermore,

there has been a recent focus on ternary relations between entities

[e.g. gene–mutation–disease (Singhal et al., 2016)]. But in general it is

impractical to develop large manually curated datasets for every type

of interaction. Also, creating datasets large enough to cover all domains

that may specify biomedical interactions can be prohibitively expen-

sive, especially when medical experts are needed to annotate the data.

Neural networks (NNs) have produced state-of-the-art results in

the area of relation classification (dos Santos et al., 2015; Peng and

Lu, 2017; Peng et al., 2017). While NNs have shown great promise

for relation classification, they are highly susceptible to overfitting

(Mou et al., 2016). Moreover, in the domain adaptation or covariate

shift setting, issues associated with overfitting are magnified.

Researchers have only recently begun exploring the area of domain

adaptation with respect to relation classification (Nguyen and

Grishman, 2014; Nguyen et al., 2015; Plank and Moschitti, 2013).

Unsupervised domain adaptation (i.e. no labeled target data) is of

immediate use to biomedical researchers. For example, models

trained on patient data collected at a children’s hospital may not

generalize well on adult records. Likewise, models trained on colon

cancer patient data will not perform well on brain cancer patients

records (Bethard et al., 2017). These problems fall under the

umbrella term sample selection bias. If unlabeled data are abundant,

then unsupervised domain adaptation methods are useful to create

generalizable classifiers by providing unbiased data. Finally, we note

that our scenario is similar to batch effects encountered in bioinfor-

matics (Leek et al., 2010; Shaham et al., 2017), where issues such as

measurement errors caused by variations in conditions between dif-

ferent experimental batches must be handled.

In this paper, we introduce an unsupervised domain adaptation

method for relation classification. We focus on two important areas

of biomedical relation classification. First, we experiment on adapt-

ing complex NNs across different PPI corpora. Figure 1 represents a

hypothetical example distribution projected in two dimensions. The

blue diamonds and circles represent positive training and test instan-

ces, respectively. Likewise, the red stars and triangles represent neg-

ative train and test instances. We can see that the test distribution

does not match the training distribution [P xtrainð Þ 6¼ P xtestð Þ].
Because of the biased sample, it is unreasonable to expect our

models to generalize well on the test set. This is illustrated in

Figure 1 by the linear separator learned on the training dataset (solid

line). The classifier does not separate the positive and negative

instances in the test dataset. For biomedical relation classification it

is likely that the training set could be biased. For example, when a

specific knowledge base is used to find sentences that contain PPIs,

the knowledge base may be biased toward PPIs of a given species or

interaction type within its curation scope. In this paper, we demon-

strate how the use of unlabeled data can overcome sampling bias

issues. Next, we will show that our method can adapt to other types

of interactions, specifically between DDIs and PPIs. We present the

intuition behind this through two example sentences:

• PPI Example: Human cyclin E, a new cyclin that interacts with

two members of the CDC2 gene family
• DDI Example: The in vitro interaction between nevirapine and

the antithrombotic agent warfarin is complex.

Without any biological expertise, and given two entities, we can

understand that there are interactions just by the terms interacts

with and interaction between. In general, a model trained to find

DDIs (source domain) will not generalize well to PPIs (target

domain), because of jargon specific to the source domain. However,

through unsupervised adversarial training, we show that we can

learn to hide the differences between the source and target datasets.

Overall, we make the following contributions:

• To the best of our knowledge, we introduce the first domain

adaptation method of complex NNs for relation classification.
• In order to show that our adversarial training approach is highly

generalizable, we experiment with the following state-of-the-art

architectures for biomedical relation classification: convolutional

NNs (CNNs) and recurrent NNs (RNNs).
• Finally, we perform a detailed quantitative analysis of our

method.

We outline the rest of this paper as follows: we discuss related

work in Section 2. Next, in Section 3 we explain our method in

detail. Experimental results are shown in Section 4. Finally, we con-

clude this paper and discuss future work in Section 5.

2 Related work

2.1 Relation classification
There has been a large number of relation classification methods

proposed over the years. For example, linear models were very pop-

ular for relation classification (Bunescu and Mooney, 2005; Rink

and Harabagiu, 2010). These methods involved engineering both

syntactic and semantic features to be used in the model.

