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Abstract

Motivation: Simulation is a critical part of method development and assessment. With the increas-

ing sophistication of multi-trait and multi-locus genetic analysis techniques, it is important that the

community has flexible simulation tools to challenge and explore the properties of these methods.

Results: We have developed PhenotypeSimulator, a comprehensive phenotype simulation scheme

that can model multiple traits with multiple underlying genetic loci as well as complex covariate

and observational noise structure. This package has been designed to work with many common

genetic tools both for input and output. We describe the underlying components of this simulation

tool and illustrate its use on an example dataset.

Availability and implementation: PhenotypeSimulator is available as a well documented R/CRAN

package and the code is available on github: https://github.com/HannahVMeyer/Phenotype

Simulator.

Contact: hannah@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The relationship between genotype and phenotype has been a topic

for over a 100 years of biological research. There are a multitude of

phenotypes for each organism, defined by the observations and

measurements one can make on individuals, and these phenotypes

can be related to each other in complex ways. Furthermore, the link

between genotype and phenotype is equally complex, with many

phenotypes being influenced by more than one genetic locus

(polygenic effects) and one locus influencing many phenotypes (plei-

otropic effects). Finally, a multitude of environmental and measure-

ment effects influence phenotypes. Statistical genetics continues to

develop novel ways to analyse genotype to phenotype relationships;

models range from simple linear models with genetic variant effects

on a single trait to complex linear mixed models (LMMs) with addi-

tional genetic and non-genetic random effect components on multi-

ple traits. All models account for observational noise and, usually,

known environmental covariates (Loh et al., 2014; Marigorta and

Gibson, 2014; Stephens, 2013; Zhou and Stephens, 2014). With the

increase in analysis complexity, researchers require sophisticated

simulations of realistic genotype and phenotype structures. These

simulations are critical for testing methods and exploring the impact

of different phenotypic and genetic architectures of biological traits.

The simulated genotypes and phenotypes reflect perceived under-

standing of the true phenotype structure but do not guarantee the

biological correctness of real phenotypes. However, they are invalu-

able in model design, as any model showing flawed statistics on the

possibly simplified biological model will suffer from at least the

same flaws on the true biological data.

Many simulation packages put a strong focus on the genotype

simulation allowing for the simulation of different evolutionary

selection processes via forward-time (Carvajal-Rodrı́guez, 2008;

Lambert et al., 2008; Li et al., 2012; Neuenschwander et al., 2008;

Peng and Kimmel, 2005) and coalescent-based simulation

(Ewing and Hermisson, 2010; Hudson, 2002; Kelleher et al., 2016)
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frameworks. More recently, re-sampling-based approaches have

been developed, where existing genotype data are sampled and com-

bined to generate the genotypes of the simulated samples, while

retaining the original allele frequency and LD patterns (Wright

et al., 2007; Su et al., 2011). The majority of these methods allow

for the simulation of simple case-control phenotypes or a single

quantitative phenotype. In contrast, software packages that focus on

more complex phenotype simulation often rely on simple genotype

simulations (O’Reilly et al., 2012; Porter and O’Reilly, 2017) or

only support externally simulated genotype data (Günther et al.,

2011; Zhbannikov et al., 2017) (a list of common genotype and phe-

notype simulation tools and their simulation strategy is given in the

Supplementary Material, SupplementaryTable.pdf). Among the soft-

ware with a focus on phenotype simulation, MultiPhen (O’Reilly

et al., 2012) and MultiTraitGWAS (Porter and O’Reilly, 2017) facil-

itate the simulation of multiple phenotypes per individual. They

both offer the simulation of phenotypes with genetic variant effects

and an observational noise term with user-defined covariance struc-

ture. In addition, MultiTraitGWAS can simulate non-genetic covari-

ate terms.

