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Abstract

Motivation: Phenome-wide association studies (PheWAS) have been used to discover many

genotype-phenotype relationships and have the potential to identify therapeutic and adverse drug

outcomes using longitudinal data within electronic health records (EHRs). However, the statistical

methods for PheWAS applied to longitudinal EHR medication data have not been established.

Results: In this study, we developed methods to address two challenges faced with reuse of EHR

for this purpose: confounding by indication, and low exposure and event rates. We used Monte

Carlo simulation to assess propensity score (PS) methods, focusing on two of the most commonly

used methods, PS matching and PS adjustment, to address confounding by indication. We also

compared two logistic regression approaches (the default of Wald versus Firth’s penalized max-

imum likelihood, PML) to address complete separation due to sparse data with low exposure and

event rates. PS adjustment resulted in greater power than PS matching, while controlling Type I

error at 0.05. The PML method provided reasonable P-values, even in cases with complete separ-

ation, with well controlled Type I error rates. Using PS adjustment and the PML method, we identify

novel latent drug effects in pediatric patients exposed to two common antibiotic drugs, ampicillin

and gentamicin.

Availability and implementation: R packages PheWAS and EHR are available at https://github.com/

PheWAS/PheWAS and at CRAN (https://www.r-project.org/), respectively. The R script for data

processing and the main analysis is available at https://github.com/choileena/EHR.

Contact: leena.choi@vanderbilt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Post-market drug analysis is increasingly applied for uncovering rare

or subtle effects and also may uncover novel therapeutic applica-

tions for a drug. These investigations are facilitated by the matur-

ation of large, longitudinal databases such as electronic health

records (EHRs), which can be used to identify novel adverse drug

events (ADEs), study long-term drug safety, investigate the effect of

drugs in special populations such as women and children and un-

cover new indications for existing drugs (Rastegar-Mojarad et al.,

2015; Trifirò et al., 2009). However, an important limitation of

EHRs is that data are observational and contain systematic biases;

hence there is great need for tools that enable efficient and more

comprehensive assessment of medication effects in EHRs and at-

tenuate these biases.
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The Phenome-wide association study (PheWAS) is a hypothesis-

generating method to systematically test associations between a

genetic variant or clinical factor of interest and a compendium of

clinical outcomes or phenotypes, generally represented by individual

billing codes or groupings of billing codes (Denny et al., 2010).

PheWAS analyses have successfully replicated known genotype-

phenotype associations, discovered new phenotype associations for

genetic variants and been adapted to identify associations with non-

genetic biomarkers (e.g. laboratory findings, clinical diagnoses, en-

vironmental exposures and seasonality; Boland et al., 2015; Denny

et al., 2011; Denny et al., 2013; Hebbring, 2014; Krapohl et al.,

2016; Liao et al., 2013; Neuraz et al., 2013; Rastegar-Mojarad

et al., 2015; Ritchie et al., 2013; Ryan et al., 2013).

The application of PheWAS methods to the discovery of drug

effects introduces several important statistical challenges. First, as

with all observational (non-randomized) studies, subjects in the

exposed group are often systematically different from those in the

unexposed control group. In contrast to traditional PheWAS of a

genetic variant, where the genetic ‘exposure’ precedes any outcomes

and is assumed to be randomly distributed within a specified popu-

lation, drug exposures are not randomly distributed. The indications

for a particular drug may yield significant, systematic differences in

the baseline and outcome status of medication exposed versus unex-

posed individuals. In order to determine the effect of the exposure of

interest on outcomes, methods must be in place to account for these

systematic differences. When there are a large number of covariates

to be adjusted relative to the sample size and the number of cases, as

there may be in PheWAS and other EHR-based studies, performing

traditional covariate adjustment is unreliable or even infeasible. In

cases such as these, propensity score (PS) methods are useful to ad-

just for an estimated probability of exposure based on a large num-

ber of covariates (Rosenbaum and Rubin, 1983). Several methods

using PS have been developed, including PS matching (Rosenbaum

and Rubin, 2012a), PS stratification (Rosenbaum and Rubin,

2012b) and inverse probability of treatment weighting (Rosenbaum,

1987). Matching on PS and adjusting for PS are the most commonly

used approaches in traditional epidemiological and population-

based EHR studies (Gagne et al., 2015; Hayes et al., 2016;

Rosenbaum, 1987; Zhou et al., 2015).

A second challenge in using PheWAS to study drug effects is that

many of the phenotypes are not common in any given population.