More recently, NNs have been used for relation classification.

Zeng et al. (2014) use CNNs to classify relations. The key intuition

comes from the use of position vectors, where two vectors are con-

catenated with each word vector such that the two vectors represent

where that word is located in the sentences with respect to the two

entities. In dos Santos et al. (2015), a ranking loss is used rather

than a softmax output layer in conjunction with a CNN. The use of

a ranking loss overcomes issues of class imbalances with the ‘not

relation’ class. Also, RNNs have been competitively applied to rela-

tion classification tasks, specifically RNNs have been applied along

the shortest dependency path (Xu et al., 2015) as well as the full sen-

tence (Zhou et al., 2016). Finally, both CNNs and RNNs have been

shown to complement each other when combined (Vu et al., 2016).

The idea of applying NNs to biomedical relation classification

has previously been explored by many researchers. Recently, CNNs

were used to achieve state-of-the-art results for PPI (Peng and Lu,

Fig. 1. Fictional biased data distribution. The blue diamonds and circles repre-

sent train and test instances containing positive interactions. The red stars

and triangles represent instances with negative interactions. After adversarial

training we would expect the test instances to align with training instances

such that it looks like the test dataset was sampled evenly across the training

data distribution
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2017). Meanwhile, both CNN (Asada et al., 2017; Liu et al., 2016;

Matos and Antunes, 2017) and long short-term memory networks

(LSTM) have worked well for DDI classification (Kavuluru et al.,

2017; Zhang et al., 2017).

2.2 Domain adaptation
Domain adaptation methods are used when the test (target) set dif-

fers from the training (source) dataset distribution. In practice, this

appears to be a common scenario. For example, sometimes latent

temporal dependencies can affect the target data distribution. In the

past, researchers have re-weighted source instances such that the

source data looks more like the target distribution (Gong et al.,

2012; Huang et al., 2006). Besides instance re-weighting, Gong

et al. (2012) developed a geodesic kernel method for domain

adaptation.

Recently, domain adaptation has also been applied to NNs. First,

autoencoders (Chen et al., 2012; Glorot et al., 2011b) have been

exploited to learn cross-domain representations. Unfortunately, these

methods have been shown to only reduce the cross-domain discrepan-

cies, rather than remove them (Long et al., 2016). Meanwhile, maxi-

mum mean discrepancy has been used to minimize the difference

between the source and target distributions (Long et al., 2015, 2016).

Similar to generative adversarial NNs (Goodfellow et al., 2014)

(GAN), adversarial losses (Ganin and Lempitsky, 2015; Ganin et al.,

2016) have been explored for domain adaptation. Adversarial domain

adaptation works by training a NN that can learn to accurately make

predictions for the source task, while ensuring the internal features for

both the source and target datasets of the NN are indistinguishable

from each other. ReverseGradient (RevGrad) (Ganin et al., 2016) is a

recently proposed method for adversarial domain adaptation.

RevGrad works by training a discriminator—a simple feed forward

NN—to predict the domain (source versus target) of a given instance

by minimizing the adversarial loss. At the same time, the base CNN is

trained to fool the discriminator by maximizing the adversarial loss

while simultaneously minimizing the classification loss. Contrary to

RevGrad, the work by Tzeng et al. (2017) (ADDA) works in two

stages. First, the NN is trained to minimize the classification loss for

the source dataset. Next, ADDA is trained using a GAN loss while

ignoring the classification loss. By using a two stage approach with

the GAN loss, ADDA is able to generate stronger gradients to update

the base NN. The method presented in this paper follows a similar

multi-stage approach as described by Tzeng et al. (2017), however

our method differs in multiple ways including a specialized NN—

involving both learned word and position embeddings—to handle

relation classification and additional regularizers to avoid degenerate

solutions.

There has been extensive research on the application of domain

adaptation to NLP including named entity recognition (Daumé III,

2007), sentiment analysis (Glorot et al., 2011b) and relation classifi-

cation (Plank and Moschitti, 2013). Similar to our work, researchers

have previously studied unsupervised domain adaptation for rela-

tion classification (Nguyen and Grishman, 2014; Nguyen et al.,

2015). However, our work differs by utilizing recent advances in

NNs for relation classification. Specifically, we use both RNNs and

CNNs in adversarial settings.

