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Antipsychotic drugs, including both typical such as haloperidol and atypical such as clozapine, 

remain the current standard for schizophrenia treatment. These agents are relatively effective in 

treating hallucinations and delusions. However, cognitive deficits are at present essentially either 

persistent or exacerbated following chronic antipsychotic drug exposure. This underlines the need 

of new therapeutic approaches to improve cognition in treated schizophrenia patients. Our 

previous findings suggested that upregulation of histone deacetylase 2 (HDAC2) expression upon 

chronic antipsychotic treatment may lead to negative effects on cognition and cortical synaptic 

structure. Here we tested different phenotypes of psychosis, synaptic plasticity, cognition and 

antipsychotic drug action in HDAC2 conditional knockout (HDAC2-cKO) mice and controls. 

Conditional depletion of HDAC2 function in glutamatergic pyramidal neurons led to a protective 

phenotype against behavior models induced by psychedelic and dissociative drugs, such as DOI 

and MK801, respectively. Immunoreactivity toward synaptophysin, which labels presynaptic 

terminals of functional synapses, was decreased in the frontal cortex of control mice chronically 

treated with clozapine - an opposite effect occurred in HDAC2-cKO mice. Chronic treatment with 

the class I and class II HDAC inhibitor SAHA prevented via HDAC2 the disruptive effects of 

MK801 on recognition memory. Additionally, chronic SAHA treatment affected transcription of 

numerous plasticity-related genes in the frontal cortex of control mice, an effect that was not 

observed in HDAC2-cKO animals. Together, these findings suggest that HDAC2 may represent a 

novel target to improve synaptic plasticity and cognition in treated schizophrenia patients.
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INTRODUCTION

Schizophrenia is a severe brain disorder that usually produces a lifetime of disability (Sawa 

and Snyder 2002; van Os and Kapur 2009). The symptoms of schizophrenia can be divided 

into three broad categories: psychotic or positive symptoms (e.g., hallucinations and 

delusions), negative symptoms (e.g., loss or decrease in the ability to initiate plans, express 

emotion, or find pleasure) and cognitive symptoms (e.g., confused and disordered speech, 

poor executive functioning, trouble with logical thinking, and difficulties to pay attention). 

First generation or typical (e.g., chlorpromazine and haloperidol) and second generation or 

atypical (e.g., clozapine and risperidone) antipsychotics remain the current standard for 

psychotic disorders including schizophrenia (Lieberman et al., 2008; Miyamoto et al., 2012; 

Meltzer 2013). In some patients with schizophrenia, typical and atypical antipsychotic drugs 

produce complete remission of psychotic symptoms. However, antipsychotic drugs are 

currently ineffective against cognitive deficits (Ibrahim and Tamminga 2012; Millan et al., 

2012), and hence treated schizophrenia patients present either small improvement or even 

deterioration in several cognitive domains, including working memory and executive 

function (Goldberg et al., 1993; Fervaha et al., 2015; Nielsen et al., 2015; Husa et al., 2016).

These limitations of antipsychotic treatment are further highlighted by recent clinical trials 

in which it was found that three-fourths of schizophrenia patients stop using antipsychotic 
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medication within 18 months of starting therapy. The reasons given for discontinuing 

prescribed drugs included reduced efficacy, poor tolerability, and severe side effects 

(Lieberman et al., 2005; Liu-Seifert et al., 2005; Snyder and Murphy 2008). Thus, adherence 

to an antipsychotic drug regime is currently a significant issue in the clinical management of 

this psychiatric condition. Furthermore, although recent genome-wide association studies 

(GWAS) show convincing evidence that alterations caused by interactions of several genes 

involved in signaling, synaptic plasticity and neurodevelopmental processes contribute 

substantially to the disorder (Consortium. 2014; Fromer et al., 2014; Purcell et al., 2014; 

Sekar et al., 2016), the primary target of currently used antipsychotic medications is 

restricted to monoaminergic neurotransmitter systems. The current antipsychotic arsenal in 

the clinic can be reduced to two drug-classes based on their pharmacological profile: while 

both typical and atypical antipsychotics target the dopaminergic system, the differentiating 

feature is a more prominent antagonism/inverse agonism at the serotonin 5-HT2A receptor in 

the mechanism of action of the latter (Lieberman et al., 2008; Miyamoto et al., 2012; 

Meltzer 2013). The need for novel and more efficient therapeutic targets to address the 

complexity of schizophrenia and its treatment is demonstrated by the poor mechanistic 

repertoire of current antipsychotics and their limited clinical performance.

