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Abstract

In colorectal cancers (CRCs) with tumour mismatch repair (MMR) deficiency, genes involved in 

the host immune response that contain microsatellites in their coding regions, including beta-2-

microglobulin (B2M), can acquire mutations that may alter the immune response, tumour 

progression and prognosis. We screened the coding microsatellites within B2M for somatic 

mutations in MMR-deficient CRCs and adenomas to determine associations with tumour subtypes, 

clinicopathological features and survival. Incident MMR-deficient CRCs from Australasian 

Colorectal Cancer Family Registry (ACCFR) and the Melbourne Collaborative Cohort Study 

participants (n = 144) and 63 adenomas from 41 MMR gene mutation carriers from the ACCFR 

were screened for somatic mutations within five coding microsatellites of B2M. Hazard ratios 

(HR) and 95% confidence intervals (CI) for overall survival by B2M mutation status were 

estimated using Cox regression, adjusting for age at CRC diagnosis, sex, AJCC stage and grade. 

B2M mutations occurred in 30 (20.8%) of the 144 MMR-deficient CRCs (29% of the MLH1-

methylated, 17% of the Lynch syndrome and 9% of the suspected Lynch CRCs). No B2M 
mutations were identified in the 63 adenomas tested. B2M mutations differed by site, stage, grade 

and lymphocytic infiltration although none reached statistical significance (p > 0.05). The HR for 

overall survival for B2M mutated CRC was 0.65 (95% CI 0.29–1.48) compared with B2M wild-

type. We observed differences in B2M mutation status in MMR-deficient CRC by tumour 

subtypes, site, stage, grade, immune infiltrate and for overall survival that warrant further 

investigation in larger studies before B2M mutation status can be considered to have clinical 

utility.
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Introduction

Colorectal cancer (CRC) is a leading cause of global morbidity and mortality [1, 2]. Loss of 

DNA mismatch repair function (MMR-deficiency), identified by high levels of microsatellite 

instability (MSI) or loss of MMR protein expression, predicts higher survival from CRC [3, 

4]. Lynch syndrome is an inherited form of MMR-deficiency that increases risk of CRC, and 

is caused by a germline mutation in one of the DNA MMR genes (MLH1, MSH2, MSH6 or 

PMS2). Additionally, mutations in EPCAM, a gene upstream of MSH2, have been shown to 

disrupt MSH2 expression and predispose to MSH2-deficient cancers [5]. Non-inherited 

explanations of MMR-deficiency in CRC include somatic hypermethylation of the MLH1 
gene promoter (MLH1-methylated) [6] and double somatic MMR gene mutations [7–9]. The 

suspected Lynch syndrome group comprises those CRCs with an unidentified cause for their 

tumour MMR-deficiency [10]. Together, these clinically relevant subgroups of MMR-

deficient CRC comprise 10–15% of all CRCs [11–13].
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MMR-deficient CRCs accumulate high numbers of insertion/deletion somatic mutations 

(replication errors) at mono- or di-nucleotide repetitive DNA sequences (micro-satellites), 

and are therefore said to be MSI-High. Micro-satellite sequences are more prevalent in 

intronic and intergenic regions, although relatively short microsatellite sequences do occur 

within the coding sequence of some genes. When somatic mutations occur within these 

coding microsatellites (cMS) during tumourigenesis, altered or truncated protein products 

can be generated that are recognised by the immune system (neoantigens), thus MMR-

deficient tumours can be highly immunogenic [14], and vulnerable to the natural protection 

afforded by the immune system. On the other hand, cMS mutations can impair the immune 

system when the gene containing a mutated cMS is part of an immune response pathway 

[14].

Beta-2-microglobulin (B2M) functions as a component of the human leukocyte antigen 

(HLA) class I complex, which presents peptides to cytotoxic CD8 + T-cells for cell lysis. 

B2M contains five short coding microsatellite sequences which have been previously found 

to acquire somatic mutations in approximately 25% of MMR-deficient CRCs [15–17], but 

rarely in MMR-proficient tumours [18]. It is hypothesised that when B2M is somatically 

mutated, tumours have a diminished ability to present antigens through the HLA class I 

complex, which allows tumours to evade cytotoxic T-cells [18]. Despite this, tumours with 

B2M somatic mutations have been associated with reduced metastases and disease relapse 

[16, 17]. Previous studies investigating B2M and prognosis in MMR-deficient CRCs have 

reported conflicting findings [15, 17, 19] (see Supplementary Table 1), which may have been 

due to small sample sizes.

