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Abstract: Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions primarily
characterized by abnormalities in social cognition. Abundant previous functional MRI studies have
shown atypical activity in networks encompassing medial prefrontal cortex (mPFC) and medial parie-
tal regions corresponding to posterior cingulate cortex and precuneus (PCC/PCU). Conversely, studies
assessing structural brain anomalies in ASD have been rather inconsistent. The current work evaluated
whether structural changes in ASD can be reliability detected in a large multicenter dataset. Our com-
prehensive structural MRI framework encompassed cortical thickness mapping and structural covari-
ance analysis based on three independent samples comprising individuals with ASD and controls
(n 5 220), selected from the Autism Brain Imaging Data Exchange open-access database. Surface-based
analysis revealed increased cortical thickness in ASD relative to controls in mPFC and lateral prefron-
tal cortex. Clusters encompassing mPFC were embedded in altered inter-regional covariance networks,
showing decreased covariance in ASD relative to controls primarily to PCC/PCU and inferior parietal
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regions. Cortical thickness increases and covariance reductions in ASD were consistent, yet of variable
effect size, across the different sites evaluated and measurable both in children and adults. Our multi-
site study shows regional and network-level structural alterations in mPFC in ASD that, possibly,
relate to atypical socio-cognitive functions in this condition. Hum Brain Mapp 36:2364–2373, 2015. VC

2015 Wiley Periodicals, Inc.
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INTRODUCTION

Autism spectrum disorders (ASD) are a group of life-
long neurodevelopmental disorders currently recognized
in more than 1% of children (Baird, et al., 2006; CDC,
2014). Core to ASD are impairments in socio-cognitive
functioning thought to stem from atypical Theory of
Mind (ToM), which is also known as mentalizing
(Castelli, et al., 2002; Frith, 2003) as well as sensory
abnormalities and restricted, repetitive patterns of behav-
ior, interests, or activities (APA, 2013). Functional MRI
studies have shown altered activations in this condition,
with somehow diverse location and direction of func-
tional findings. Despite this variability, regions subserv-
ing ToM function, such as medial prefrontal cortex
(mPFC) and the posterior cingulate cortex and precuneus
(PCC/PCU) in the medial parietal lobe, have been rela-
tively consistently implicated in ASD (Di Martino, et al.,
2009; Frith, 2003; Kana, et al., 2009; Kennedy and Courch-
esne, 2008; Lombardo, et al., 2011). In contrast, structural
abnormalities of these same areas have been reported less
consistently.

Adult studies have provided little consensus regarding
the location and direction of regional alterations in ASD.
Some have reported primarily grey matter reductions in
frontal, parietal, and temporal cortices (Hadjikhani, et al.,
2007; Scheel, et al., 2011); others have suggested increased
grey matter in frontal and temporal regions (Doyle-
Thomas, et al., 2013; Duerden, et al., 2012; Ecker, et al.,
2012). Likewise, while some studies in children with ASD
have shown medial and lateral prefrontal cortical thickness
increases (Mak-Fan, et al., 2012; Raznahan, et al., 2010),
others reported decreases in lateral orbitofrontal grey mat-
ter (Girgis, et al., 2007; Hardan, et al., 2006a). Divergences
across studies may relate to the small sample sizes studied
in single labs, due to the high costs and challenges associ-
ated to recruitment and MRI acquisition in ASD. Another
possible reason for inconsistency is that rather than focal
abnormalities, dysconnections among large-scale network
characterize autism (Minshew and Williams, 2007; Schaer,
et al., 2013).

Approaches allowing examinations of both local and
large-scale brain abnormalities are likely better suited for
autism research. Cortical thickness analyses meet such
criterion. They can provide a detailed picture of the
topography of structural alterations in ASD as well as
information on inter-regional network formation. Specifi-

cally, in recent years, the framework of MRI covariance
analysis has been proposed to probe inter-regional net-
works that likely reflect the coordination of structural
growth during development and maturation (Alexander-
Bloch, et al., 2013a; Lerch, et al., 2006). While develop-
mental conditions, such as ASD, likely relate to disrup-
tions of morphological coupling across brain regions,
only relatively few previous covariance analyses have
been conducted in this disorder (Bernhardt, et al., 2014c;
Dziobek, et al., 2010; McAlonan, et al., 2005). Impor-
tantly, only small samples have been assessed (ASD/
Controls in Bernhardt et al.: 18/18; Dziobek et al.: 27/29;
McAlonan et al.: 17/17), limiting generalizability of these
results.