Histone deacetylases (HDACs) are critical elements in the modulation of chromatin structure 

(Abel and Zukin 2008; Graff and Tsai 2013; Ibi and Gonzalez-Maeso 2015). They remove 

acetyl groups from histone tails, an epigenetic modification that correlates with 

transcriptional repression. Preclinical assays in rodents suggest that both peripheral and local 

administration of HDAC inhibitors in brain regions, such as frontal cortex and nucleus 

accumbens, affect behavioral responses in paradigms of memory function, depression, and 

sensory gating (Covington et al., 2009; Guan et al., 2009; Graff et al., 2012; Kurita et al., 

2012; Morris et al., 2013; Graff et al., 2014). Clinical studies also demonstrate that 

valproate, a drug that inhibits HDACs among many other actions (Nalivaeva et al., 2009), 

improves the clinical efficacy of antipsychotic drugs, particularly in aspects related to 

sensorimotor and cognitive deficits (Casey et al., 2003; Citrome et al., 2004; Kelly et al., 

2006; Suzuki et al., 2009). However, this clinical improvement was not observed in certain 

clinical trials (Casey et al., 2009; Meltzer et al., 2011).

Our previous work showed that chronic treatment with atypical antipsychotic drugs, such as 

clozapine and risperidone, but not with the typical antipsychotic haloperidol, targets a non-

canonical pathway that leads to up-regulation of HDAC2 both in mice and in postmortem 

human frontal cortex tissue samples (Kurita et al., 2012; Kurita et al., 2013b; Ibi et al., 

2017). Since it has been shown before that HDAC2 negatively regulates transcription of 

genes involved in synaptic plasticity and memory (Guan et al., 2009; Kurita et al., 2012; Ibi 

et al., 2017), we previously proposed that the above-mentioned up-regulation of frontal 

cortex HDAC2 might be responsible for at least part of the negative effects of chronic 

atypical antipsychotic treatment on synaptic plasticity and cognitive processes. We also 

suggested that inhibition of this pathway may represent a new approach to improve 

schizophrenia treatment (Kurita et al., 2013a; Ibi et al., 2017).

In order to further test the role of HDAC2 in phenotypes related to psychosis and 

antipsychotic drug action, the current study focused on three main goals. The first goal was 
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to further validate the functional role of HDAC2 in the negative effects of chronic clozapine 

treatment on synaptic plasticity. To do so, we tested synaptophysin as a presynaptic marker 

of active synapses (Calhoun et al., 1996; Fischer et al., 2007) in mice with genetic deletion 

of HDAC2 (HDAC2 conditional knockout, cKO, mice). The second goal was to test 

behavior models of psychosis and memory in HDAC2-cKO mice and controls. Specifically, 

we aimed to investigate paradigms that included head-twitch behavior, which is induced by 

hallucinogenic 5-HT2A receptor agonists such as lysergic acid diethylamide (LSD) and DOI 

(Hanks and Gonzalez-Maeso 2013), and hyperlocomotor activity induced by the dissociative 

drug MK801 (a non-competitive NMDA receptor antagonist) (Moreno and Gonzalez-Maeso 

2013); along with a behavior model of recognition memory. The third goal aimed to 

examine whether HDAC2 is necessary for the effects chronic treatment with the HDAC 

inhibitor SAHA, a selective inhibitor of class I and class II HDACs (Ibi and Gonzalez-

Maeso 2015), on antipsychotic-related behaviors. We also employed microarray analysis 

protocols to compare the effect of chronic SAHA treatment on gene expression profiles in 

the frontal cortex of HDAC2-cKO and control mice.