3 Materials and methods

An intuitive visualization of our method is shown in Figure 2.

Essentially, given two similar but different datasets, our model

encourages the target data distribution, P xtgt

� �
, to look like the

source data distribution, PðxsrcÞ. We hypothesize that the model will

learn to hide domain specific information such that the source classi-

fier will work better on the target dataset.

Our method is trained in two stages. First, as shown in Figure 3,

we train a standard CNN-based relation classification model, Ms,

on the source data. We also experiment with a bi-directional LSTM

(Bi-LSTM) model which is not shown in the figure. It is important

to note that the target data is not used at this stage. Next, in the sec-

ond stage we ignore the classification loss, meaning the final output

layer from stage 1 is not updated. Moreover, we make two copies of

the source classifier, Ms and Mt. We train a new output layer (dis-

criminator) that tries to predict whether each example is from the

source or target dataset. The model parameters for Ms are fixed in

stage 2. Also, the parameters of the target CNN, Mt, are updated to

confuse the discriminator. By this, we mean, we want to update the

parameters of Mt such that the discriminator thinks the target

instances passed to Mt are from the source dataset. In the context of

CNNs, the mid-level features are a vector produced after the convo-

lutional and max-over-time pooling layers. By confusing the

Fig. 2. Intuition of the adversarial domain adaptation process using a fictional data distribution. Given two similar but different datasets, the adversarial training

process will try to align the two data distributions. After adversarial training, the distributions should align with one another
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discriminator, the mid-level features produced by Mt for the target

dataset will be indistinguishable from the features generated on the

source data by Ms. This removes bias from the target domain that

may cause incorrect predictions. It is important to note that both the

discriminator and Mt are continually updated during the training

process. Because of the competition between the discriminator and

Mt, the discriminator should predict �0:5 for target instances after

stage 2. This assumes Mt and the discriminator do not overpower

each other. Finally, to make predictions at test time, the output layer

trained in stage 1 and Mt from stage 2 are combined.

Before we discuss the details of our method. We begin by intro-

ducing some notation. Throughout this paper we will use s to repre-

sent a single instance in the source dataset and S represents the

entire source corpus. Likewise, t represents a single target instance

and T represents the target dataset. It is important to distinguish dif-

ferent sets of parameters in our model. We let hMs
; hMt

; hC and hD

represent the parameters for the source base model, target base

model, source classification output layer and discriminator, respec-

tively. To simplify notation, we let hMt
=hMs

represent the parameters

for the CNN or the Bi-LSTM given both models are interchangeable

in our algorithm.

3.1 Preprocessing and feature representation
Independent of the base model we use, the input to our models is the

same. For relation classification, each instance is composed of a sen-

tence and two entities in that sentence. The task is then to predict if

there is an interaction between the two entities given the sentence. In

order to improve generalizability, we replace the entities in each sen-

tence with special word vectors representing the tokens E1 and E2,

respectively. Replacing the entity words with special tokens ensures

our model generalizes to unseen entities, rather than memorizing

certain relations between entities in the training dataset. Also, all

tokens which occur <5 times in the source dataset are replaced with

the unknown token UNK.

Word embeddings preserve both syntactic and semantic informa-

tion in a low dimensional vector (Mikolov et al., 2013). In our

model, each instance is represented as a sequence of word vectors,

w1; . . . ; e1; . . . ; e2; . . . ;wN½ �, where wi 2 R
d represents the word vec-

tor for the i-th word in the sequence. It is important to note that e1

and e2 are learned just like any other word vector in the sentence.

Furthermore, we use position embeddings to compliment the word

vectors. Position embeddings have been show to improve NNs for

the task of relation classification (Zeng et al., 2014; Zhao et al.,

2016). Specifically, for each word in a sentence, we measure the rel-

ative distance between both E1 and E2. Similar to the word

embeddings, we also embed each location as a vector, pe1 jð Þ and

pe2 jð Þ where pe1=2 jð Þ 2 R
e, which is the position embedding repre-

senting the position of the j-th word relative to one of the two

respective entities. Finally, we represent each word in a sentence as a

single vector

xi ¼ wijjpe1 ið Þjjpe2 ið Þ; (1)

such that xi is the concatenation of the word embedding and the two

position embeddings.