In the current work, we took advantage of the open-
access Autism Brain Imaging Data Exchange database
(ABIDE) to overcome limitations related to sample size
and facilitate the evaluation of across-site reproducibility
(Di Martino, et al., 2014). We carried out a multisite MRI
assessment of patterns of regional and inter-regional struc-
tural differences in ASD. Analyses were based on three
large and independent ABIDE subsamples, selected as
they included both children and adults with autism and
typical controls. We mapped differences between ASD and
controls in regional cortical thickness as well as inter-
regional structural covariance networks. Given their role in
mediating socio-cognitive functions and previous task-
based as well as task-free functional findings showing
alterations of these regions in ASD (Di Martino, et al.,
2009; Di Martino, et al., 2014), we expected to identify
alterations in ASD primarily in mPFC and PCC/PCU and
their inter-regional relationships. Nevertheless, given that
the extent of the abnormalities beyond circuits involved in
social cognition is still unclear, our cortical thickness anal-
yses were carried out in an unconstrained fashion across
the entire cortical mantle.

MATERIALS AND METHODS

Subjects

We selected a subsample of the ABIDE database, includ-
ing children and adults (age range 5 6.5–50.2 years).
Specifically, we selected only sites that included both chil-
dren and adults, with at least 10 individual datasets per
diagnostic group after quality control (please, see below).
Moreover, we selected only males given the low
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prevalence of data from females that were not present in
all sites. This left us with an initial sample of 297 individu-
als from three sites: (1) NYU Langone Medical Center
(NYU, n 5 147, 68/79 ASD/controls); (2) University of
Utah, School of Medicine (USM, n 5 101, 58/43 ASD/con-
trols); (3) University of Pittsburg, School of Medicine
(PITT, n 5 49, 26/23 ASD/controls).

As detailed at http://fcon_1000.projects.nitric.org/indi/
abide, individuals with ASD had DSM-IV-TR diagnosis of
Autistic Disorder, Asperger’s Disorder, or Pervasive
Developmental Disorder Not-Otherwise-Specified, estab-
lished by expert clinical opinion aided by ‘gold standard’
diagnostic instruments: the Autism Diagnostic Observation
Schedule, ADOS (Lord, et al., 2000), and/or the Autism
Diagnostic Interview-Revised, ADI-R (Lord, et al., 1994). In
the NYU, PITT, and USM datasets, individuals diagnosed
with associated disorders such as Fragile-X or tuberous
sclerosis were excluded. Intelligence (full scale IQ, per-
formance IQ and verbal IQ) was measured by WASI,
WAIS III, and/or WISC III (Wechsler, 1999). Controls were
free of history of mental disorders and matched for age at
each site.

MRI Acquisition

High-resolution T1-weighted images were available
from all three sites. NYU data were acquired on a 3T Sie-
mens Magnetom Allegra using a 3D-TurboFLASH
sequence (TR 5 2530 ms; TE 5 3.25 ms; TI 5 1100 ms; flip
angle 5 7�; 128 sagittal slices; matrix size 5 256 3 256;
FOV 5 256 mm; slice thickness 5 1.33 mm, yielding a
voxel size of 1.3 3 1.0 3 1.3 mm3). PITT data were
acquired on a 3T Siemens Magnetom Allegra using a
3D-MPRAGE sequence (TR 5 2100 ms; TE 5 3.93 ms;
TI 5 1000 ms; flip angle 5 7�; 176 sagittal slices;
matrix size 5 269 3 269; FOV 5 269 mm; slice
thickness 5 1.05 mm, yielding a voxel size of 1.1 3 1.1 3

1.1 mm3). USM data were acquired on a 3T Siemens
Magnetom TrioTim using a 3D-MPRAGE sequence
(TR 5 2300 ms; TE 5 2.91 ms; TI 5 900 ms; flip angle 5 9�;
160 sagittal slices; matrix size 5 240 3 256; FOV 5 256 mm;
slice thickness 5 1.2 mm, yielding a voxel size of 1.0 3 1.0
3 1.2 mm3).