EXPERIMENTAL PROCEDURES

Materials and Drug Administration

1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and (5R,10S)-(+)-5-methyl-10,11-

dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine, (+)-

MK801) were purchased from Sigma-Aldrich. Clozapine and haloperidol were obtained 

from Tocris Cookson Inc. Suberoylanilide hydroxamic acid (SAHA; vorinostat) was 

purchased from Cayman Chemical. The injected doses (i.p.) were DOI, 1.0 mg/kg; 

clozapine, 10 mg/kg; haloperidol, 1 mg/kg; and SAHA, 20 mg/kg; unless otherwise 

indicated. DOI was dissolved in saline. MK801, SAHA and haloperidol were injected after 

suspension in minimal amount of DMSO, and made up to volume with saline. Clozapine 

was dissolved in DMSO supplemented with a minimal amount of acetic acid and suspended 

in saline. For chronic treatment with clozapine or haloperidol, or vehicle, mice were injected 

(once daily for 21 days), as assays were carried out one day after the last injection. To test 

the effect of chronic SAHA treatment, or vehicle, on frontal cortex gene expression, mice 

were injected (once daily for 21 days), and frontal cortex tissue samples were collected one 

day after the last injection. To test the effect of chronic SAHA treatment, or vehicle, on 

behavior, mice were injected (once daily for 10 days), and novel object recognition was 

assayed one day after the last injection. Doses and route of administration were selected 

based on previous findings (Kurita et al., 2012; Ibi et al., 2017).

Animals

Experiments were performed on adult (10–20 weeks old) male C57BL/6 mice. Animals 

were housed at 12 h light/dark cycle at 23°C with food and water ad libitum, except during 

behavioral testing. Experiments were conducted in accord with NIH guidelines, and were 

approved by the Virginia Commonwealth University Animal Care and Use Committee. All 

efforts were made to minimize animal suffering and the number of animals used. Behavioral 
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testing took place between 9:00 a.m. and 6:00 p.m. (i.e., during the light phase of the light/

dark cycle).

Our previous findings show that homozygosity of the Hdac2-null allele (The Jackson 

Laboratory stock number: 022625) results in either embryonic lethality of partial lethality 

during the first few days postnatal as a result of proliferation defects and impaired 

development (Ibi et al., 2017). These findings are consistent with some (Montgomery et al., 

2007; Morris et al., 2013), but not all (Guan et al., 2009), of the prior descriptions of global 

Hdac2 gene deletion. We therefore deleted HDAC2 function specifically in forebrain 

glutamatergic pyramidal neurons. This particular brain network and neural population was 

selected because our previous findings demonstrate that cortical pyramidal HDAC2 plays a 

fundamental role in synaptic structure and synaptic plasticity, as well as in certain behavioral 

paradigms that model perception and cognition (Kurita et al., 2012; Kurita et al., 2013b; Ibi 

et al., 2017). To delete HDAC2 function in this particular population of neurons, we bred 

homozygous HDAC2loxP/loxP mice (C57BL/6 background) containing exons 2 through 4 of 

the Hdac2 gene flanked by loxP sites (Montgomery et al., 2007) to the CaMKUα-Cre 
transgenic line (C57BL/6 background) in which the CaMKIlα promoter precedes Cre 

recombinase (Cabungcal et al., 2013). The genotype denoted as HDAC2 conditional knock-

out (HDAC2-cKO) corresponds to HDAC2loxP/loxP:CaMKIIα-Cre+/− born at near expected 

Mendelian ratios from the outlined bred. The selective deletion of Hdac2 in CaMKIΙα-

expressing neurons was validated elsewhere (Ibi et al., 2017).

Control group denotes HDAC2loxP/loxP .CaMKUα-Cre−/− genotype for experiments 

involving behavioral testing, and wild-type genotype for immunofluorescence and 

mRNAexpression assays. Pilot assayed demonstrated that HDAC2loxp/loxp:CaMK7/a-Cre−/− 

mice show normal laminar distribution in the cerebral cortex measured by Nissl staining, as 

compared to wild-type mice (data not shown). Similarly, pilot assays demonstrated that 

HDAC2loxP/loxP:CaMKIIa-Cre−/− mice do not show alterations in paradigms such as 

exploratory behavior and novel object recognition test, as compared to wild-type mice (data 

not shown).

For immunoblot, immunohistochemistry, microarray and quantitative real-time PCR assays, 

the day of the experiment mice were sacrificed by cervical dislocation, and bilateral frontal 

cortex (bregma 1.90 to 1.40 mm) was dissected and frozen at either −80°C or immediately 

processed. These assays were conducted on behaviorally naïve mice.