3.2 Models
One of the goals of this paper is to show that our adversarial learn-

ing method can be applied to both modern CNNs and RNNs for

relation classification. We begin by giving a brief overview of both

CNN and the RNN architectures.

Convolutional neural networks: Intuitively, CNNs learn to

extract informative n-grams from text with a set of convolution fil-

ters (CFs). The basic architecture is shown in Figure 3. Given a

sequence x1;x2; . . . ; xn½ �, representing a sentence, which is a

sequence of word representations described in Equation (1). First,

we zero-pad both the beginning and end of the sentence with s – 1

zero vectors, where s is the number of words our filters span. The

CFs are defined as W 2 R
q�s dþ2eð Þ, where q is the number of feature

maps we wish to generate. For example, a CF spanning three words

would try to capture informative tri-grams from the sentence. In this

work, we use architectures previously described by Nguyen and

Grishman (2015). We begin by concatenating each window span-

ning s words, xi�sþ1jj . . . jjxi, into a local context vector cj 2 R
s dþ2eð Þ.

Next, using a non-linear function [rectified linear unit (Glorot et al.,

2011a; Nair and Hinton, 2010)] f, we convolve over each context

vector,

ĉ j ¼ f Wcj þ b
� �

; where b 2 R
q:

Given the convolved context vectors ĉ1; ĉ2; . . . ; ĉnþs�1½ �, we map

them into a fixed size sentence representation using max-over-time

pooling

M s; hMð Þ ¼ ĉ1
max; ĉ

2
max; . . . ; ĉq

max

� �
; where

ĉv
max ¼ max ĉv

1; ĉ
v
2; . . . ; ĉv

nþs�1

� �
such that ĉv

max represents the max value across the v-th feature map.

Recurrent neural networks: While CNNs only extract informa-

tive n-grams from text, RNNs are able to capture long term depend-

encies between words. For our RNN method, we use LSTM (Gers

Fig. 3. The two stage process to our adversarial learning procedure. In Stage 1 either a CNN or Bi-LSTM model is trained on the source dataset. Stage 2 ignores

the classification loss and trains a discriminator and the CNN with a new GAN loss instead
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et al., 2000), specifically we use a variant introduced by Graves

et al. (2012),

ii ¼ sigmoid xiWi þ bi þ hi�1Uið Þ

fi ¼ sigmoid xiWf þ bf þ hi�1Uf

� �
;

oi ¼ sigmoid xiWo þ bo þ hi�1Uoð Þ;

pi ¼ tan h xiWc þ bc þ hi�1Ucð Þ;

hi ¼ oi � tan h fi �mi�1 þ ii � pið Þ;

where ii; fi; oi represent the input, forget and output gates.

For relation classification, we use a Bi-LSTM to capture contex-

tual information on both sides of each word. We use the Bi-LSTM

model proposed in Kavuluru et al. (2017). Specifically,

~h i ¼ LSTM! xið Þ; h
 

i ¼ LSTM xið Þ; and

hi ¼ ~h ijjh
 

i for i ¼ 1; . . . ;n

where ~h i; h
 

i 2 R
z and hi 2 R

2z. Here, hi represents the bi-directional

contextual information for word i.

Next, we produced a fixed size vector using max-over-time pool-

ing. Given h1;h2; . . . ;hn½ �, we generate the sentence representation

M s; hMð Þ ¼ h1
max; h

2
max; . . . ; h2z

max

� �
;

which can be passed to the output layer such that hi
max is the max

value across dimension i.

3.3 Classification loss
In this paper, we only consider the binary classification task of

predicting if two entities interact or not. Given M s; hMð Þ, the out-

put from either the Bi-LSTM or CNN, we can generate a proba-

bility estimate of whether the two entities in s interact.