MRI-Based Cortical Thickness Measurements

FreeSurfer (Version 5.1.0; http://surfer.nmr.mgh.
harvard.edu) was used to generate models of the cortical
surface and to measure cortical thickness from the T1-
weighted images. Previous work has validated FreeSurfer
by comparing it with histological analysis (Rosas, et al.,
2002) and manual measurements (Kuperberg, et al., 2003).
The processing steps have been described in detail else-
where (Dale, et al., 1999; Fischl, et al., 1999; Han, et al.,
2006). Individual surfaces were aligned to an average
spherical representation, fsaverage5, improving correspon-
dence of measurement points with regards to (mostly pri-
mary and secondary) sulcation patterns. For whole-brain
analysis, thickness data were smoothed on the tessellated
surfaces using a 20 mm full-with-at-half-maximum Gaus-
sian kernel prior to statistical analysis. Selecting a surface-
based kernel reduces measurement noise but preserves the
capacity for anatomical localization, as it respects cortical
topological features (Lerch and Evans, 2005).

Quality Control and Final Sample Selection

The ABIDE open-access dataset includes structural and
functional data of a wide range of image quality. Cortex
extractions in each subject were visually inspected and
segmentation inaccuracies manually corrected by two
raters blind to ASD diagnosis (SLV and BCB). ASD versus
control status was assigned to the raters in a randomized
fashion. Moreover, subjects with faulty segmentations,
movement, or other artifacts were excluded from the study
(n 5 77). This left us with a final sample of 220 individuals
(107 ASD, 113 controls).

We automatically measured the signal to noise ratio,
based on the QA-tools associated with FreeSurfer (https://
surfer.nmr.mgh.harvard.edu/fswiki/QATools), providing
a rater-independent quantitative index of image quality.

In the final sample, ADOS scores were available for all
individuals with ASD (ADOS total: mean 6 SD 5 12.3 6 3.7,
range 5 5–22; ADOS social: 8.4 6 2.7, 2–14; ADOS communi-
cation: 4.3 6 1.5, 0–8). ASD and control groups had a com-
parable age (ASD: 20.9 6 8.0 years, 7.2–50.2 years; Controls:
19.3 6 7.3 years, 6.5–39.4 years; Difference: t 5–1.48;

TABLE I. Sample breakdown by site. age, ADOS total score, and full-scale IQ are presented in mean 6 SD (range)

Site Age ADOS IQ

USM

ASD (n 5 52) 23.6 6 7.6 (15–50) 13.6 6 3.3 (6–21) 100.6 6 16.5 (65–132)
Controls (n 5 40) 21.5 6 7.8 (9–39) – 115.3 6 13.9 (89–148)

PITT

ASD (n 5 20) 20.8 6 7.3 (12–35) 12.7 6 3.0 (8–19) 113 6 14 (81–131)
Controls (n 5 22) 19.7 6 6.9 (9–33) – 110 6 9 (95–127)

NYU

ASD (n 5 35) 16.8 6 7.5 (7–39) 11.3 6 4.2 (5–22) 105.3 6 13.8 (76–137)
Controls (n 5 51) 17.5 6 6.7 (7–31) – 115.0 6 12.1 (81–139)
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P 5 0.14). On the other hand, compared to controls individ-
uals with ASD had lower full-scale IQ (ASD: 104 6 16,
65–137; Controls: 114 6 12, 81–148; Difference: t 5 5.11;
P< 0.001), performance IQ (ASD: 106 6 15, 72–133; Controls:
112 6 13, 67–155; Difference t 5 3.09; P< 0.002), and verbal
IQ (ASD: 102 6 17, 55–136; Controls: 113 6 12, 80–140;
Difference t 5 5.67; P< 0.001). For a breakdown by site after
quality control, please see Table I.