Immunoblotting

Western blot experiments were performed as previously reported with minor modifications 

(Ibi et al., 2017). Briefly, samples were loaded onto polyacrylamide gel (10–12%) and 

submitted to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After transfer to 

nitrocellulose membranes, blocking with 5% nonfat dry milk and 0.5% BSA in TBST buffer 

(Tris-buffered saline and 0.05 or 1 % Tween 20) was followed by overnight incubation in 

primary antibody at 4°C or one hour at room temperature. HDAC2 (mouse brain: Abeam 

ab32117, 1:1000), α-tubulin (mouse brain: Abeam ab7291, 1:3000) Incubation with the 

secondary antibody (1:5000–20000) coupled to peroxidase (Amersham Biosciences) was 
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performed at room temperature for 90 min, followed by repeated washing with TBST. 

Immunoreactive proteins were visualized with enhanced chemiluminiscence (Thermo 

Scientific) according to the manufacturer’s instructions. In each case, the blots were stripped 

and re-probed for a control protein to control loading amounts.

Quantitative immunofluorescence

Quantitative immunofluorescence assays were performed as previously reported with minor 

changes (Ibi et al., 2017). Briefly, the animals were deeply anesthetized with a mixture of 

ketamine (80 mg/kg) and xylazine (12 mg/kg) administered intraperitoneally. Transcardiac 

perfusion was performed with 10 ml PBS, followed by 30 ml of freshly prepared 4% 

paraformaldehyde (PFA) in PBS at room temperature. Brains were removed and immersion-

fixed in 4% PFA in PBS at 4°C (overnight), and stored at 30% sucrose in PBS at 4°C for at 

least 48 h. Brains were cut to 20 pm-thick coronal sections on a vibratome (Leica 

VT1000S). Free-floating sections were transferred to 24-well dishes containing PBS. 

Coronal brain sections were washed with PBS and incubated in 5% bovine serum albumin 

with 0.1% Triton X-100 in PBS for 60 min at room temperature. The sections were then 

incubated overnight in the same solution containing synaptophysin antibody (Sigma-Aldrich 

S5768, 1:1000). The sections were rinsed 5 times in PBS for 10 min and incubated for 1 h 

with 568 dye-conjugated goat anti-mouse antibody (Invitrogen, A11004, 1:2000). Following 

incubation, the sections were washed three times with PBS, after which immunostained 

sections were examined by epifluorescence microscopy (Carl Zeiss Axiolmager A1). 

Counterstaining with DAPI allowed the determination of cortical areas and laminar borders.

For the quantification of synaptophysin immunoreactivity, the mean signal intensity of 

synaptophysin immunoreactivity in the different layers of the somatosensory cortex (bregma 

0.70 to −2.10 mm) and regions of the hippocampus (DAPI) was measured in both 

hemispheres of treated mice and controls.

Head-twitch behavior

Head twitch behavioral response was performed as previously reported (Gonzalez-Maeso et 

al., 2007). Briefly, animals were injected (i.p.) with DOI or vehicle and, 15 min later, they 

were placed into the center of a Plexiglas cage (28 × 18 × 15 cm) for 30 min, during which 

they were videotaped at close range by a video camcorder positioned directly above the 

cage. Videotapes were scored for head-twitches by an experienced observer blind to 

genotype and treatment. Testing cages were thoroughly cleaned after each animal was tested 

to eliminate odor cues.

Locomotor activity

Locomotor activity was assessed using a computerized three-dimensional activity 

monitoring system (Omnitech) as previously reported (Ibi et al., 2017). Briefly, the system 

determines ambulatory activity based on frequency of interruptions to infrared beams 

traversing the x, y and z planes. For center time experiments, the proportion of time spent in 

the center of the arena was taken as a measure of anxiety (dimensions of the arena: 41 × 41 
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× 30 cm). For experiments limited to study locomotor activity, mice were monitored for 90 

min (dimensions of the arena: 27 × 27 × 21 cm). For modulation of locomotor activity upon 

drug administration, mice were left to habituate in the locomotor box for 90 min before 

injection of MK801, or vehicle, to exclude novelty of the environment as a confounding 

factor, and monitored for 2 h after injection. Locomotor activity was automatically 

determined from the interruptions of beams in the horizontal and vertical planes. 

Experiments were conducted in dim light.

Novel object recognition (NOR) test

Novel object recognition test was assessed as previously reported (Ibi et al., 2017). Briefly, 

mice were habituated for 10 min to the NOR arena for three consecutive days before the first 

NOR test. On the days of testing, mice were given a 10-min acquisition trial and a 5-min 

recognition trial, separated by a 24 h inter-trial return to their home cage. During the 

acquisition trial, the animals were allowed to explore two different objects (A and B). 