With such sparse binary outcomes, complete separation is an

obstacle for logistic regression (Ali et al., 2015). For example, when

binary outcome and exposure variables are classified in a 2 x 2 table,

complete separation occurs if no case is observed in one of the ex-

posure groups––that is all cases are perfectly predicted by one expos-

ure status. When complete separation occurs, the standard logistic

regression method cannot provide reasonable results, since the esti-

mate of the coefficient [i.e. the maximum likelihood estimate

(MLE)] is infinite and P-value obtained from the default method of

Wald test is meaningless. Instead of a Wald-type method, the condi-

tional likelihood ratio test and the likelihood interval provide a bet-

ter solution for complete separation (Albert and Anderson, 1984;

Choi, 2011; Choi et al., 2015; Dupont and Plummer, 2016) if the

goal of study is solely to test associations, but they cannot provide a

finite MLE. Among several likelihood-based methods, the penalized

maximum likelihood (PML) method [often called Firth’s penalized-

likelihood logistic regression in genetics (Firth, 1993)], which was

originally proposed to correct bias of the MLE, is a potential

solution to the problem of complete separation since it can provide a

finite MLE even for complete separation (Heinze and Schemper,

2002).

A third statistical challenge to this application of PheWAS is

maintenance of adequate power without excessive Type I error.

Since PheWAS involves testing thousands of outcome phenotypes

for association to the exposure of interest, a substantial proportion

of phenotypes will be falsely identified as associated at a nominal

P-value threshold with each drug exposure (Type I error). At the

same time, as a hypothesis-generating method, it is important to

avoid large Type II errors which can lead to the inappropriate exclu-

sion of potentially real drug effects, as can happen with conservative

methods such as Bonferroni correction. Thus, an ideal PheWAS

method maximizes power while controlling Type I error rates within

an acceptable range.

The performance of various statistical methods for mitigating se-

lection bias in the context of a high dimension, sparse phenotype

matrix in order to use PheWAS analyses for the purpose of identify-

ing drug effects has not been rigorously assessed. In this study, we

performed Monte Carlo simulations with known true associations

between exposure and outcome phenotypes and compared the two

most commonly used methods for addressing confounding: match-

ing on PS and adjusting for PS. We also evaluated logistic regression

with two methods, the default (Wald test) and PML, the latter being

a potential method to address complete separation. We assessed

Type I error, power and bias for both methods. In addition, we sug-

gest a standardized procedure for data pre-processing and analysis

for PheWAS. We illustrate the application of our proposed methods

to identify potential latent effects of medication exposure using pedi-

atric patients exposed to two commonly used antibiotics, gentamicin

and ampicillin.

2 Materials and methods

2.1 Data for case studies
The data for this study were extracted from a de-identified version

of the Vanderbilt University Medical Center EHR called the

Synthetic Derivative (SD; Roden et al., 2008). The SD is a research

database where HIPPA safe harbor identifiers have been removed to

create a non-human subjects resource for research.

For the case studies, the hypothesis was that PheWAS-based

methods and EHR data could be used to identify candidate novel la-

tent drug effects, evident in children years after exposure to a drug

during infancy. To test this hypothesis, we identified a set of individ-

uals that met criteria to be a part of a ‘birth medical home’ cohort.

Inclusion criteria are two health maintenance (‘well child’) visits at

least 7 days apart within their first year of life (age¼0) and another

well child visit between ages 2–5 years, defined by the presence of

one of the V20 ICD-9 CM codes (‘Health supervision of infant or

child’) in the patient’s EHR. Figure 1 demonstrates the two criteria

for the birth medical home cohort. Each individual was classified as

exposed or unexposed to gentamicin and ampicillin based on medi-

cation extraction using the MedEx tool applied to electronic order

entry and clinical note text (Xu et al., 2010). Exposure was defined

as one or more mentions of the drug name with dose, route, strength

or frequency, occurring within the first year of life, with all other

individuals defined as ‘unexposed’.

For the cohort, all ICD-9 CM codes were extracted for a baseline

period of age¼0 and an outcome period of ages 2–5 years (Fig. 1),

with translation of codes from the baseline and outcome periods to

1814 possible phecodes for PheWAS analysis using the v1.2 phecode

map (Denny et al., 2013). Single instances of each phecode defined a

case for the corresponding phenotype, race, sex and current age

were extracted for use as covariates. Race was coded as a binary
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variable for EHR recorded race of ‘white’. Current age (on the date

of data extraction) in our analysis acts as a measure of era, as each

individual’s baseline and outcome data were extracted from age 0

and age 2–5 years, respectively. The baseline data were used in the

case study as well as the simulation study.