Statistical Analyses

As in previous structural MRI analyses (Bernhardt,
et al., 2014a; Bernhardt, et al., 2014b; Bernhardt, et al.,
2014c), we used SurfStat for Matlab [R2010a, The Math-
works, Natick, MA] (Worsley, et al., 2009). Analyses were
carried out in an unconstrained fashion, at each neocortical
surface point (henceforth, vertex).

a. Mapping of cortical thickness differences. We fitted a lin-
ear model at each vertex i that assessed between-
group differences in thickness T between ASD and
controls:

Ti5 b0 1 b1 � Site 1 b2 � Age 1 b3 � IQ 1 b4 � Group

Where Ti is the thickness at vertex i, Site is a term
controlling for site (i.e., NYU, PITT, USM), Age a
term controlling for age, IQ is a term controlling for
full-scale IQ, Group is the group factor (i.e., ASD and
controls).

Post hoc analyses were carried out to evaluate
the consistency of findings (see Results) within each of
the three sites, and within children and adults sepa-
rately.

In a series of separate post hoc analyses, we
repeated the above group comparisons after correcting
for global mean thickness, after correcting for signal
to noise ratio, and without correction for IQ.

b. Covariance network analysis. We mapped structural
covariance networks by seeding from each cluster of
significant ASD-specific findings (from a) to all other
cortical vertices.

Ti5 b01 b1 � Site 1b2 � Age 1b3 � IQ 1b4 � Glob

1b5 � Seed

Seed indicates the mean thickness of a cluster of
ASD-specific findings. This analysis was carried out
separately in ASD and in controls. The above covari-
ance analyses were restricted to networks ipsilateral
to the respective seed regions. As in previous covari-
ance analyses (Bernhardt, et al., 2011; Chen, et al.,
2008; He, et al., 2008), we additionally corrected for
global mean thickness, Glob, in the above model.

Using linear interaction models, we assessed
whether ASD diagnosis resulted in a modulation of
seed covariance relative to controls.

Ti5 b01 b1 � Site 1 b2 � Age 1 b3 � IQ 1 b4 � Glob

1 b5 � Seed 1 b6 � Group 1 b7 � ðSeed3GroupÞ

Separate post hoc analyses evaluated whether find-
ings were consistent when no correction for IQ and
global mean thickness were applied.

c. Assessment of age effects. We assessed the interplay
between aging and ASD-specific structural alterations
by measuring interactions between age and diagnos-
tic group on cortical thickness.

Ti5 b01b1 � Site 1b2 � Age 1b3 � IQ1b4 � Group

1b5 � ðGroup3AgeÞ

Analyses were carried out at each vertex; in a sep-
arate analysis, we also assessed age effects on the
mean thickness of clusters of ASD-specific cortical
thickness changes (from a).

We assessed interactions between age and ASD
diagnosis on structural covariance networks. To this
end, we assessed the triple interaction

Seed3Age3Group

This contrast was evaluated based on a model that
also contained each of these terms as simple effect
and their simple interactions, together with the Site,
IQ, and Glob control terms. As in b), seeds were
based on clusters of significant ASD-specific findings.

d. Correction for multiple comparisons. Surface-based find-
ings were corrected using random field theory for non-
isotropic images (Worsley, et al., 1999). Specifically, we
applied the SurfStat function SurfStatP.m, which con-
trolled the chance of reporting a family-wise error
(FWE) in a given statistical analysis to PFWE< 0.05.

RESULTS

Cortical Thickness Increases in ASD

Relative to Controls

Surface-based comparisons of cortical thickness between
ASD and controls revealed increased thickness in the for-
mer group in bilateral clusters extending from mPFC
(ventromedial and dorsomedial PFC) to lateral PFC
(PFWE< 0.05; Cohens d for thickness increase left
PFC 5 0.44; right PFC 5 0.53). Increases in mPFC thickness
were relatively consistent across both hemispheres; con-
versely, lateral PFC thickness increases were more extensive
in the right hemisphere, where thickening was seen in orbi-
tofrontal, ventrolateral and dorsolateral regions; lateral PFC
thickening in the left hemisphere was mostly restricted to
dorsolateral PFC. There were no findings of decreased thick-
ness in ASD relative to typically developing controls (Fig. 1).