During the recognition trial, the animals explored a familiar object (A) from the acquisition 

trial and a novel object (C). Behavior was recorded on video for blind scoring of object 

exploration. Object exploration is defined as an animal licking, sniffing, or touching the 

object with the forepaws while sniffing. The exploration time (s) of each object was 

recorded manually by the use of two stopwatches. The exploratory preference [100 × (time 

spent exploring the novel object / total exploration time)] was then calculated for retention 

trials. If the exploration time in the acquisition or retention trials to either objects was < 5 s, 

the data were excluded from analysis. This rarely occurred and did not affect the ability to 

complete the analysis using the data from the remaining animals of that group.

Spontaneous alternation behavior in a Y-maze test

Short-term spatial recognition memory was tested using a Y-maze, as we have previously 

reported (Ibi et al., 2017). Briefly, each mouse was placed individually at the center of the 

apparatus and allowed to move freely through the maze during an 8-min session. The 

number of arm entries was recorded visually. Alternation was defined as successive entries 

into the three arms on overlapping triplet sets. The alternation was calculated as the ratio of 

actual to possible alternations (defined as the total number of arm entries minus 2) 

multiplied by 100. Spontaneous alternation (%), defined as successive entries into the three 

arms on overlapping triplet sets, is associated with spatial short-term memory (Hughes 

2004).

Microarray study

Two groups of mice with three independent biological replicates per group were used for the 

microarray study, totaling 6 microarrays. Mice were chronically (21 days) injected with 

SAHA (20 mg/kg) or vehicle, and sacrificed one day after the last injection. The day of the 

experiment, mice were sacrificed for analysis by cervical dislocation, and bilateral frontal 

cortex was dissected (see above) and frozen at −80°C until RNA extraction. All animals 

were handled, treated, and sacrificed at the same time, under the same conditions. As well, 

all RNA and array processing was performed at the same time. RNA was extracted from 
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mouse frontal cortex using the RNeasy lipid tissue mini kit (Qiagen). Labelling and 

hybridization of the samples to Mouse Gene 1.0 ST expression chip (Affymetrix) were 

performed as previously described with minor modifications (Gonzalez-Maeso et al., 2003). 

Data quality control was performed using the Affymetrix Expression Console software. 

Areas under the Receiver Operating Characteristic curve (ROC) discriminate between 

positive control probesets and negative control probesets (pos.vs.neg.auc) (Howard et al., 

2009). All samples were found to be of very high quality, with pos.vs.neg.auc metric > 0.89 

(0.5 being no better than chance and 1.0 being perfect distinction), and no outlier was 

detected. Probe set summarization, background correction and normalization were then 

carried out in the same software using default settings. Normalized data were analyzed in 

MultiExperiment Viewer (Saeed et al., 2003) software and differential gene list was 

generated using the Significance Analysis of Microarrays (Tusher et al., 2001) algorithm; 

Cutoff was chosen so that the false discovery rate does not exceed 12%. The microarray data 

discussed in this paper have been deposited in NCBI’s Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo — accession number GSE29419). The data analysis 

criteria used for our study are recommended by the MicroArray Quality Control project, and 

these criteria have been validated to provide a high degree of intersite reproducibility and 

inter- and intra-platform reproducibility (for methods regarding Microarray data analysis, 

see Shi et al., 2006; Shi et al., 2010).

Quantitative real-time PCR

Quantitative real-time PCR (qRT-PCR) assays were carried out in quadruplicate as 

previously described (Ibi et al., 2017) using a QuantStudio 6 Flex Real-Time PCR System 

(ThermoFisher Scientific). Mouse qRT-PCR primer pairs (genBank accesion number): 

Adam 8 (NM_007403), fwd GCAGGACCATTGCCTCTACC, rev TGGACCCAACT 

CGGAAAAAGC and fwd CACCACTCCCAGTTCCTGTT, rev 

AAGGTTGGCTTGACCTGCT; Ankrd9 (NM_175207.4), fwd 

CCTGGCAGTGCGAGATCAG, rev GCTTCGCTGGCACGTATGT; Cxcr3 (NM_009910), 

fwd GGTTAGTGAACGTCAAGTGCT, rev CCCCATAATCGTAGGGAGAGGT; Cdkn2c 
(NM_007671), fwd GGGGCATCGGAACCATAAGG, rev 

CCTCCATCAGGCTAATGACCT; Tbkbpl (NM_198100.2), fwd 

AGTCAATGTGTGTGCCGTCTTC, rev CTTGGTCGACCTCCAGGAAA; Zdhhc12 
(NM_025428), fwd CTGTGTGGGTGAACGCAAC, rev 

CACTAACGCGAAGAAGGAGAG; rpS3 (NM_012052), fwd 

AGGTTGTGGTGTCTGGGAAG, rev GAGGCTTCTTGGGACCAATC.