Here, we introduce PhenotypeSimulator, an R/CRAN package

for the flexible simulation of phenotypes with different genetic and

non-genetic variance components. PhenotypeSimulator is a frame-

work focusing on the simulation of phenotypes, with a particular

emphasis on complexity of both multiple phenotypes and multiple

genetic loci, which is not provided by other multi-phenotype simula-

tion software (O’Reilly et al., 2012; Porter and O’Reilly, 2017). In

addition to genetic variant effects, it allows for the simulation of

infinitesimal genetic effects (i.e. genetic background) which are a

key component of standard LMMs for genetic association studies,

various non-genetic covariate effects and noise effects with pre-

defined covariance structure. PhenotypeSimulator offers similar gen-

otype simulation as used in other software (O’Reilly et al., 2012;

Porter and O’Reilly, 2017) and studies (Lippert et al., 2013). We

have written PhenotypeSimulator to be easily integrated with exter-

nal genotype simulation software (such as coalescent and forward

time simulation and re-sampling approaches) and it can generate

output suitable as input for a number of standard genetic association

tools such as PLINK (Chang et al., 2015), GEMMA (Zhou and

Stephens, 2014) or SNPTEST (Marchini et al., 2007). We demon-

strate the usage and application of PhenotypeSimulator by simulat-

ing phenotypes and using it to evaluate the power of different LMM

designs in a genetic association study.

2 Materials and methods

2.1 Phenotype simulation with PhenotypeSimulator
2.1.1 Phenotype components

In PhenotypeSimulator, the phenotypes Y 2 RN;P of N samples and

P traits are generated as the sum of (i) genetic variant effects

XB 2 RN;P, (ii) infinitesimal genetic effects U 2 RN;P, (iii) non-

genetic covariate effects WA 2 RN;P, (iv) correlated non-genetic

effects T 2 RN;P and (v) observational noise effects W 2 RN;P. For

components (i)–(iii) and (v), the user can chose a certain percentage

of their variance to be shared across all traits (shared) and the

remainder to be independent (ind) across traits. By allowing for a

split in variance components, we provide the opportunity to simu-

late scenarios where the components affect the trait set in a hetero-

geneous manner, allowing to simulate for instance pleiotropic

effects for the genetic variants.

Genetic variant effects: For the genetic variant effects, S random

SNPs for N samples are drawn from the (simulated) genotypes.

From the S random SNPs, a proportion h is selected to be causal

across all traits. The shared genetic variant effect is simulated as the

matrix product of this shared causal SNP matrix Xshared 2 RN;h�S

and the shared effect size matrix Bshared 2 Rh�S;P. The columns of

the shared effect size matrix are simulated to be perfectly correlated,

i.e. the effect of a SNP genetic effect is proportionally the same for

all affected traits. The effect sizes for Bshared can either be simulated

to have normal or uniform properties. The is implemented as fol-

lows in PhenotypeSimulator: Bshared is the matrix product of the two

vectors bs 2 Rh�S;1 and bT
p 2 R1;P. To simulate effect sizes with

approximately normal properties (Oliveira and Seijas-Macias, 2012;

Equations (31)–(33)), bs and bp are drawn from two normal distri-

butions, where lbp
¼ 0 and rbp

¼ 1 and lbs
and rbs

specified by the

user. For the simulation of uniformly distributed effect sizes, bs and

bT
p are drawn from two exponential distributions whose negative

normalized log product yields an approximate uniform distribution

(Song, 2005) across the user-defined range. The remaining ð1� hÞ� S

SNPs are simulated to have an independent effect across a specified

number of traits Pind. To realize this structure, Bind 2 Rð1�hÞ�S;P is ini-

tialized with either normally or uniformly distributed entries, with lB

and rB as specified by the user (same as for shared effect).

Subsequently, P� Pind traits are randomly selected and the row entries

for Bind at these traits set to zero. The independent genetic variant

effect is the matrix product of Xind 2 RN;ð1�hÞ�S and Bind.

Non-genetic covariate effects: The non-genetic covariate effects

are based on K non-genetic covariates W 2 RN;K, with a proportion

c being shared across all traits yielding the shared covariates matrix

Wshared 2 RN;c�K. The proportion of 1� c non-genetic covariates

that are independent make up the independent covariates matrix

Wind 2 RN;ð1�cÞ�K. The distributions for each of the K non-genetic

covariates are independent and can be either normal, uniform, bino-

mial or categorical. The distribution and respective parameters are

chosen by the user. The effect size matrices Ashared 2 Rc�K;P and

Aind 2 Rð1�cÞ�K;P were designed as described for the genetic effects.