2.2 Data pre-processing
Figure 2 summarizes the data pre-processing procedure for PheWAS

data obtained from the birth medical home population, with an em-

phasis on pre-processing covariate phenotypes at the baseline (left)

and outcome phenotypes at the follow-up (right). The demographic

features (sex, race and year of birth) are the same for the baseline

and outcome data. From all of the possible phenotypes, first we

excluded phenotypes with no observed cases: 942 phenotypes in the

baseline data and 846 in the follow-up data. For the outcome pheno-

types, we excluded an additional 207 phecodes with only one case

(21% of the 968 with any observed cases). Due to the hierarchical

nature of phecodes (Denny et al., 2013), the more specific 4 and 5-

digit phecodes are often highly correlated with their parent 3-digit

codes as cases in the lower level codes are also cases in the higher

level codes. For example, ‘381: Otitis media and Eustachian tube

disorders’ (n¼4, 790 at baseline) is almost identical to ‘381.1:

Otitis media’ (n¼4772 at baseline). However, another child code of

381, ‘381.2: Eustachian tube disorders’, has only 97 individuals at

baseline. The inclusion of highly correlated covariate phecodes may

not provide much valuable information as a covariate when building

a PS model, while inducing collinearity in the regression analysis,

which should be avoided. Decreasing the number of covariate phec-

odes also helps build more stable PS model while reducing analysis

and simulation times. Thus, we only included 3-digit phecode phe-

notypes for the baseline data, excluding 523 lower level phecodes.

For the outcome data, all codes (3-, 4- and 5-digit phecodes) were

evaluated. This data pre-processing yielded 349 covariate pheno-

types in the baseline period and 761 outcome phenotypes in the

follow-up period for the pediatric dataset.

2.3 PS model and generation of PS matched exposure-

control datasets
A PS model was developed for PS matching or PS adjustment. The

PS is the probability of being exposed conditional on observed cova-

riates, obtained using a logistic regression with the exposure variable

as the outcome. Age was included as a continuous variable, and

baseline phenotypes, race and sex as binary variables. Most of the

covariates are very sparse and the expected exposure rates are low

(e.g. 10% for gentamicin), and hence a logistic regression could not

be reliably performed with 352 covariates (349 phenotypes, age, sex

and race), even with a large sample size (N¼12 398). Regularized

regressions such as ridge regression or lasso have been proven very

useful when the number of covariates, k, is greater than the sample

size, n, (i.e. k>n). Although PheWAS data are k<n typically with

very large sample size, regularized regression methods are still useful

with sparse binary outcomes, which can shrink coefficients toward

zero, most of which are likely to be zero (i.e. no effect). Thus, we

adopted a regularized logistic regression with elastic-net penalty

(Zou and Hastie, 2005) to obtain PS in logit scale using the pre-

dicted probability of being exposed, which was implemented using

an R package glmnet (Friedman et al., 2010). The elastic-net penalty

parameter, a, ranges from 0 to 1, from which we used two extreme

values of a¼0.1 and 0.9, closer to ridge regression (equivalent to

a¼0) and lasso (equivalent to a¼1), respectively, to examine sensi-

tivity to the choice of penalty.

Using the generated PS, matched exposure-control datasets were

constructed by selecting control subjects whose PS values were

matched to exposed subjects, with matching ratios of exposure to

control, 1–1, 1–2 and 1–4, using an R package Matching (Sekhon,

2011) with a caliper of 0.2 as suggested in Austin (Austin, 2011)

and without allowing replacement and ties to speed up simulations.

Since the PS for some subjects were very extreme (more than 5%

had greater than 63 in logit scale), we also generated trimmed data-

sets consisting of subjects within the 5th to 95th percentiles of PS, in

order to evaluate sensitivity of the analysis results to the subjects

with extreme PS values. Datasets for an alternate strategy using PS

adjustment analyses were also generated, which include all individu-

als (the full dataset) as either exposed cases or unexposed controls,

and their PS.

2.4 Outcome model
For each outcome phenotype, a logistic regression was performed

using each of the PS matched datasets without adjusting for any

covariates as well as the full data with adjustment of PS only. Two

estimation methods in logistic regression were employed. First, the

associations between drug exposure and outcome phenotypes were

tested using the Wald test, the default test method in logistic regres-

sion. When complete separation occurs, a logistic regression model

does not converge, yielding extremely large coefficients (in absolute

value) and P-values that are not meaningful. This occurs regardless

of how many cases are observed in the exposed or control group, al-

though some of these phenotypic associations could be real. For ex-

ample, if 100 cases are observed in exposed group with no case in

control group for a given phenotype, this phenotype can be poten-

tially important, yet will be missed. To handle complete separation,

we applied the PML method using an R package logistf (Heinze and

Fig. 1. Cohort and phenotype definitions. The baseline period was defined as the first year of life and the follow-up period as 2–5 years of age. The top of the fig-

ure illustrates the inclusion criteria for the birth medical home cohort, where codes for health maintenance (‘well child’) visits are required in the baseline and fol-

low-up periods. The center of the figure shows the covariate phenotype codes for the PSs, obtained from the baseline period and the outcome phenotype codes,

obtained from the follow-up period. Also shown is the medication event; when present for the drug of interest, the individual is classified as ‘exposed’, and when

absent, the individual is classified as ‘unexposed’
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Ploner, 2016) that can provide a finite estimate for the regression co-

efficient and a reasonable P-value that can be useful to identify po-

tentially important phenotypes when complete separation occurs.