Specifically,

C M s; hMð Þð Þ ¼ 1

1þ exp � M s; hMð Þwc þ bcð Þð Þ

where wc 2 R
2z or wc 2 R

q depending if M is a Bi-LSTM or CNN,

and bc 2 R. Next, we can define the classification loss as the binary

cross-entropy loss,

E s;yð Þ�S �y log C M sð Þð Þð Þ � 1� yð Þ log 1� C M sð Þð Þð Þ½ �; (2)

where E represents the expected value and y is the true label for s.

3.4 Adversarial learning
After training on the source dataset, we make two copies of the clas-

sifier, Ms and Mt. During adversarial training we fix the parameters

of Ms and fine-tune the model Mt. Given the feature representation

from the source and target model, we define a discriminator

D Ms sð Þð Þ=D Mt tð Þð Þ, which learns to predict whether an instance,

s=t, comes from the source or target dataset. For the discriminator,

we use a three-layer feed forward NN. The final layer of the discrim-

inator has a single output which is passed through a sigmoid squash-

ing function. The output represents the probability whether a given

instance belongs to the source dataset.

Intuitively, with adversarial learning, the discriminator competes

with the feature generator such that Mt tries to confuse D. In our

model, we accomplish this competition using two loss functions.

First, the discriminator weights are trained using a standard super-

vised loss

�Es�S log D Ms sð Þð Þð Þ½ � � Et�T log 1�D Mt tð Þð Þð Þ½ �; (3)

such that the discriminator tries to learn to predict which dataset

each instance comes from. Likewise, the parameters of model Mt are

updated by flipping the label for the target class,

�Et�T log D Mt tð Þð Þð Þ½ � (4)

compared to Equation (3). The model, Mt, is trained to produce fea-

tures for target instances such that the discriminator thinks they

come from the source dataset. We note that the gradient reversal

layer (Ganin et al., 2016) could also be used instead of the two com-

peting loss functions, however the discriminator is known to con-

verge quickly causing the gradient to vanish when using RevGrad.

3.5 Historical regularization
Without constraining Mt sð Þ during adversarial training, the loss

function can oscillate (Salimans et al., 2016) hindering learning, or

worse, converge to a degenerate solution. To avoid these issues with

the GAN loss, we use historical regularization,

jjhMt
� 1

V

XV

i

hi
Mt
jj2F; (5)

where hi
Mt

represents the target base model parameters at the i-th

training iteration and V is the total number of updates that have

been made thus far.

3.6 Label smoothing
Label smoothing has been useful as a regularizer in NNs (Szegedy

et al., 2016) and for label calibration (Guo et al., 2017). Here, we

use one-sided label smoothing (Goodfellow, 2016; Szegedy et al.,

2016;), a technique used to stabilize generative adversarial

networks,

�:9Es�S log D Ms sð Þð Þð Þ½ � � Et�T log 1�D Mt tð Þð Þð Þ½ �; (6)

where the expectation of the source data is down weighted.

Intuitively, this technique is used to soften the predictions returned

by the discriminator. If the discriminator predicts 1 for the source

data, then the loss will learn to reduce the score to a smaller value.

3.7 Training
We train the model in two phases. First, the model is trained on the

source data by first optimizing the parameters hMs
and hC according

to Equation (2). In stage 2, the model parameters, hMt
, and discrimi-

nator parameters, hD, are updated using Equations (4), (5) and (6).

Both the source and target datasets are used in stage 2. The training

procedure is formally presented in Algorithm 1. In stage 2, we

emphasize that only the discriminator parameters, hD, are updated

in step 8 of Algorithm 1, while only the target model parameters,

hMt
, are updated at step 10. Intuitively, the discriminator and model

are competing with each other. It is the discriminator’s job to learn

to predict which dataset each instance comes from. Likewise, the

model wants to learn to represent target instances such that they

look like source examples. Finally, we note that the updates can be

made using any learning rule. In this work, we use the Adam opti-

mizer (Kingma and Ba, 2015).