The final non-genetic covariate effects are the matrix product of the

covariate matrices and their effect size matrices: WindAind and

WsharedAshared.

Infinitesimal genetic effects: The basis of the infinitesimal genetic

effect U is the N�N genetic relationship matrix K, either estimated

from the genotypes of the simulated samples as 1
m XXT , where m is

the mean value of the diagonal elements of XXT or provided by the

user. A suitable model for simulating the infinitesimal genetic effect

U 2 RN;P with the known N�N sample covariance K and trait

covariance C is a multivariate normal distribution (as for instance

by Casale et al., 2015; Zhou and Stephens, 2014) where

vecðUÞ � NN�P vecð0Þ;C� Kð Þ: (1)

The structure of C depends on the desired design of the covariance

effect, which can be either shared or independent across traits.

This distribution can be realized by simulating a random variable

Z 2 RM;L as iid Nð0; 1Þ and setting

vecðUÞ ¼ BZAT (2)

where B 2 RN;M reflects the genetic relationship i.e. sample cova-

riance with K ¼ BBT and A 2 RP;L the trait covariance with

C ¼ AAT , respectively (M and L depend on the rank of K and C,

hence are bound by N and P). A detailed derivation of Equation (2)

from Equation (1) can be found in the Supplementary Material

(SimulationSchemeInfinitesimalGeneticEffect.pdf) and has similarly
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been applied in (Casale et al., 2015). By recasting Equation (1) as

Equation (2), the infinitesimal genetic effect U described by a

multivariate normal distribution is effectively modelled as the product

of three matrices, representing the sample covariance (B), a normally

distributed variable (Z) and the trait covariance (A). Different designs of

A will allow for the simulation of shared and independent genetic ran-

dom effects. For the independent effect, Aind is a diagonal matrix with

normally distributed entries: ðAindÞT ¼ diagða1; a2; . . . ; aPÞ � N ð0; 1Þ,
such that Uind ¼ vecðBZðAindÞTÞ. Ashared of the shared effect is simu-

lated as a matrix of column rank one, with normally distributed entries

in column one and zeros elsewhere: ai;1 � Nð0;1Þ and ai;j 6¼1 ¼ 0 such

that Ushared ¼ vecðBZðAsharedÞTÞ.
Correlated non-genetic effects: Correlated non-genetic effects are

simulated as a multivariate normal distribution with a covariance

matrix described by a defined trait-by-trait correlation. Any correla-

tion structure between the phenotypes can be simulated with this

effect component, as the desired correlation matrix C can be sup-

plied by the user. In addition, as a simple approximation for spa-

tially correlated phenotypes (as they might occur, for instance, in

image-based phenotypes, for an example, see Supplementary

Material, SimulationBasedOnExampleData.pdf), PhenotypeSimu

lator provides the construction of such a C as follows: traits of dis-

tance d¼1 (adjacent trait columns) will have the highest specified

correlation r, traits with d¼2 have a correlation of r2, up to traits

with d ¼ ðP� 1Þ with a correlation of rðP�1ÞÞ, such that the correla-

tion is highest at the first off-diagonal element and decreases expo-

nentially by distance from the diagonal. The correlated non-genetic

effect matrix is simulated as T � NN�Pð0;CÞ.
Observational noise: The observational noise effects W are simu-

lated as the sum of a shared and an independent observational noise

effect. Both effect components are simulated by the matrix product

of B 2 RN;P � Nð0; 1Þ with A 2 RP;P. To realize the shared effect

Wshared (which introduces perfect correlation between the traits in

this component), Ashared is simulated as a matrix of row rank one,

with normally distributed entries in row one and zeros elsewhere:

a1;j � Nð0; 1Þ and ai 6¼1;j ¼ 0. A of the independent component is a

diagonal matrix with normally distributed entries: ðAindÞT ¼ diag

ða1; a2; . . . ; aPÞ � N ð0;1Þ.
PhenotypeSimulator requires at least one phenotype component

to simulate the phenotypes. Components can be combined as speci-

fied by the user and the correlation they introduce in the trait struc-

ture can be controlled by the specified levels of independent and

shared effects (at the extremes, components can be simulated to

either only have shared or independent effects). If desired, a simple

phenotype structure following a model as cast, for instance, in the

multivariate normal model by Zhou and Stephens (2014) can be

achieved by specifying only genetic variant effects, non-genetic cova-

riate effects, infinitesimal genetic effects and observational noise.