2.5 Simulation study
A typical dataset for a PheWAS examining the effect of an exposure

on outcome phenotypes includes a fixed set of data at a given time.

Based on our pediatric cohort of 12 398 individuals, we used the

baseline data to simulate datasets for outcome phenotypes with

known associations between the exposure and outcome phenotypes,

while approximately preserving the distribution of case frequency

for outcome phenotypes. We assumed three scenarios for exposure

effects on outcome phenotypes in terms of odds ratio (OR): the null

hypothesis (OR¼1), moderate effect (OR¼2) and strong effect

(OR¼3). We expect that only few latent ADEs, if any, will be asso-

ciated with drug exposure in real life—thus, a small percent (1.5%)

of outcome phenotypes were assumed to be truly associated with

drug exposure and the majority (98.5%) to be the null—i.e. only 11

out of 761 outcome phenotypes are expected to be associated under

each alternative. Specific simulation steps for outcome phenotypes

are summarized in Figure 3 and described in detail as follows.

In order to mimic the distribution of case frequency for the

observed outcome phenotypes data, for each observed outcome

phenotype, yj, j¼1, . . ., 761, we performed a logistic regression

with regularization using elastic-net penalty of a¼0.5 on the covari-

ate matrix, X, which includes all baseline covariates except the ex-

posure variable, and obtained the jth set of coefficient estimates (ßj)

(i.e. a vector length of 353 for the intercept, age, race, sex and 349

covariate phenotypes). For the outcome phenotypes with extremely

low case frequency (e.g. � 3), for which the analysis did not con-

verge, all coefficients were assumed to be zero except for the coeffi-

cient for intercept that was estimated using its observed frequency to

mimic the observed data. To account for uncertainty, we simulated

ßj* from normal distribution with the mean of the estimated coeffi-

cients, ßj and the SD of 0, 0.05, 0.5 and 0.5 for the intercept, age,

race and sex, respectively, and 0.1 for all covariates phenotypes.

Then, ßj* were used to simulate the jth outcome phenotype as

follows.

We set the known associations between the exposure and out-

come phenotypes (i.e. OR¼1, 2 and 3), by randomly assigning these

three values of log ORs to each of outcome phenotypes, denoting

cexp, j. Considering sparsity of most phenotypes, when assigning the

coefficients for alterative hypotheses, we ensured that they were

assigned to outcome phenotypes with relatively high case frequency

(i.e. upper 85 percentile of frequency distribution) with higher prob-

ability, while still allowing them to be assigned to those with low

case frequency using a ratio of 20 to 1 in probability; this ensured

that the majority of outcome phenotypes assigned to the alternatives

can remain in the analysis after excluding no case during the data

pre-processing. Let Z be the baseline data including the exposure

variable, E, mimicking from ampicillin case study (i.e. Z¼XþE),

and hj¼ßj*þ cexp, j be the vector of simulation coefficients (i.e. the

length of 354) including the hypothesized exposure coefficient, cexp,

j for the jth outcome phenotype. With the linear predictor, Zhj, the

probability of being case for the jth outcome phenotype, pj¼1/

[1þ exp(–Zhj)], was calculated, which was used to simulate binary

outcomes for the jth outcome phenotype, yj* from Bernoulli distri-

bution with probability pj. Combining these 761 simulated outcome

phenotypes with the exposure and three demographic variables (i.e.

age, race and sex), the final simulated dataset was constructed.

With each of 1000 simulated datasets, the associations between

exposure and outcome phenotypes were tested at significance level

of 0.05 and the coefficients were estimated using the methods

described above. For each hypothesis, the proportion of outcome

phenotypes yielding P<0.05 (i.e. positive rate) was calculated, and

bias was estimated using the mean squared errors (MSEs) defined by

the mean of squared differences between the estimate and the

hypothesized value. Then, the Type I error rate and power as well as

the mean bias were calculated using the mean of positive rates and

bias across 1000 simulations with and without exclusion of outcome

phenotypes that yielded complete separations. The simulation stud-

ies were conducted using R Statistical Software (version 3.2.1;

R Core Team, 2017).