4 Experiments

4.1 Model configuration
During stage 1 of our adversarial training procedure, both the CNN

and Bi-LSTM models are trained using the Adam optimizer with a

learning rate set to 0.001, beta1 set to 0.9 and beta2 set to 0.999.
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For stage 1, we train for a maximum of 25 epochs. Likewise, we

used a mini-batch size of 16. To avoid overfitting, we use both drop-

out and l2 regularization, where the dropout value is set to 0.5 and

the l2 regularization parameter is set to 0.00001. For the CNN

model, we used filter widths of size 3, 4 and 5, with 300 filters

learned for each size. In the Bi-LSTM model, we use a hidden state

size of 256. In stage 2, for both the CNN and Bi-LSTM, we use a

mini-batch size of 128 and train using Adam with a learning rate of

0.0001. We train for a total of 10 000 updates in stage 2. Finally,

for our discriminator we use a three-layer feed-forward NN. The

first two layers have 512 nodes each combined with the ReLU acti-

vation function. The final layer has a single output node which is

passed through a sigmoid activation.

4.2 Datasets and comparison methods
In this paper, we conduct two sets of experiments. First, we study

cross-corpora generalization with three datasets: BioInfer (Pyysalo

et al., 2007), AIMed (Bunescu et al., 2005) and DDI (Segura-

Bedmar et al., 2014). The basic statistics for each dataset can be

found in Table 1. In all of our experiments, we use 80/20 train and

test splits for evaluation. It should be noted that while the DDI data-

set contains multiple relation types, we merge all relation types into

a single positive class. We defer classifying relation types for future

work. The use of these three datasets allow us to compare different

scenarios in which we may want to use unsupervised domain adap-

tation for relation classification. For example, both BioInfer and

AIMed are PPI datasets, however sampling bias causes poor cross-

corpora performance. Hence, we can analyze how well adversarial

domain adaptation can overcome sampling bias. Likewise, we also

use the DDI dataset such that we can transfer the knowledge learned

on either of the PPI datasets to find DDIs.

Next, we compare our method against the top systems on track

4 of the 2017 BioCreative shared task dataset (http://www.biocrea

tive.org/tasks/biocreative-vi/track-4/). Unlike the other three data-

sets which have mention-level annotations, the BioCreative dataset

contains relation annotations at the document level. In order to

apply our adversarial method, we must pre-process the dataset such

that it is similar to sentence-level relation classification. We assume

if a document contains a relationship between two gene entities,

then every sentence in the document that mentions the two genes

express that relationship. Furthermore, the entities are not given for

the test data, so we annotate genes using GeneNormPlus (Wei et al.,

2015). Each document is split into sentences and instances are gener-

ated using pairs of genes that co-occur in a sentence. Finally, at test

time, if we predict a relationship between two entities in any sen-

tence, then we assume that relationship should be predicted at the

document level. The BioCreative dataset contains 5546 articles and

1682 relations. We use the official train and test splits for

evaluation.

We also compare against the 2017 task 5 BioCreative Chemprot

dataset (http://www.biocreative.org/tasks/biocreative-vi/track-5/).

Unlike the previous datsets, Chemprot finds interactions between

two entities of different types: proteins and chemicals. In our experi-

ments, we only consider relations that occurred in the same sentence

which results in 6534 positive relations across 1632 documents.

Finally, like the BioCreative dataset, we use the official test split for

evaluation.

In this work, we compare two NNs for relation classification.

Specifically, we use the CNN architecture proposed by Nguyen and

Grishman (2015) and the word Bi-LSTM in Kavuluru et al. (2017).

In order to see how our method works in the context of other adver-

sarial domain adaptation methods, we compare against RevGrad

(Ganin et al., 2016) applied both to the CNN and Bi-LSTM models.

For all of these methods, we use the model specific parameters

described in Section 4.1.

4.3 Evaluation measure
For the task for relation classification, we use the F1-score as our

evaluation measure. F1-score is defined as the harmonic mean

between precision (P) and recall (R) such that

P ¼ TP

TPþ FP
; R ¼ TP

TPþ FN
; and F1� score ¼ 2 P R

Pþ R
;

where TP, FP and FN are the true positives, false positives and false

negatives, respectively.

4.4 Results
The pairwise performances between the AIMed, BioInfer and DDI

datasets are presented in Table 2. In this table, we report

the mention-level F1-score. Overall, we make two observations.