2.1.2 Scaling and phenotype construction

PhenotypeSimulator enables the specification of the amount of var-

iance that each component should contribute to the total phenotypic

variance. Every component is thereby scaled by a factor a such that

its average column variance �V col ¼ V1þ���þVp

p explains a specified

percentage x of the total variance:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x �V col

�1

q
(3)

The final simulated phenotype Y is expressed as the sum of the

scaled genetic variant effects, the non-genetic covariates, the corre-

lated non-genetic effects and observational noise effects:

Y ¼ XsharedBshared þXindBind þWsharedAshared þWindAind

þUshared þUind þ TþWshared þWind:
(4)

2.2 Case study
The analysis code and parameters of this case study, from the data

simulation to the genome-wide association study, can be found in

the Supplementary Material (Simulation-and-LinearModel.pdf).

2.2.1 Data simulation

Genotypes (8 073 414 genetic variants) for 1000 individuals were simu-

lated via Hapgen2 (Su et al., 2011) (re-sampling approach), based on

the European Samples of the 1000 Genomes project (1000 Genomes

Project Consortium, 2012). Phenotypes were simulated with

PhenotypeSimulator, using the simulated genotypes as basis for the

SNP and infinitesimal genetic effects. A total of three phenotypes for

1000 samples with the ten SNP genetic effects shared across all traits

(randomly sampled from the simulated genotypes), four non-genetic

covariates, an infinitesimal genetic, a correlated noise and an observa-

tional noise effect were simulated. For the genetic variant effects, only

shared effects across traits were simulated. For the remainder of the

phenotype component, 80% of their variance was simulated to be

shared across all traits while the remaining proportion of variance

remained independent. The total genetic variance was set to 40%, leav-

ing 60% of variance explained by the noise terms.

2.2.2 Genome-wide association study

The simulated genotypes, phenotypes, kinship and covariates were

used in GWAS. Two different types of GWAS were conducted

(i) a multi-trait association study, jointly mapping all three traits

and (ii) single-trait association studies, where each trait was individ-

ually tested for association with the genotypes. Single-trait GWAS

was run for all three traits. All GWAS were conducted with

GEMMA (version 0.96) (Zhou and Stephens, 2014). In both, the

multi-trait and single-trait GWAS, the phenotypes (-p flag) were

modeled as the sum of genetic (simulated SNPs; -g flag) and non-

genetic (simulated covariates; -c flag) fixed effects, a random genetic

effect (with the eigenvectors and values of the kinship matrix, -u and

-d flag) and observational noise (LMM with likelihood ratio test

using the -lmm 2 flag). For a comparison of the number of causal

SNPs recovered in the multi-trait and single-trait GWAS, the P-val-

ues of the single-trait GWAS were adjusted by the number of test

conducted (Bonferroni adjustment for three tests).

3 Results

PhenotypeSimulator works by:

1. Simulating or importing genotypes (Fig. 1, genotypes),

2. simulating genetic and non-genetic phenotype components of

interest (Fig. 1, light grey boxes),

3. scaling each component according to a certain proportion of

variance explained (Fig. 1, scaling),

4. combining re-scaled phenotype components into a final pheno-

type (Fig. 1, phenotypes), and

5. saving phenotypes and genotypes in standard output formats

(Fig. 1, output).

PhenotypeSimulator can simulate simple bi-allelic SNPs, where each

SNP is simulated from a binomial distribution with two trials and

probability equal to the given allele frequencies [as for instance used

in (Lippert et al., 2013)]. This simple approach, however, does not
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simulate any dependency between the genotypes as is observed with

LD structure in the genome. To allow for more complex genotype

structures, PhenotypeSimulator can import genotypes generated

from different genotype simulation software, covering genotypes

simulated from coalescent models GENOME (Liang et al., 2007), a

re-sampling-based approach HAPGEN2 (Su et al., 2011) and differ-

ent forward-time approaches delimited-formats as given by

simuPOP (Peng and Kimmel, 2005), ForSim (Lambert et al., 2008)

and GenomePop2 (Carvajal-Rodrı́guez, 2008). In addition, standard

genotype formats such as PLINK (Chang et al., 2015) or BIMBAM

(Guan and Stephens, 2008) are supported.