We ran a post hoc analysis on mean thickness in clusters
of ASD-related thickening to assess the consistency of our
effect across sites. This analysis indicated that bilateral
medial and lateral prefrontal cortical thickness increases in
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ASD were consistent across the three sites, albeit with
variable effect size (Cohen’s d in NYU/ PITT/ USM; left
PFC 5 0.60/0.44/0.25; right PFC 5 0.63/0.40/0.43). Restrict-
ing the sample to either children or adults revealed con-
sistent prefrontal thickening in ASD in both age groups
(Cohen’s d in Children/Adults; left PFC 5 0.5/0.42; right
PFC 5 0.69/0.44).

Running between-group comparisons while additionally
controlling for global mean thickness yielded virtually
identical patterns of results (post hoc t-value left/right
PFC 5 3.11/4.13). Likewise, running a model that did not
correct for IQ also revealed bilateral PFC thickening (post
hoc t-value left/right PFC 5 3.60/4.07). Global mean thick-
ness did not differ between groups (ASD/Con-
trols 5 2.66 6 0.15/2.65 6 0.14; P> 0.1 in model correcting
for site, age, and IQ).

ANOVA on signal to noise ratio did not indicate any inter-
action between site and group (F 5 0.17, P< 0.84) or a main
effect of group (F 5 2.48, P> 0.1); however, there was a signifi-
cant effect of site (F< 19.3, P< 0.001). Running between
group-comparisons after controlling for signal-to-noise con-
firmed the robustness of ASD-specific thickness increases in
PFC (post hoc t-value left/right PFC 5 3.36/3.93).

Abnormal Inter-Regional Structural

Covariance in ASD

We complemented the regional cortical thickness map-
ping with an assessment of inter-regional structural

covariance networks (Fig. 2). Networks were centered on
the left and right PFC clusters that showed ASD-specific
cortical thickness increases in our prior analyses (see
Fig. 1).

In controls, the left PFC seed showed high covariance to

extended cluster encompassing medial prefrontal, lateral

prefrontal, and anterior midcingulate regions as well as

trends to a cluster in TPJ. Similarly, the right PFC seed

showed covariance increases to medial and lateral prefron-

tal extending to superior regions as well as trends to

PCC/PCU. Group comparisons for covariance did not

reveal any differences in the left PFC. However; covari-

ance of the right PFC cluster was markedly reduced in

ASD relative to controls, with target regions in right parie-

tal regions encompassing PCC/PCU (PFWE< 0.05).
Post hoc analysis, which assessed correlations between

mean thickness of the seed in right PFC and the target
region in right PCC/PCU, indicated that covariance
reductions had a similar direction across all three sites,
but again with variable effect (t-value of Group 3 Seed
interactions in NYU/PITT/USM51.7/0.8/1.6). Moreover,
similar to our findings in the regional analysis, running
covariance without the control for global mean thickness
yielded similar results (post hoc t-value 5 2.4), as did a
covariance analysis between the seed and target when no
IQ was corrected (post hoc t-value 5 3.8), and when
rerunning the covariance analysis while additionally con-
trolling for signal-to-noise confounds (post hoc t-
value 5 3.7).

Figure 1.

Regional cortical thickness analysis. ASD-specific cortical thick-

ness increases relative to controls across three sites (in a model

that controlled for age, IQ, and site) are shown in red/decreases

in blue. Significant regions after multiple comparisons correction

at a cluster-level of FWE< 0.05 (thresholded using random field

theory for nonisotropic images) are surrounded by solid black

outlines. To illustrate trends, findings at P< 0.025, uncorrected

(no black outlines, semitransparent) are also shown. Inset scat-

ter plots show mean effects for each significant cluster, either

within each site (i.e., USM/PITT/NYU) or within children and

adults separately.
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Network Modulations by Age

Both controls and ASD groups showed marked age-
related thinning across multiple cortical regions, surface-
based interaction analysis failed to show any significant
between-group differences in age-dependent structural
change following correction for multiple comparisons. At
uncorrected thresholds (P< 0.025), trends for more marked
age-related thinning in ASD were observed in scattered
clusters in left temporal, right prefrontal and midline pari-
etal regions, whereas more protracted age-related thinning

in ASD was seen in insular regions. Similarly, we did not
find any significant between-group differences in the mod-
ulation of inter-regional covariance by age (Supplementary
Figure).

DISCUSSION

We performed a comprehensive examination of cortical
thickness and its inter-regional covariance to study struc-
tural network alterations based on the three independent

Figure 2.