Statistical analysis

Statistical analyses were performed with GraphPad Prism software version 6. For all mRNA 

data, fold changes relative to controls were determined using the corrected Ct method 

(Gonzalez-Maeso et al., 2003). Immunohistochemical images were acquired using 

epifluorescence microscope (see above) at identical settings for each of the conditions. 

Immunoblot and immunohistochemical images were quantified using NIH image 1.63 

software by an experimenter blind to treatment and genotype groups. In immunoblot assays 

in mouse frontal cortex, the theoretical amount of protein in each sample was obtained 
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following standard protocols, as previously reported (Kurita et al., 2012; Ibi et al., 2017). For 

the quantification of synaptophysin immunoreactivity after chronic clozapine treatment, the 

mean signal intensity of synaptophysin immunoreactivity in the different layers of the 

frontal cortex and regions of the hippocampus (DAPI) was measured in both hemispheres of 

treated mice and controls. Animals were randomly allocated into the different experimental 

groups. Statistical significance of experiments involving three or more groups and two or 

more treatments was assessed by two-way ANOVA followed by Tukey’s or Fisher’s 

uncorrected least square difference (LSD) post hoc test, and three-way ANOVA followed by 

Tukey’s post hoc test. Statistical significance of experiments involving three or more groups 

was assessed by one-way ANOVA followed by Tukey’s post hoc test. Statistical significance 

of experiments involving two groups was assessed by Student’s t-test. The level of 

significance was chosen at p = 0.05.

RESULTS

Chronic clozapine treatment up-regulates HDAC2 in mouse frontal cortex

We previously showed that up-regulation of HDAC2 (mRNA and immunoreactivity) occurs 

upon chronic treatment with atypical antipsychotics, but not with the typical ones. This was 

observed via immunohistochemical assays in frontal cortex tissue sections and qRT-PCR 

assays (Kurita et al., 2012; Ibi et al., 2017). We observed here similar findings using 

immunoblot assays. Thus, consistent with our previous studies, western blot assays showed 

up-regulation (F2,15 = 9.203, p < 0.01) of HDAC2 protein in the frontal cortex of mice 

chronically treated with clozapine (p < 0.01), but not with haloperidol (p > 0.05) (Fig. 1A 

and Fig. 1B).

Genetic deletion of HDAC2 protects again pro-psychotic insults and improves short-term 
recognition memory

In order to study the effects of chronic atypical antipsychotic treatment on HDAC2 

transcription in cortical pyramidal neurons, we recently used a genetic strategy to selectively 

suppress HDAC2 expression in CaMKIIα-positive glutamatergic neurons (Ibi et al., 2017). 

Other than this selective suppression of HDAC2, our previous data showed that these 

HDAC2-cKO mice showed undistinguishable level of expression of other Hdac tested 

compared to control littermates (Ibi et al., 2017).

The exposure of mice to a novel environment triggers an exploratory behavior generally 

reflected as increased locomotor activity. Interestingly, HDAC2-cKO mice showed an 

undistinguishable horizontal and vertical locomotor activity compared to control littermates 

(Fig. 2A and Fig. 2B) (F1, 15= 0.0840, p > 0.05; F1,15 = 0.0426, p > 0.05; respectively). 

Center-avoidance in an illuminated open field is correlated with anxiety-like behaviors 

(Weisstaub et al., 2006). On a separate experiment (see experimental details in the methods 

section), HDAC2-cKO animals did not show any differences in the time spent in the center 

of the arena compared to control mice (Fig. 2C) (F1,81 = 0.0889, p > 0.05). Taken together, 

our data indicate that deletion of HDAC2 in glutamatergic pyramidal neurons does not affect 

spontaneous exploratory locomotion activity or center-avoidance.

de la Fuente Revenga et al. Page 9

Neuroscience. Author manuscript; available in PMC 2019 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We next interrogated the effect of conditional FIDAC2 deletion on drug-based models of 

psychosis. Compared to control littermates, the head-twitch response elicited by the 

hallucinogen 5-ΗΤ2Α receptor agonist DOI was diminished in HDAC2-cKO (Fig. 3A) 