These genotypes form the basis for the simulation of the genetic

components of the phenotypes: genetic variants that are associated

with the phenotype and infinitesimal genetic effects simulating

underlying population structure and relatedness in a cohort. In addi-

tion, PhenotypeSimulator offers the simulation of other non-genetic

components, which reflect environmental, experimental or other

unexplained variance in the data. Although in many genetic associa-

tion studies, the sources of non-genetic correlation are often com-

bined, we have found it valuable to separate these components to

explore the impact of different correlation structures from these

sources. The environmental components can be simulated as covari-

ates with different distributions mimicking influences such as sex

(binary), age (uniform/normal) or country of origin (categorical),

correlated non-genetic effects and observational noise. Correlated

non-genetic effects can be used to simulate a phenotype component

with a defined level of correlation between traits. For instance, such

effects can reflect correlation structure decreasing in phenotypes

with ordered or spatial components, e.g. in imaging data.

Observational noise captures any non-specified effects that arise due

to, e.g. experimental measurement error. PhenotypeSimulator can

also be used with a combined non-genetic covariance model, similar

to more standard LMMs (O’Reilly et al., 2012; Porter and O’Reilly,

2017; Zhou and Stephens, 2014).

The proportion of variance assigned to each component will dif-

fer depending on the biological understanding of the simulated phe-

notype. PhenotypeSimulator allows for the specification of these

variance proportions and, in addition, provides the option to divide

the explained variance into two components: one that is shared

across phenotypes and a second component that acts independently

on certain phenotypes. For instance, the level of shared and inde-

pendent effects for a genetic variant allows for the simulation of dif-

ferent levels of pleiotropy.

There are many ways to simulate these phenotype components

depending on the scope and the model to be tested. Typically, it is

assumed that the overall phenotype structure is well represented by

an additive linear combination of individual components (Loh et al.,

2014; Marigorta and Gibson, 2014; Stephens, 2013; Zhou and

Fig. 1. Phenotype simulation scheme. PhenotypeSimulator takes genotypes from a number of different input formats and uses these as the basis for the simula-

tion of the genetic effects. In addition to the genetic effects, non-genetic covariates, observational noise and non-genetic correlation structure can be simulated.

The effect structure of the upper four components can be divided into a shared effect across traits or an independent effect for a number of traits, allowing for

complex phenotype structures such as the simulation of pleiotropy. Before combining the phenotype components, they are scaled to a user-defined proportion

of the total phenotypic variance. Finally, the simulated phenotype and its components can be saved into a number of different genetic output formats. Arrows,

lines and rectangles mark the dimensions of each component
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Stephens, 2014). PhenotypeSimulator assumes this phenotype struc-

ture and sums the individual phenotype components to generate the

final phenotypes.

The simulated genotypes and phenotypes can automatically be

written into a number of formats for standard genetic association

software such as PLINK (Chang et al., 2015), BIMBAM (Guan and

Stephens, 2008), GEMMA (Zhou and Stephens, 2014) or SNPTEST

(Marchini et al., 2007).