2.6 Case studies
We performed PheWAS using the data with gentamicin and ampicil-

lin exposures as case studies using the methods described above.

A PS for exposure to each antibiotic in the first year of life was cre-

ated for all individuals meeting the birth medical home criteria.

A PheWAS was performed for each drug, with phecode phenotypes

as the outcome in a PML logistic regression model predicted by gen-

tamicin or ampicillin exposure adjusting for the PS using an R

Fig. 2. Diagram of data pre-processing

Fig. 3. Summary of simulation steps
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package PheWAS (Carroll et al., 2014). For comparison to the typ-

ical PheWAS approach employed in most genetic studies, models

adjusting only for demographic variables (age, sex and race) were

also tested. To limit to only those phenotypes that are clinically rea-

sonable, we removed codes for congenital conditions for the case

study analyses.

3 Results

3.1 Simulation studies
3.1.1 Comparison between PS matched and PS adjustment analyses

Table 1 presents the simulation results based on PS generated with

elastic-net penalty of a¼0.1, which compares the analyses that were

performed using PS matched datasets and the full dataset with PS

adjustment. Of note, when the analyses were performed with the

full dataset without use of a PS, Type I error rates were as high as

0.3 (data not shown). With the PS, the sample size was larger for the

full versus matched datasets, with respect to both the number of

individuals (e.g. 12 398 for full data versus 2818 for 1:1 matching)

and the average number of phenotypes tested (e.g. 720 for full data

versus 536 for 1:1 matching) after excluding those with no cases.

The results under the null hypothesis reveal that the Type I error

rates from all analyses ranged from 0.01 to 0.04, indicating that

Type I error was well controlled at the significance level of 0.05 in

all scenarios. PS matched analyses had lower Type I error rates,

which may be due to the elimination of phenotypes with smaller

case counts due to smaller overall population size. Results under the

alternative hypotheses demonstrated that the full data analysis with

PS adjustment resulted in greater power compared to the PS

matched analyses: 62% versus 41–52% for OR¼2 and 83% versus

70–78% for OR¼3. The number of phenotypes under the alterna-

tive hypotheses was sometimes 10, smaller than originally hypothe-

sized 11, for the PS matched analyses, since candidate phenotypes

were excluded before the analysis as part of data pre-processing.

The reduction of tested outcome phenotypes likely contributed to

the decreased Type I error rates for the PS matched analyses, when

compared to the PS adjusted analyses. As expected, the power was

greater for the larger effect size of OR¼3 compared to OR¼2, re-

gardless of PS method used.

3.1.2 Comparison between the default and PML methods in logistic

regression

On average, 27% of the outcome phenotypes resulted in complete

separation (i.e. no case in either the exposed group or the unexposed

control group). As expected, complete separation yielded unreason-

able extreme estimates for coefficients from the standard logistic re-

gression and P>0.99 with its default Wald test method due to

infinite MLEs for these outcomes. On the other hand, the analyses

where models were fit with the PML approach and tested using

those penalized likelihoods yielded reasonable estimates of coeffi-

cients and P-values for the outcomes with complete separation. To

examine how the instances of complete separation would affect the

results, we excluded outcomes with complete separation and com-

pared average results for the remaining 526 outcomes. For both

methods, the Type I error rates were well controlled at level of 0.05

and the power was similar (Table 2). The reason for similar power

for both methods was due to the fact that complete separation

occurred very rarely in the analyses for the outcome phenotypes

simulated under the alternative hypotheses by our simulation design

(i.e. their case frequency was relatively high, which prevented com-

plete separation) as evidenced in almost same average number of

outcome phenotypes remaining in the simulated datasets. On the

other hand, the mean bias was much smaller with the PML com-

pared to the default method, even for the analyses without complete

separation (Table 3).

3.1.3 Sensitivity to regularization penalty parameters for PS model

The elastic-net penalty parameter, a, for the PS model had little ef-

fect on predicting PS, although the analyses using PS generated with

a¼0.9 resulted in very slight increase in power for the analyses with

matched datasets, compared to those using PS generated with

a¼0.1 (Supplementary Appendix Table A1).

3.1.4 PS trimmed data analysis

The Type I error rates from PS trimmed data analyses were similar

compared to those without trimming, but the power was decreased

as expected, due to the decreased sample size (Supplementary

Appendix Table A2).