In this study, we screened a cohort of MMR-deficient CRCs (n = 144) and adenomas (n = 

63) (MMR-deficient adenomas (n = 42)/MMR-proficient adenomas (n = 21)), obtained from 

the Australian Colorectal Cancer Family Registry (ACCFR) [20] and the Melbourne 

Collaborative Cohort Study (MCCS) [21], for somatic mutations within the cMS of B2M. 

We aimed to determine: (i) the prevalence of B2M somatic mutations across three different 

clinically-relevant subgroups of MMR-deficient CRCs (Lynch syndrome, MLH1-

methylated, and suspected Lynch syndrome); (ii) the association of B2M somatic mutations 

with tumour histopathological features and (iii) whether B2M somatic mutation status is 

associated with overall survival.

Methods

Study sample

Participants recruited to the MCCS [20] and the population-based recruitment arm of the 

ACCFR [21] with an incident CRC were assessed for tumour MMR-deficiency by 

immunohistochemistry for loss of MMR protein expression and MSI analysis as previously 

described [13, 22]. One hundred and forty four primary tumours from 144 participants had 

DNA available for somatic mutation screening across both studies. Subsequent tumour and 

germline characterisation of these MMR-deficient CRC cases was performed to identify 

tumours caused by: (1) MLH1 methylation; (2) a germline MMR gene mutation (Lynch 

syndrome) and (3) those with suspected Lynch syndrome; as previously reported [13]. In 

addition, 63 adenomas (42 MMR-deficient adenomatous polyps and 21 MMR-proficient 
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adenomatous polyps), a subset of which have been previously reported [23], obtained from 

41 ACCFR participants recruited from family cancer clinics across Australia [21] and who 

were proven MMR gene mutation carriers, were also screened for B2M mutations.

MMR-deficient CRCs underwent a standardised histopathology review, by a specialist in 

gastrointestinal pathology, for tumour site, histological type (adenocarcinoma, mucinous 

carcinoma, signet ring cell carcinoma), histological grade (for adenocarcinoma only), 

tumour margin, peritumoural lymphocytes, Crohn’s-like lymphocytic reaction and tumour-

infiltrating lymphocytes (TILs); as previously described [13, 24]. Tumours from the ileo-

caecal junction through the caecum, ascending colon, hepatic flexure, and transverse colon 

were grouped as right-sided (proximal). Tumours from the splenic flexure, descending, 

sigmoid colon and recto-sigmoid junction and rectum were classified as left-sided (distal). 

The American Joint Committee on Cancer (AJCC) staging system was used to categorise 

stage: stage I (T1–2, N0, M0), stage II (T3 –4, N0, M0), stage III (Tany, N1–2, M0) and stage IV 

(Tany, Nany, M1).

B2M somatic mutation detection

Cancerous and adenomatous regions were marked by pathologist (CR) on each H&E slide 

and regions macro-dissected from unstained sections of formalin-fixed paraffin-embedded 

tissue to enrich for >70% tumor cellularity. Genomic DNA was extracted from the 

macrodissected CRC and adenoma tissue using QIAamp DNA Micro Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. DNA was quantified using Qubit HS 

kit (ThermoFisher Scientific). Five coding microsatellites within B2M (NM_004048: c.37–

44, c.188–195, c.200–204, c.272–276 and c.281–285) were assessed for frameshift 

mutations using standard Sanger sequencing protocols. Briefly, tumour DNA was PCR 

amplified across exons 1 and 2; the resultant products were then purified and sequenced to 

capture all five coding microsatellites (primers available on request). A threshold of 15% 

mutant allele fraction was used based on the chromatogram traces from CRCs and level of 

background noise. A subset CRCs and adenomas for each amplicon (n = 30; 14.5%) were 

repeated to confirm B2M mutation status with 100% concordance.