First, we observe that adversarial training always improves the

Table 1. The counts for the number of sentences, positive and neg-

ative relations in each of the datasets

# Sentences # Positive # Negative

AIMed 1955 1000 4834

BioInfer 1100 2534 7132

DDI 4579 4999 28 509

Algorithm 1 Mini-batch stochastic gradient descent algorithm

to train our adversarial domain adaptation method

1: for max number of stage 1 training iterations do

2: Sample mini-batch of m source instances fs1; s2; . . . ; smg
from S

3: Minimize the classification loss and update the

parameters according to the gradient:

rhMs ;hC
1
m

Pm
i

yi log C Ms si
� �� �� �

� 1� yi
� �

log 1�C Ms si
� �� �� �� �

4: end for

5: for max number of stage 2 training iterations do

6: Sample mini-batch of k source instances fs1; s2; . . . ; skg
from S

7: Sample mini-batch of k target instances ft1; t2; . . . ; tkg
from T

8: Update the discriminator parameters using the following

gradient:

rhD
1
k

Pk
i

:9 log D Ms si
� �� �� �

� log 1�D Mt ti
� �� �� ��

9: Sample a new batch of k target instances ft1; t2; . . . ; tkg
from T

10: Update the base model parameters using the following

gradient:

rhMt

1
k

Pk
i

log D Mt ti
� �� �

þ jjhMt
� 1

V

PV
j

hj
Mt
jj2F

 #"

11: end for
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cross-corpora generalization for the CNN and Bi-LSTM models.

Moreover, our adversarial training unanimously outperforms the

RevGrad adversarial domain adaptation method. For RevGrad,

when the cross-corpora performance without adversarial training

performs well (BioInfer ) AIMed), then RevGrad can reduce the

performance compared to not using adversarial learning.

Second, when comparing the CNN versus Bi-LSTM, we observe

in Table 2 that the CNN performs better with and without adversa-

rial training. In Table 3, we compare the CNN and Bi-LSTM models

when trained and tested on the same corpus. When there is no

domain shift, the Bi-LSTM outperforms the CNN across all three

datasets. We hypothesize that because the Bi-LSTM model is more

complex than the CNN model, the Bi-LSTM is more prone to

domain overfitting compared to the CNN. However, we see that

after adversarial training both models perform comparably.

Therefore, we suspect that there is an upper bound to the perform-

ance that can be obtained on these datasets with unsupervised

domain adaptation techniques. While we suspect there is still room

for improvement, without utilizing domain specific information, the

datasets may differ in ways we cannot account for with our method.

There are three main aspects to our model: adversarial learning,

label smoothing and historical regularization. In Table 4, we perform

an ablation study to understand how each of these factors affect per-

formance. Here, we focus on the CNN results, given it had the best

overall performance. We trained our model 10 times on the same

train/test split using different random seeds each time. By repeating

the training process, we analyze the average F1-score loss caused by

removing each of the factors. We also look at the standard deviation

to understand the stability they provide to the adversarial training

process. First, we observe that both label smoothing and historical

averaging have a large impact on the F1-score. More importantly, we

see that removing historical regularization makes the training process

unstable with a SD of 0.112. We believe that this regularization term

grounds the learning process. Specifically, we hypothesize that it is

easy for the word embeddings to converge to a degenerate solution.

Next, in Table 5, we compare our unsupervised domain adapta-

tion method (with the CNN base model) against the top systems on

the BioCreative dataset. We want to emphasize that we report

document-level F1-score in Table 5. Because the competition involved

PPI prediction, we evaluate using both AIMed and BioInfer as

source datasets. Compared to the top systems, our method achieves

state-of-the-art performance without training on the competition’s

labeled dataset. Training on AIMed achieves an F1-score of 0.36.

Moreover, we see improvements using the adversarial training across

both the AIMed and BioInfer datasets. We get a 4% improvement

applying adversarial learning on the BioInfer dataset. The improve-

ment is enough to move from third to first place compared to the com-

petition rankings. We believe our performance can be attributed to

difficulty of developing document-level relation classification methods

using the official training dataset. Likewise, we note that the F1-score

is still rather low. We attribute this to the cascading errors caused by

using GeneNormPlus for named entity recognition on the test set.