To demonstrate the usage and application of Phenotype

Simulator, we simulated a set of phenotypes and used them to evalu-

ate the power of different LMM designs in genome-wide association

studies (GWAS). We simulated genotype data for 1000 individuals

via a re-sampling-based approach (Su et al., 2011), mimicking

population structure from four populations in the 1000 Genomes

project (1000 Genomes Project Consortium, 2012). We generated a

phenotype set consisting of 3 traits with 10 genetic variant effects

and 4 non-genetic covariates. For 10 genetic variant effects, we ran-

domly selected 10 variants from the genotypes and simulated shared

genetic variant effects across all phenotypes. We introduced addi-

tional correlation structure by including an infinitesimal genetic

effect based on the individuals’ kinship estimates as well as a non-

genetic correlated and an observational noise effect (parameters and

R code in the Supplementary Material, Simulation-and-

LinearModel.pdf). Figure 2A shows the trait-to-trait correlations of

the final phenotype and each of its components. The final pheno-

types served as the response variable in the GWAS based on LMM

with the simulated SNPs and non-genetic covariates as fixed effects

and the kinship estimated from the genotypes as part of the genetic

random effect (Zhou and Stephens, 2014). We analysed the power

of jointly modeling all three phenotypes (multivariate LMM) and

the power of univariate models where the association of each pheno-

type is analysed separately (Fig. 2B). For our simulated phenotypes

with shared genetic variant effects only, the multi-trait GWAS shows

a greater power compared to any of the single trait analyses. The

multi-trait GWAS detected 4 out of 10 SNPs for which a phenotype

effect was modelled that pass the commonly used genome-wide sig-

nificant threshold of 5 � 10�8 (Fadista et al., 2016). The single-trait

GWAS only recovered three of these SNPs. The ability of linear

(mixed) models to detect the SNPs for which a phenotype effect was

modeled depends on the allele frequencies of these SNPs and the

effect size (Cohen, 1992; Halsey et al., 2015): the higher the effect

size and/or the allele frequencies the better the power to detect the

SNP effects. The P-values of all SNPs with simulated effect on the phe-

notypes in relation to their allele frequencies and simulated effect sizes

can be found in the Supplementary Material (Simulation-and-

LinearModel.pdf), showing a strong trend for SNPs with high allele

frequencies and large simulated effect sizes to have low P-values.

4 Conclusion

PhenotypeSimulator offers a framework for complex multi-trait,

multi-locus phenotype simulations in quantitative genetics packaged

in an easy to use manner for statistical geneticists. There are a vari-

ety of key features of PhenotypeSimulator that have both driven its

development and usage. First, it is the only simulation package that

we know that can simulate complex multi-trait phenotypes with

complex multi-locus genetics, including a population structure term

with phenotypic correlation. Second, realistic covariate structures

can be created with similar properties (e.g. categorical covariates or

covariates drawn from different distributions) to real covariates.

Third, the different components can be independently extracted

and scaled, for example having the ‘true’ variance components and

covariance matrices from the simulation readily available for com-

parison to inference schemes. Finally, we have developed

PhenotypeSimulator as a flexible component in the standard genet-

ics pipeline, with the ability to both read genetic formats from well

used tools and output phenotypes compatible with many tools. This

allows easy large-scale deployment for comprehensive simulation

across many parameter settings. The underlying model for

PhenotypeSimulator corresponds to the common place LMM frame-

work. As such, it is limited in its use for benchmarking between

methods, where LMMs methods are likely to perform best.

However, the need for an underlying model is true for any simula-

tion package. We have extensively documented PhenotypeSimulator

A

B

Fig. 2. Phenotype simulation and genome-wide association study as a down-

stream application. (A) Heatmaps of the trait-by-trait correlation (Pearson cor-

relation) of a simulated phenotype Y and its five phenotype components:

genetic variant effects XB, infinitesimal genetic effects U, non-genetic covari-

ates WA, correlated non-genetic effects T and observational noise W. The

non-genetic covariates consist of four independent components, two follow-

ing a binomial and two following a normal distribution. The genetic variant

effect of ten causal SNPs with shared effect across all traits, yielding the

strong correlation structure observed above (see Section 2). (B) Quantile-

quantile plots of P-values observed from a multivariate linear mixed model

(mvLMM) and univariate linear mixed models (uvLMM) fitted to each of the

about eight million genome-wide SNPs (grey), including the ten SNPs for

which a phenotype effect was modelled (green). The R code and detailed

description of the simulation and analysis are provided in the Supplementary

Material (Simulation-and-LinearModel.pdf)
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for ease of use, providing vignettes for sample genotype simulation

with the supported genotype simulation tools (Supplementary

Material, sample-scripts-external-genotype-simulation.pdf), a user

manual for PhenotypeSimulator (Supplementary Material,

UsagePhenotypeSimulator.pdf) and a full application documenta-

tion from genotype simulation to GWAS (Supplementary Material,

Simulation-and-LinearModel.pdf). Furthermore, the code is present

on github (https://github.com/HannahVMeyer/PhenotypeSimulator)

and we welcome other additions to this tool. For example, although

we currently model polygenic and pleiotropic effects, we have not

yet modelled epistatic effects and would enthusiastically accept

extensions in this area.
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