Statistical analysis

Frequency distributions of B2M status by demographic and tumour-related factors were 

calculated. For the survival analysis, observation time started from the date of CRC 

diagnosis and ended at the date of death from any cause or censored at last known data alive 

for ACCFR and 31st August 2015 for MCCS. We derived Kaplan–Meier survival curves and 

mortality rates (per 1000 person-years). We used Cox regression [25] with the time axis 

defined as ‘time since CRC diagnosis’ to estimate hazard ratios (HR) and 95% confidence 

intervals (CI) for overall survival by B2M mutation status. Multivariable models were 

adjusted for age at CRC diagnosis (categorical: <40, 40–49, 50–59, 60–69, ≥70 years), sex, 

AJCC stage (categorical: stage I, stage II, stage III, stage IV) and grade (categorical: low-

well/moderately differentiated, high-poorly differentiated). We examined each model for 

outliers and influential points and used Schoenfeld residuals to assess the proportional 

hazard assumptions; there was no evidence that they were violated. All statistical analyses 

were performed using Stata 14.1 (StataCorp, College Station, TX).
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Results

Assessment of B2M mutation status was performed for 144 MMR-deficient CRCs from the 

ACCFR and MCCS resources and for 63 adenomas from MMR gene mutation carriers from 

the ACCFR. The characteristics of the participants, CRCs and adenomas are shown in Table 

1. Of the five coding microsatellites tested in the B2M gene, at least one somatic mutation 

was observed in 30 out of 144 (20.8%) of the CRCs. No mutation was identified in any of 

the 63 adenomas tested. The frequency of somatic mutations across each of the five coding 

microsatellites is shown in Table 2. The most common somatic mutation was the c.

43_44delCT mutation in exon 1 (16/35; 45.7%; Fig. 1). Five CRCs (5/144; 3.5%) showed 

two distinct mutations within B2M. None of the samples containing a frameshift mutation 

had sequencing profiles suggestive of loss of heterozygosity of the wildtype allele.

Tumours demonstrating loss of MLH1/PMS2 protein expression were enriched for B2M 
somatic mutations compared with CRCs showing loss of MSH2/MSH6 expression (p = 

0.08). B2M mutations occurred in 29.0% of the MLH1 methylated CRCs, 17.1% of the 

Lynch syndrome CRCs and 8.8% of the suspected Lynch CRCs, respectively (p = 0.1) 

(Table 3). B2M mutations occurred predominately in AJCC stage II and stage III tumours, 

26.4 and 17.2%, respectively (Table 3). B2M mutations were higher in poorly differentiated 

CRCs and right-sided CRCs compared with B2M wild-type CRCs (Table 3). TILs and 

Crohn’s-like lymphocytes were also increased in B2M mutated CRCs while peritumoural 

lymphocytes were decreased, however, none of these differences in tumour features or 

immune infiltrate reached statistical significance (Table 3).

The adjusted HR for overall survival for individuals with B2M mutated CRC compared with 

those with B2M wildtype CRC (5-year survival: 90% [95% CI 72–97%] versus 82% [95% 

CI 74–88%], respectively) was 0.65 for B2M mutated CRC ([95% CI 0.29–1.48]; p = 0.3) 

(Table 4; Fig. 2). The HR did not change when we repeated the analysis excluding those 

with unknown AJCC stage or grade (HRadjusted, 0.59 [95% CI 0.25–1.40]; Supplementary 

Table 2).

Discussion

The immune system plays a key role in tumour initiation, evolution and progression, 

including in CRC, where the presence of a strong T-cell response is associated with higher 

patient survival [26]. MMR-deficiency leads to genome-wide accumulation of frameshift 

mutations in microsatellite repeats, and when they occur in coding regions, can result in 

frameshift mutation-derived peptides (FSP) which act as highly immunogenic neoantigens 

eliciting T-cell responses [27, 28]. This has been shown specifically for FSPs derived from 

TGFBR2, OGT and CASP5 [27, 29, 30]. These FSP-specific T-cell responses are detectable 

in peripheral blood from Lynch syndrome mutation carriers, even if they have no previous 

history of any clinically apparent neoplastic lesion [31]. As such, the potential to vaccinate 

with FSP antigens as a treatment of Lynch syndrome-associated cancers is being explored 

[32]. Furthermore, this FSP-driven immune response in MMR-deficient CRCs has been 

successfully exploited to develop immune checkpoint blockade therapy with dramatic effects 

[33, 34]. B2M encodes a component of the HLA Class I antigen presentation complex, and 
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as such somatic mutations within B2M may lead to impaired antigen presentation, immune 

evasion and immunotherapy resistance [35]; conversely, high somatic mutation rates in 

B2M, due to MMR-deficiency, can result in the production of immunogenic neoantigens 

which may be potential targets for immunotherapy [14]. Thus, we investigated somatic 

mutations in B2M and relationship with clinicopathological features and survival from 

MMR-deficient CRC.