3.2 Case studies: latent effects of gentamicin and

ampicillin in pediatric patients
The summary of demographics and exposure variables is presented

in Table 4. For gentamicin exposure in the first year of life, PheWAS

of outcomes at ages 2–5 years adjusting for only demographic varia-

bles and not PS using the PML method indicated 302 phenotypes

with P<0.05 (Fig. 4A). In contrast, only 57 were significant when

adjusting with the PS (Fig. 4B). The blue horizontal lines in Figure 4

represent a nominal significance level of 0.05, without multiple test-

ing correction. Of those, 17 have OR>1, indicating increased risk

associated with gentamicin exposure. The phecodes with the most

abundant case counts, representing those most likely to have clinical

relevance, are ‘non-infectious gastroenteritis’ (OR¼1.31, P¼0.03);

‘other mental disorder’ (OR¼1.86, P¼0.002); ‘viral warts and

HPV’ (OR¼1.71, P¼0.047); ‘disorders of penis’ (OR¼1.73,

P¼0.035) and ‘carbuncle and furuncle’ (OR¼1.91, P¼0.03).

A total of 40 phenotypes had OR<1, indicating a potential protect-

ive effect from early gentamicin exposure. Phecodes with the most

abundant case counts in this category included ‘Eustachian tube dis-

orders’ (OR¼0.67, P¼0.012); ‘other upper respiratory disease’

(OR¼0.66, P¼0.009) and ‘urticaria’ (OR¼0.65, P¼0.047). All

results from the PS adjusted analysis of gentamicin are presented in

Supplementary Appendix Table A3.

For ampicillin, adjusting for only demographic variables and not

PS resulted in 439 phenotypes with P<0.05 associated with early

exposure (Fig. 4C), and PS adjustment reduced this number to 58

(Fig. 4D). Of those, 23 have OR>1. The phecodes with the most

abundant case counts include ‘inflammatory diseases of female pel-

vic organs’ (OR¼1.4, P¼0.047); ‘other mental disorder’

(OR¼1.66, P¼0.009) and ‘chronic obstructive asthma’

(OR¼1.91, P¼0.002). The 35 phenotypes with OR<1, indicating

an association of exposure to decreased incidence of the phenotype,

included ‘acute upper respiratory infections’ (OR¼0.85,

P¼0.022); ‘Eustachian tube disorders’ (OR¼0.68, P¼0.009) and

‘nausea and vomiting’ (OR¼0.83, P¼0.045). All results from the

PS adjusted analysis of ampicillin are shown in Supplementary

Appendix Table A4.

4 Discussion

Initially introduced as a way to use EHR data to identify the

clinical impact of genetic variation, PheWAS is increasingly used

to generate hypotheses around a variety of exposures. For many
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types of exposures, the appropriate statistical methods have not

been rigorously studied. Specifically, the best methods to control

for confounding factors and maximize power to detect potential

signal such as drug effects have not been identified. In this study,

we compared two methods most commonly used to account for

potential confounding, PS adjustment and PS matching. Our main

finding from the simulation study was that the Type I error rates

for both methods were well controlled at 0.05, while the method

of PS adjustment resulted in greater power compared to the

matched data analyses due to reduced sample size in the matched

analyses.

Within our datasets, the majority of outcome phenotypes are

very sparse, leading a high rate of complete separation, namely an

average of 27% of outcome phenotypes in simulated datasets and

31% and 30% in gentamicin and ampicillin case study, respectively.

With the standard logistic regression approach, each of these out-

comes with complete separation had not yielded meaningful results.

The use of the PML method generated P<0.05 in some of these

instances (10 and 8 phenotypes for gentamicin and ampicillin, re-

spectively), demonstrating that we were able to recover significant

results, potentially due to true association with the exposure. Given

the hypothesis-generating goal of PheWAS analysis (with subsequent

validation in independent datasets), it is important to be able to

identify candidate phenotypes, even in instances of complete separ-

ation. The PML method provided reasonable P-values with well

controlled Type I error rates (without requiring multiple testing cor-

rections). In addition, PML in logistic regression can reduce bias in

the parameter estimates and provide reasonable estimates even for

complete separation, for which those from the standard logistic re-

gression diverge to 6 infinity.

Although PheWAS data typically have very large sample sizes

such that the number of covariates is less than the sample size (i.e.

k<n), a logistic regression to generate PS using the many sparse bin-

ary phecodes commonly observed in PheWAS could not be reliably

performed. Our simulation study supported the use of regularized

regression methods in this circumstance, and the choice of regular-

ization penalty parameter in PS model had little effect on the results,

although it would be good practice to perform sensitivity analysis

using at least two extreme penalty parameters as demonstrated in

the simulation study. When performing PheWAS on drug exposures,

particularly for those that are not commonly used, we do not recom-

mend trimming data based on the PS, which resulted smaller power

in our simulations. Based on our simulation studies, we recommend

PS adjustment over PS matched data analysis to gain more power,

while controlling for the Type I error rate at reasonable level. These

characteristics are important for a PheWAS, as they permit obtain-

ing the most complete set of candidate phenotypes for further stud-

ies without a large increase in the false discovery rate. In addition,

we recommend using PML instead of the default method in logistic

regression to identify phenotypes with complete separation which

may be truly associated with the exposure. We also recommend

standardizing the data pre-processing as we described in this study,

as summarized in Figure 2. The R script for data pre-processing and

the main analysis as well as the major part of simulation codes are

available at https://github.com/choileena/EHR and the functions

used for the analysis are freely available as an R package EHR

Table 1. Type I error rate and power based on simulation results for PS matched data analysis (1–1, 1–2 and 1–4) and PS adjusted data

analysis

PS matched PS matched PS matched PS adjustment

(N¼12 398)(1–1) (1–2) (1–4)