Inter-regional structural covariance network analysis. Seed

regions were determined as clusters of cortical thickness

increases in ASD (see Fig. 1). (A) Covariance networks in con-

trols. Significant correlations between cortical thickness in the

seed and a cortical target region across the sample were inter-

preted as structural networks. (B) Alterations in structural

covariance networks between ASD and controls. Blue/Red areas

indicate reductions/increases in seed covariance in ASD relative

to controls. (C) Scatter plots illustrating the interaction showing

in (B), between mean thickness of right PFC seed and mean

thickness of right PCC/PCU target region, once for the overall

sample and once within each site (i.e., USM/PITT/NYU). Please,

see Figure 1 for details on the statistical thresholding.
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ABIDE subsamples that included both children and adults.
In our study, cortical thickness analyses were carried out
in a surface-based and unconstrained fashion. Yet, in the
light of several previous behavioral and functional studies
suggesting an association between ASD and impairments
in socio-cognitive functioning, particularly atypical ToM
(Castelli, et al., 2002; Hill and Frith, 2003), we expected to
reveal structural network abnormalities primarily in
regions and inter-regional networks associated with such
functional processes, such as mPFC and PCC/PCU
(Di Martino, et al., 2009; Di Martino, et al., 2014). We
indeed observed cortical thickness increases in individuals
with ASD in large portions of bilateral mPFC, extending
to lateral PFC in both hemispheres. While of variable
effect size, the direction of changes in PFC regions was
consistent across all three sites and age groups alike. Com-
plementary covariance analysis revealed that mPFC
regions of thickness increases also showed abnormal struc-
tural network integration with parietal regions encompass-
ing PCC/PCU. Our findings, therefore, provide multisite
evidence for structural regional and connectivity disrup-
tions particularly in areas known to subserve socio-
cognitive functioning, such as mPFC and medial parietal
cortices.

Previous neuroimaging studies have reported mixed
findings in children and adults with autism. In children,
brain overgrowth has been reported in frontal and tempo-
ral cortices (Courchesne, et al., 2001; Girgis, et al., 2007;
Hardan, et al., 2006b), while other studies did not observe
any apparent change (Amaral, et al., 2008; Bloss and
Courchesne, 2007; Redcay and Courchesne, 2005). MRI
studies in adults have also reported rather divergent find-
ings (Doyle-Thomas, et al., 2013; Ecker, et al., 2012; Hadji-
khani, et al., 2007; Scheel, et al., 2011). While recent
findings across several mouse models of autism have also
pointed towards a high variability in structural pheno-
types (Ellegood, et al., 2014), diverse findings in human
studies could be driven variable inclusion criteria. In the
current study, only individuals with ASD supported by
ADOS and/or ADI-R were included. Opting for homoge-
neous subject inclusion criteria may be an important fac-
tor, given the somewhat inconsistent nature of previous
functional as well as structural findings in this condition.
Our series of post hoc thickness comparisons between
groups revealed a consistent direction of change between
ASD and controls; yet, thickness increases were of variable
effect size across the different centers studied. Such vari-
ability, which could be due to other variations in cohorts,
scanners, and scanning protocols, together with possible
limitations in sample size may have, in part, contributed
to the diverse pattern seen across previous reports. While
the present work also drew attention to significant differ-
ence in the signal-to-noise ratio across sites, no clear rela-
tionship was found between the ability to detect
diagnostic group differences and variations in signal-to-
noise ratio. It is important to note that it is difficult to pin-
point the exact effect of signal-to-noise on results, due to

various causes of differences in signal-to-noise such as
movement, scanner parameters, and physiological effects.

A recent study (Haar, et al., 2014) on the ABIDE dataset
reported rather subtle differences in cortical structure
between ASD and controls. At low thresholds, the study
of Haar and colleagues also revealed tendencies for rather
increases in cortical thickness in ASD–a finding in accord-
ance to the work presented here. The higher effect sizes
reported in the current work could be attributed to differ-
ences in center- and case-inclusion. Indeed, the current
study included those three sites that provided data from
adults as well as children, while the study of Haar and
colleagues included data from more centers, and prese-
lected cases based on explicit matching criteria. Further-
more divergences may be attributed to whether manual
FreeSurfer correction procedures were applied, as in the
current work, or not (Haar, et al., 2014).