(t6=2.974, p < 0.05). Additionally, the HDAC2-cKO genotype was phenotypically resistant 

to the hyperlocomotive effects of the dissociative drug MK801, as shown in the time course 

of horizontal activity during 5-min fractions (Fig. 3B) (F1,7 = 5.927, p < 0.05) and total 

horizontal (Fig. 3C) (t7 = 2.435, p < 0.05) and vertical (Fig. 3D) (t8 = 2.817, p < 0.05) 

locomotor activity as summation of events during from t = 5 to t = 60 min. Together, these 

findings suggest that deletion of FIDAC2 in glutamatergic pyramidal neurons results in a 

protective phenotype against pro-psychotic insults.

Spontaneous alternation in the Y-maze reflects spatial memory retention. This test has been 

widely used as surrogate of cognitive performance sensitive to both pharmacological and 

genetic interventions (Flughes 2004). Compared to control mice, HDAC2-cKO showed a 

significant increase in arm alternation (Fig. 3E) (t25 = 2.324, p < 0.05), along with a 

decrease trend in the amount of total arm entries (Fig. 3F) (t25 =1.948,p=0.06

Chronic clozapine treatment negatively affects cortical active synapses via HDAC2

We previously reported that chronic treatment with clozapine induces an HDAC2-dependent 

decrease in the density of mature spines in frontal cortex pyramidal neurons (Ibi et al., 

2017). Synaptophysin is a synaptic vesicle glycoprotein specifically localized in presynaptic 

terminals - its immunoreactivity is employed as a surrogate measure of active synapses 

(Calhoun et al., 1996; Fischer et al., 2007). We found here that immunoreactivity against 

synaptophysin was significantly reduced in somatosensory cortex layers ll/lll, IV and V (Fig. 

4A and Fig. 4B) (Layer I, t80 = 1.87, p > 0.05; Layer II/III, t80 = 2.086, p < 0.05; Layer IV, 

t80 = 2.286, p < 0.05; Layer V, t80 = 2.224, p < 0.05; Layer VI, t80 = 1.522, p > 0.05). In 

opposition to the effect of chronic clozapine on synaptophysin immunoreactivity in control 

mice, we also found that HDAC2-cKO mice treated with chronic clozapine showed a 

generalized increased synaptophysin immunoreactivity through different somatosensory 

cortical layers as compared to HDAC2-cKO mice chronically treated with vehicle (Fig. 4C 

and Fig 4D) (Layer I, t98 = 8.788, p < 0.001; Layer II/III, t98 = 6.701, p < 0.001; Layer IV, 

t98 = 5.850, p < 0.001; Layer V, t98 = 6.685, p < 0.001; Layer VI, t98 = 3.578, p < 0.001 ). 

Three-way ANOVA analysis of immunoreactivity per cortical layer revealed significant 

individual effects for genotype (Controls vs. HDAC2-cKO, F1,182 = 132.89, p < 0.001), 

chronic treatment (Vehicle vs. Clozapine, F1,182 = 17.50, p < 0.001), and cortical layer (I 

through VI, F4,182 = 14.41, p < 0.001), as well as a two-way interaction Genotype: 

Treatment (F1,182 = 7.158, p < 0.001). Three-way interaction was absent. Immunoreactivity 

against synaptophysin was not significantly affected in the dentate gyrus of the hippocampus 

of control animals treated chronically with clozapine (Fig. 4E and Fig 4F) (Hilus, t23 = 

0.827, p > 0.05; Granular, t23 = 0.4021, p > 0.05; Molecular, t23 = 0.6653, p > 0.05).