(N¼ 2818) (N¼ 4227) (N¼ 7045)

Null hypothesis (Type I error)

OR ¼ 1 0.02 0.01 0.02 0.04

# phenotypesa 536 575 617 720

Alternative hypotheses (Power)

OR ¼ 2 0.41 0.48 0.52 0.62

# phenotypesa 10 10 11 11

OR ¼ 3 0.70 0.75 0.78 0.83

# phenotypesa 11 11 11 11

Note: All PS generated with elastic-net penalty of a¼ 0.1.
aAverage number of outcome phenotypes remaining in the simulated datasets.

Table 2. Type I error rate and power based on simulation results

comparing the conventional maximum likelihood method (Wald)

and the PML method

All outcome phenotypes Excluding complete separation

Wald PML # phenotypesa Wald PML # phenotypesa

Null hypothesis (Type I error)

OR ¼ 1 0.04 0.04 720 0.05 0.04 526

Alternative hypotheses (Power)

OR ¼ 2 0.62 0.61 11 0.65 0.65 10

OR ¼ 3 0.83 0.83 11 0.86 0.86 11

Note: Logistic regressions performed with PS adjustment, using PS gener-

ated with elastic-net penalty of a¼ 0.1.
aAverage number of outcome phenotypes remaining in the simulated

datasets.

Table 3. Mean bias (i.e. MSE) based on simulation results compar-

ing the conventional maximum likelihood method (Wald) and the

PML method

All outcome phenotypes Excluding complete separation

Wald PML # phenotypesa Wald PML # phenotypesa

Null hypothesis (Type I error)

OR ¼ 1 170.1 1.4 720 0.85 0.76 526

Alternative hypothesis (Power)

OR ¼ 2 15.3 0.4 11 0.21 0.18 10

OR ¼ 3 10.2 0.3 11 0.19 0.16 11

Note: Logistic regressions performed with PS adjustment, using PS gener-

ated with elastic-net penalty of a¼ 0.1.
aAverage number of outcome phenotypes remaining in the simulated

datasets.
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(Choi and Beck, 2017) and an R package PheWAS at https://github.

com/PheWAS/PheWAS. Although the simulation studies were based

on data obtained from pediatric population, the statistical approach

we suggest would be applicable to other types of PheWAS with

diverse populations.

The case studies using pediatric exposures to gentamicin and

ampicillin show a dramatic reduction in the number of candidate

associations after adjustment for PS, many of which were likely false

positive results and appropriately removed. The PS adjusted results

provide a much more reasonable list of interesting observed associa-

tions without correcting multiple testing. Renal damage is a known

ADE of gentamicin. Among the phenotypes associated with genta-

micin exposure during infancy is ‘disorders resulting from impaired

renal function’, (n¼64 individuals, OR¼6.49, P¼0.004). This as-

sociation may serve as a positive control for this study. For the iden-

tification of possible latent effects of early antibiotic exposures in

infants, both ampicillin and gentamicin were associated with

increased risk for ‘other mental disorder’. In this cohort, the most

frequent specific billing code included in this phecode is V40.3,

other behavioral problems. There are no known associations be-

tween early antibiotic exposure and later childhood behavior prob-

lems. If replicated in an independent dataset, this may represent a

novel sequela of early exposure to these drugs. However, causality

cannot be determined based on this retrospective, observational

dataset. This association may be observed due to residual confound-

ing and not a direct manifestation of drug exposure. Knowing the

patterns of risk for outcomes after drug exposures can be of value to

clinicians who follow patients long-term, as it may facilitate focused

screening, early detection and modification of risk factors.

Furthermore, since the majority of individuals were exposed to both

gentamicin and ampicillin, the associations identified may be driven

by exposure to either antibiotic, or represent a drug-drug-

interaction. There are not enough individuals with exposure to one,

but not the other, antibiotic for further investigation of these

possibilities.