4.5 Limitations and discussion
We report the F1-scores on the Chemprot dataset in Table 6.

Without adversarial learning, we observe that the BioInfer

dataset generalizes best on the Chemprot dataset. Moreover, unlike

Table 2, the DDI dataset provides better generalizability than the

AIMed dataset after adversarial domain adaptation. Both the

AIMed ) Chemprot and DDI ) Chemprot experiments improve

using adversarial learning. However, our methods do not improve

the BioInfer score. The main reason adversarial learning does not

work is because the proportion of positive to negative relations is

very different in BioInfer (35%) compared to Chemprot (10%). The

problem of class imbalance between datasets is a known problem

for unsupervised domain adaptation methods (Ming Harry Hsu

et al., 2015). In future work, we plan to research how to handle this

problem with adversarial learning methods.

We want to briefly touch on why we do not use historical regula-

rization and label smoothing on with our RevGrad method.

Specifically, RevGrad suffers from a vanishing gradient problem

while our method (without historical regularization and label

smoothing) suffers from instability during stage 2 of training.

RevGrad works by flipping the sign of the gradient of the adversarial

loss to update the CNN/Bi-LSTM parameters. Thus, the discrimina-

tor and network parameters are trained at the same time. However,

if the adversarial loss is small, then the gradient will be small, caus-

ing the adversarial loss to have little impact on the CNN/Bi-LSTM

parameters. Our method avoids this by splitting the adversarial loss

into two components [Equations (3) and (4)]. To test this, we added

both historical regularization and label smoothing to the CNN

RevGrad method for the AIMed ) BioInfer experiment and

repeated it three times. The average F-score is 0.4234 which is simi-

lar to the result in Table 2.

Finally, we analyze changes in the model before and after adver-

sarial training as presented in the Supplementary Material.

5 Conclusion

In this paper, we proposed an unsupervised adversarial domain

adaptation approach to relation classification. We first

Table 3. The F1-score when training and testing on the same data-

set (source) source). Specifically, these are the results of training

on the 80% split and testing on the 20% split

AIMed BioInfer DDI

CNN 0.5335 0.6079 0.7392

Bi-LSTM 0.6152 0.6562 0.7804

Table 2. F1-score for all pair wise combinations (source) target) of the three datasets

BioInfer) AIMed AIMed) BioInfer BioInfer) DDI DDI) BioInfer AIMed) DDI DDI) AIMed AVG

CNN 0.4522 0.3672 0.3975 0.2213 0.1583 0.2793 0.3126

Bi-LSTM 0.4688 0.2959 0.4087 0.1721 0.1858 0.2580 0.2982

CNN RevGrad 0.4731 0.4255 0.4196 0.3611 0.3131 0.3072 0.3833

Bi-LSTM RevGrad 0.4641 0.4011 0.3941 0.3720 0.2772 0.3529 0.3769

Adv-CNN (Ours) 0.4879 0.5413 0.4419 0.4853 0.4596 0.4471 0.4772

Adv-Bi-LSTM (Ours) 0.4851 0.5654 0.4447 0.4490 0.4657 0.4344 0.4746

Bold entries indicate best results.
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experimented on three benchmark corpora: AIMed, BioInfer and

DDI. We have shown an average improvement over 17% in F1-

score compared to not using domain adaptation. Likewise, we dem-

onstrated that our model shows superior performance compared to

RevGrad. Next, on the BioCreative dataset, we achieve state-of-the-

art results without using labeled training data. The following are

some of the future avenues we wish to explore:

• While we have demonstrated the ability to adapt models between

pairs of biomedical relation datasets, we believe multiple sources

could be used during the training process to further improve on

the results.
• We believe there is an upper bound to the knowledge that is usa-

ble between models trained on different relation datasets. This is

evident when the entity types are different (e.g. DDI versus PPI).

We believe that combining distance supervision with adversarial

domain adaptation could provide significant improvements.

While distantly supervised datasets are inherently noisy with the

combination of adversarial domain adaptation we think the two

methodologies will complement each other.
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