We identified somatic cMS mutations in 20.8% of the MMR-deficient CRCs tested, whereas 

none were identified in the 63 adenomas from the MMR gene mutation carriers tested 

(including 42 MMR-deficient adenomas). Previous studies of somatic B2M mutations in 

MMR-deficient CRCs have reported frequencies of 42.7% [15], 29.4% [17], 27.8% [16] and 

19.4% [19]. Using similar mutation detection techniques, both our study and that of Kloor et 

al. [16] identified c.43_44delCT as being the most frequently occurring B2M mutation in 

MMR-deficient CRCs and that a small subset of MMR-deficient tumours had multiple B2M 
somatic mutations. In our study, the frequency of B2M mutations was highest in MLH1 
methylated CRCs (29.0%) compared with Lynch syndrome CRCs (17.1%) and suspected 

Lynch CRCs (8.8%). In contrast, Kloor et al. [16] reported B2M mutations to be more 

frequent in MLH1 and MSH2 (36%) germline mutation carriers compared with those 

without germline mutations (15.4%), although it is unknown if this group of non-carriers 

was comprised solely of MLH1 methylated MMR-deficient CRCs or included suspected 

Lynch syndrome MMR-deficient CRCs. These inconsistent results suggest that acquired 

B2M mutations may be independent of the underlying mechanism causing MMR-deficiency.

The absence of B2M somatic mutations in the 63 adenomas from the MMR gene mutation 

carriers suggests that B2M mutations do not occur early in tumourigenesis even if MMR-

deficiency is present in these lesions. This is further supported by our finding that only 4.2% 

of stage I tumours had B2M mutations (a higher proportion was seen for stage-II CRCs), 

suggesting that these cMS mutations may have been acquired later during tumour 

development. The lack of stage IV CRCs in our study is consistent with the existing 

literature, which indicates that the MMR-deficient subgroup of CRC metastasises less 

frequently than MMR-proficient CRCs [36]. As such, we were limited in our ability to draw 

conclusions regarding B2M mutations and metastatic MMR-deficient CRC. We could not 

replicate the findings of Kloor et al. [16], who found 11.8% of the 17 Lynch syndrome 

adenomas they tested had cMS B2M somatic mutations and that the frequency of B2M 
mutations increased with increasing localised stage. Koelzer et al. [19], described a higher 

B2M mutation frequency in lower staged tumours (p = 0.035). Further understanding of the 

timing of these key somatic mutations may allow opportunities for prevention or early 

treatment of cancers, especially for MMR-deficient CRCs.

Analogous to our study, the studies by Yamamoto et al. [15], Kloor et al. [16], Tikidzhieva et 

al. [17] or Koelzer et al. [19], did not find differences in distribution of B2M mutations by 

age and gender. For the analysis of tumour features, we observed that B2M mutations 

occurred in 1 in 4 tumours with a higher histological grade (i.e. poorer differentiation) and 

approximately 1 in 6 tumours of lower histological grade. Although this difference was not 

statistically significant (p = 0.4) it was consistent with the findings by Koelzer et al. [19] 

which did report this finding as a statistically significant association. Yamamoto et al. [15] 
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found no association between histological grade and B2M mutation status. B2M mutations 

are thought to alter the immune response to tumours [14], with a previous study reporting 

fewer TILs in B2M mutated CRCs [15]. We observed an increase in Crohn’s like 

lymphocytes and a decrease in peritumoural lymphocytes in B2M mutated CRCs, however, 

neither of these differences reached statistical significance (p = 0.1).