We do not recommend an additional adjustment of demographic

covariates in the analyses, which were already incorporated into the

Fig. 4. PheWAS Manhattan plot of latent outcomes effects of gentamicin and ampicillin exposures during infancy. For all plots, phenotypes are grouped along

the x-axis by category, and the y-axis is the –log10 of P-value. The blue line indicates a nominal 0.05 significance level. The direction of each triangle indicates the

direction of effect, with upward triangles for ORs (OR)>1 and downward triangles for OR<1. The size of each triangle indicates the number of total cases for

each phecode, with the smallest triangles for<50, then<100 and<200 cases and the largest triangles for� 500 cases. (A) Phenotypes ascertained at age 2–5

associated with gentamicin exposure in infancy, with adjustment for age, sex and race. (B) Phenotypes ascertained at age 2–5 associated with gentamicin expos-

ure in infancy, with adjustment for PS for gentamicin exposure. (C) Phenotypes ascertained at age 2–5 associated with ampicillin exposure in infancy, with adjust-

ment for age, sex and race. (D) Phenotypes ascertained at age 2–5 associated with ampicillin exposure in infancy, with adjustment for PS for ampicillin exposure

Table 4. Demographic data for ampicillin and gentamicin case

studies

Ampicillin Gentamicin

All Exposed Unexposed Exposed Unexposed

N 13 642 1462 10 289 1263 11 205

N Female 6660 647 5092 539 5552

% 48.8% 44.3% 49.5% 42.7% 49.5%

Mean age 10.3 7.9 9.1 8.8 11.1

SD 5.1 3.3 4.0 3.6 4.9

N White 4965 505 3668 449 4114

% 36.4% 34.5% 35.6% 35.6% 36.7%
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PS. The inclusion of additional covariates may lead unreliable results

for sparse phenotypes, likely increasing the false discovery rate.

However, after selecting list of candidate phenotypes, the analyses

with additional adjustment of demographic covariates could be per-

formed post-hoc. As we have demonstrated in case study, clinically

unreasonable or irrelevant phenotypes (e.g. congenital conditions)

can be removed. Another common strategy is to filter based on num-

ber of cases to exclude rare conditions (e.g. exclude phenotypes

with<20 cases), which may be statistical artifacts and/or clinically

irrelevant.

Our data analysis approach has several limitations. Even though

the statistical approach we recommend would be applicable to other

medications, other types of PheWAS data and/or other analytical

approaches than PheWAS, our simulation findings would need to be

confirmed in other datasets and for other applications. In addition,

while the PS adjusted analysis demonstrated greater power than PS

matched analysis in simulation and more reasonable results than ad-

justment for demographics alone in our case studies, residual con-

founding not captured by the PS may still impact the results and

lead to false positive associations. All PheWAS results require repli-

cation in external datasets, including those generated with the meth-

ods we propose and the results of the case studies. Furthermore, the

limitations inherent to observational studies and EHR-based re-

search would not be precluded through the application of our meth-

ods. For example, incomplete ascertainment of exposures (e.g.

individuals may have received antibiotic therapy at another facility,

not captured in our EHR), and ascertainment bias (e.g. children

exposed to gentamicin may have increased screening for kidney

function, due to the known nephrotoxic danger of the drug) are per-

sistent limitations in all studies using EHR data. PheWAS using

phecodes is a powerful hypothesis generation and discovery tool,

but using presence and absence of billing codes has inherent limita-

tions. Some individuals have missing (false negative) billing codes,

i.e. individuals appear to be controls but are actually cases, which

increases the false negative rate. Other individuals have billing codes

for conditions they do not have, due to misdiagnosis or errors in

assigning billing codes, causing false positives. We expect these mis-

classifications not to differ between exposed and non-exposed

groups in our cohort. This type of misclassification (called non-

differential misclassification) produces a bias toward the null,

increasing the likelihood a true association may be missed (Rothman

et al., 2015). However, depending on exposure, it is possible that

differential misclassification (i.e. the misclassification differs be-

tween exposed and non-exposed groups) may occur, which could

yield a bias in either direction. Potential differential misclassification

should be judged case-by-case. Another concern would be correlated

phecodes that may be also misclassified, which would have similar

impact on the results as discussed above. In addition, a causal rela-

tionship between drug exposure and outcome cannot be proven

based on association in observational data.

5 Conclusion

PheWAS analysis of longitudinal EHR datasets is one method for

hypotheses generation, but investigators must be mindful of issues

of confounding by indication and low event rates. Based on our

simulation studies, PS adjustment provides greater power than PS

matching and controls Type I error. The PML regression approach,

rather than the conventional logistic regression approach, results in

reasonable P-values and well controlled Type I error. Combining

these methods of PS adjustment and PML regression yielded an ef-

fective tool for applying PheWAS that avoids some common pitfalls.
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