Direct histopathological validation studies of MRI-
derived morphological changes in autism are virtually
absent. Notably, a previous post mortem study of Casanova
and colleagues suggested a smaller width but increased
number of minicolumns, neuronal assemblies centered on
radially oriented pyramidal neurons, in this condition
(Casanova, et al., 2002). Further pathological studies of
individuals with autism have reported glial abnormalities
in the frontal lobe (Morgan, et al., 2010; Vargas, et al.,
2005), with one study showing increased microglial den-
sity in white and grey matter (Morgan, et al., 2010). Last,
histopathological analyses have reported laminar rear-
rangement and a poorly defined grey and white matter
interface (Avino and Hutsler, 2010; Mukaetova-Ladinska,
et al., 2004), a common sign of atypical migration and cort-
ical organization during neurodevelopment, starting possi-
bly already at prenatal developmental stages (Stoner,
et al., 2014).

Univariate cortical thickness mapping was comple-
mented by MRI covariance analysis to probe inter-regional
structural MRI networks (Alexander-Bloch, et al., 2013b;
He, et al., 2008; Lerch, et al., 2006). According to its under-
lying assumptions, cortical regions belonging to the same
network would show highly correlated growth during
development, due to their high propensity to exchange
trophic factors and participate in common molecular sig-
naling pathways (Alexander-Bloch, et al., 2013b). In our
sample, we observed decreased covariance of mPFC in
ASD relative to controls, particularly to parietal regions,
including PCU/PCC. Similar to the regional thickness
findings, the direction of effects remained consistent across
sites, but of variable effect size. Functional MRI connectiv-
ity analysis have consistently reported ASD-related abnor-
malities in the inter-regional coupling of different
divisions in the frontal neocortex (Di Martino, et al., 2014;
Just, et al., 2012; Lynch, et al., 2013; Monk, et al., 2009;
Redcay, et al., 2013). A previous meta-analysis of 14 diffu-
sion MRI studies has furthermore suggested long-range
white matter diffusion abnormalities in individuals with
autism, especially in superior longitudinal and uncinate
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fasciculi as well as the corpus callosum, suggesting altera-
tions in long-distance frontal structural connectivity in this
condition (Aoki, et al., 2013). Post mortem studies have sup-
ported these findings, showing possible histological under-
pinnings of atypical connectivity in ASD (Hutsler and
Zhang, 2010; Raymond, et al., 1996; Zikopoulos and Bar-
bas, 2010; Zikopoulos and Barbas, 2013). In a recent study,
Zikopoulos and Barbas could show fewer large myelinated
axons in the deep white matter, which mediate long-range
connectivity, in ASD than in controls below regions corre-
sponding to the anterior cingulate cortex and mPFC. On
the other hand, the authors reported a concomitant
increase in thin myelinated axons in the superficial white
matter below the same regions, indicative of excess axonal
branching and local hyper-connectivity (Zikopoulos and
Barbas, 2010).

Previous research has reported abnormal trajectories of
cortical structural development in ASD (Raznahan, et al.,
2010; Scheel, et al., 2011; Schumann, et al., 2010; Wallace,
et al., 2010). In this work, on the other hand, only trends
for an age-dependent modulation of cortical thickness
changes were observed. In addition to differences in sam-
ple characteristics between our work and previous studies
(with differences in the mean age and/or age range), a
reduced sensitivity in the current work may have resulted
from the absence of an age-stratified sampling scheme
when pooling data across centers.

By studying the publically accessible ABIDE dataset, we
had the opportunity to investigate structural brain abnor-
malities in a large, multisite sample of individuals with
ASD. Although no direct behavioral markers of social cog-
nition were available in this open access repository, the
co-occurrence of thickness increases and covariance dis-
ruptions in mPFC is remarkable, given the key role of this
region in socio-cognitive functions related to ToM (Frith
and Frith, 2006; Kana, et al., 2009). Ultimately, our struc-
tural MRI findings appear to support theories that
hypothesize structural and connectional anomalies in pre-
frontal and/or parietal midline regions in ASD that may,
likely, relate to atypical social cognition in this condition.
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