Previous studies of B2M mutations and survival from cancer have reported conflicting 

results (Supplementary Table 1). B2M mutations have been associated with poorer survival 

in patients with MMR-deficient CRC (p < 0.01) [15], however, more recent studies have 

suggested B2M somatic mutations [17] or loss of B2M protein expression [19] result in 

more favourable patient outcomes (absence of disease relapse, distant metastasis or tumour-

related deaths). In our study, the confidence intervals from this analysis were wide and 

overlapping and we would not conclude that survival differed by B2M mutation status.

To the best of our knowledge, the present body of work represents the largest study profiling 

B2M cMS somatic mutations in MMR-deficient CRC and adenomas to date. Despite this, 

many of our estimates of associations had wide confidence intervals and a larger sample size 

would have improved the statistical power to identify any existing associations between 

B2M mutations and clinicopathological features or survival from CRC. An additional 

limitation is that we did not confirm whether B2M somatic mutations translated to aberrant 

expression of B2M protein and, therefore, comparisons to findings of Koelzer et al. [19] may 

not be appropriate. Furthermore, we assessed lymphocytic infiltration on a crude and binary 

level, and did not differentiate between various T-cell markers, such as CD8+, CD3+, or 

FOXP3+ which are known to differ even within MMR-deficient CRC [37, 38]. Recently, 

FOXP3+ has been shown to differ markedly in expression levels within the normal colonic 

mucosa adjacent to the CRC based on B2M mutation status [39]. The inclusion of additional 

genes with cMS that are associated with MHC class I and class II function including TAP1, 
TAP2, RFX5 and CIITA, may improve the prediction of survival for this subgroup of CRCs 

[14].

Conclusion

In summary, we observed differences in the distribution of B2M cMS somatic mutations by 

pattern of MMR protein loss of expression by IHC, MMR-deficiency subtype, site, grade, 

stage and the presence of peritumoural lymphocytes or Crohn’s like lymphocytes, however 

these differences did not reach statistical significance. Also, while people with B2M mutated 

CRC had better overall survival, our analysis was underpowered to conclude that survival 

differed significantly by B2M mutation status. Larger studies are needed to resolve some of 

the current inconsistencies with the findings from previous studies before B2M mutation 

status can be considered to have clinical utility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Example sequencing profiles from B2M exon 1. A Wild type sequence chromatogram 

spanning the 8 bp dinucleotide cMS in exon 1. B Example of the most common mutation 

identified in our cohort c.43_44delCT. C Two samples gave sequencing traces suggestive of 

multiple mutations (i.e. triplicate reads), which could most simply be explained by a 

compound mutation of c.43_44delCT and c.45_48delTTCT

Clendenning et al. Page 11

Fam Cancer. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Kaplan–Meier curve for overall survival for B2M mutation status
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Table 1

Characteristics of study participants with MMR-deficient CRCs and adenomas

Characteristic Total 144 (%)

Study

 ACCFR 63 (43.8)

 MCCS 81 (56.2)

Age at diagnosis (years)

 <50 51 (35.4)

 ≥50 93 (64.6)

 Median (range) 62 (18–83)

Sex

 Male 68 (47.2)

 Female 76 (52.8)

B2M mutation status

 B2M mutant 30 (20.8)

 B2M wildtype 114 (79.2)

AJCC stage

 Stage I + II 111 (77.1)

 Stage III + IV 30 (20.8)

 Unknown 3 (2.1)

Histological grade

 Moderate/well differentiated 89 (61.8)

 Poorly differentiated 49 (34.0)

 Unknown 6 (4.2)

MMR IHC pattern of loss

 MLH1/PMS2 + MLH1/PMS2&MSH6 101 (70.1)

 MSH2/MSH6 18 (12.5)

 Othera 25 (17.4)

MMR-deficient subtype

 MMR gene mutation carrier/Lynch syndrome 41 (28.5)

 Somatic MLH1 methylation 69 (47.9)

 Suspected Lynch syndromeb 34 (23.6)

CRC site

 Right 108 (75.0)

 Left/rectum 31 (21.5)

 Unknown 5 (3.5)

Histological type

 Mucinous 37 (25.7)

 Adenocarcinoma + signet + undifferentiated 103 (71.5)

 Unknown 4 (2.8)

Tumour infiltrating lymphocytes

 No 36 (25.0)
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Characteristic Total 144 (%)

 Yes 101 (70.1)

 Unknown 7 (4.9)

Peritumoural lymphocytes

 No 60 (41.7)

 Yes 74 (51.4)

 Unknown 10 (6.9)

Crohn’s like lymphocytes

 No 63 (43.8)

 Yes 69 (47.9)

 Unknown 12 (8.3)

Adenomatous polyps 63 (%)

Age at diagnosis median in years (range) 43 [18–72]

Sex

 Male 33 (52.4)

 Female 30 (47.6)

MMR IHC pattern of loss

 MLH1/PMS2 loss 24 (38)

 MSH2/MSH6 loss 16 (25)

 PMS2 only loss 1 (2)

 Normal expression 22 (34)

AJCC American Joint Committee on Cancer, MMR mismatch repair, CRC colorectal cancer

a
Other MMR patterns of loss include solitary MSH6 (n = 4) and solitary PMS2 (n = 1),

b
Suspected Lynch syndrome = no germline mutation identified and no evidence of somatic hypermethylation of the MLH1 promoter
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Table 2

The frequency of B2M somatic mutations across the five cMS tested in the 144 MMR-deficient CRCs

B2M mutations total 35a

c.43_44delCT p.(Leu15Phefs*41) 16 (46%)

c.276delC p.(Thr93Leufs*10) 6 (17%)

c.276dupC p.(Thr93Hisfs*2) 4 (11%)

c.204delA p.(Val69Trpfs*34) 4 (11%)

c.45_48delTTCT p.(Ser16Alafs*27) 2 (6%)

c.285delA p.(Asp97Metfs*7) 2 (6%)

c.222_226delGTCTT p.(Trp80Cysfs*8) 1 (3%)

a
Five tumours contained two separate mutations
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Table 3

Analysis of B2M somatic mutations by tumour histopathological characteristics

Characteristic

B2M status

B2M mutants 30 (20.8%) B2M wildtype 114 (79.2%) p value

AJCC stage

 Stage I 1 (4.2) 23 (95.8) 0.6a

 Stage II 23 (26.4) 64 (73.6)

 Stage III 5 (17.2) 24 (82.8)

 Stage IV 0 1 (100)

 Unknown 1 (33.3) 2 (66.7)

Histological grade

 Moderate/well differentiated 16 (18.0) 73 (82.0) 0.4

 Poorly differentiated 12 (24.5) 37 (75.5)

 Unknown 2 (33.3) 4 (66.7)

MMR IHC pattern of loss

 MLH1/PMS2 + MLH1/PMS2&MSH6 24 (23.8) 77 (76.2) 0.08

 MSH2/MSH6 1 (5.6) 17 (94.4)

 Other 5 (20.0) 20 (80.0)

MMR-deficient subtype

 MMR gene mutation carrier/Lynch syndrome 7 (17.1) 34 (82.9) 0.1

 Somatic MLH1 methylation 20 (29.0) 49 (71.0)

 Suspected Lynch 3 (8.8) 31 (91.2)

CRC site

 Right 23 (21.3) 85 (78.7) 0.5

 Left/rectum 5 (16.1) 26 (83.9)

 Unknown 2 (40.0) 3 (60.0)

Histological type

 Mucinous 7 (18.9) 30 (81.1) 0.8

 Adenocarcinoma + signet + undifferentiated 21 (20.4) 82 (79.6)

 Unknown 2 (50.0) 2 (50.0)

Tumour infiltrating lymphocytes

 No 6 (16.7) 30 (83.3) 0.6

 Yes 21 (20.8) 80 (79.2)

 Unknown 3 (42.9) 4 (57.1)

Peritumoural lymphocytes

 No 15 (25.0) 45 (75.0) 0.1

 Yes 11 (14.9) 63 (85.1)

 Unknown 4 (40.0) 6 (60.0)

Crohn’s like lymphocytes

 No 9 (14.3) 54 (85.7) 0.1

 Yes 17 (24.6) 52 (75.4)

 Unknown 4 (33.3) 8 (66.7)
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AJCC American Joint Committee on Cancer, MMR mismatch repair, CRC colorectal cancer; Missing information for that characteristic was not 
available, NA not applicable

a
Given stage IV tumours have insufficient numbers (no B2M mutations and only 1 B2M wild-type), we have combined stage I/II and stage III/IV 

for analysis
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