Chronic clozapine treatment reduces drug-induced psychosis-like behavior

Our current (see Fig. 4, above) and previous (Ibi et al., 2017) findings suggest that chronic 

clozapine treatment induces negative effects on synaptic plasticity and cognition. Based on 

this, we next aimed to interrogate the effect of chronic clozapine treatment on drug-induced 
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models of psychosis. In agreement with our previous findings (Moreno et al., 2013), we 

found that chronic clozapine treatment was able to significantly reduce the count of head-

twitch responses elicited by DOI (Fig. 5A) (t10 = 5.924, p < 0.001 ). While psychedelic 5-

HT2A receptor agonists, such as DOI, remain the classic paradigm of pharmacologically-

induced psychotic-like effects (Hanks and Gonzalez-Maeso 2013), non-competitive NMDA 

receptor antagonist, such as PCP and MK801, appear to recapitulate a wider array of core 

positive symptoms and cognitive deficits of schizophrenia (Moreno and Gonzalez-Maeso 

2013). Mice chronically treated with chronic clozapine, or vehicle, were tested for the hyper-

locomotive effects induced by MK801 (0.5 mg/kg) one day after the last dose of the 

antipsychotic. The marked increase in locomotor activity observed in mice previously 

treated chronically with vehicle was significantly reduced in mice previously treated 

chronically with clozapine, as shown both in horizontal activity during 5-min fractions (Fig. 

5B) (F1,14 = 4.654, p < 0.05) and summation of locomotor activity events between t = 5 to t 
= 60 min (Fig. 5C)(t14 = 2.157, p < 0.05) after administration of MK801.

Additionally, we quantified the basal activity prior to administration of MK801 (Fig 5B (t = 

− 90 min to t = − 30 min) mean beam breaks ± S.E.M. from; Controls: 2011+280, Clozapine 

(chronic): 2038 ± 362). No differences were observed in the treated group relative to vehicle 

(t8 = 0.298, p > 0.05) thus suggesting that the repressive effect of chronic clozapine 

treatment on MK801-induced hyperlocomotor activity does not occur as a consequence of 

chronic clozapine treatment on basal exploratory behavior.

Chronic SAHA treatment prevents cognitive deficits induced by MK801

Previous findings have shown that chronic treatment with SAHA prevents the disruptive 

effects elicited by MK801 on the T-maze test as a mouse model of working memory (Kurita 

et al., 2012). Here we tested in HDAC2-cKO mice and control littermates the effect of 

chronic SAHA treatment on prevention of MK801 (0.1 mg/kg)-induced deficits in the novel 

object recognition test as an additional model of cognitive performance. (Fig. 6A and Fig. 

6B).

Control mice showed preference exploring the novel object, an effect that was prevented by 

previous administration of MK801 (Fig. 6C) (Treatment effect: F1,22 = 3.958, p > 0.05; post 
hoc test, Vehicle (acquisition vs. recognition) p < 0.001; MK801 (acquisition vs. 

recognition) p > 0.05). We also found that chronic SAHA treatment prevented the effects of 

MK801-induced deficits in novel object recognition (Fig. 6D) (Treatment effect: F1,18 = 

0.0483, p > 0.05; post hoc test, Vehicle (acquisition vs. recognition) p < 0.01; MK801 

(acquisition vs. recognition) p < 0.01). Importantly, this therapeutic-related effect of chronic 

SAHA treatment was absent in HDAC2-cKO mice (Fig. 6E and Fig. 6F). (Fig 6E; Treatment 

effect: F1,18 = 9.494, p < 0.01; post hoc test, Vehicle (acquisition vs. recognition) p < 0.001; 

MK801 (acquisition vs. recognition) p > 0.05) (Fig 6F. Treatment effect: F1,18 = 13.89, p < 

0.01; post hoc test, Vehicle (acquisition vs. recognition) p < 0.001; MK801 (acquisition vs. 

recognition) p > 0.05). Additionally, HDAC2-cKO mice chronically treated with vehicle did 

not show alterations in the novel object recognition test as compared to control littermates 

chronically treated with vehicle (Fig. 6C and Fig. 6E). No significant differences were found 

in the total exploratory time (Figs. 7A-D). (Fig 7A. chronic treatment effect: F1,24 = 4.031, p 
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< 0.05; post hoc test, chronic vehicle (vehicle vs. MK801) p > 0.05; chronic SAHA (vehicle 

vs. MK801) p > 0.05); (Fig. 7B, chronic treatment: F1,18 = 1.324, p > 0.05; post hoc test, 

chronic vehicle (vehicle vs. MK801 p > 0.05, chronic SAHA (vehicle vs. MK801) p > 0.05); 

(Fig. 7C, chronic treatment: F1,24 = 0.1426, p > 0.05; post hoc test, chronic vehicle (vehicle 

vs. MK801) p > 0.05; chronic SAHA (vehicle vs. MK801) p > 0.05); (Fig. 7D, chronic 

treatment: F1,18 = 1.273, p > 0.05; post hoc test, chronic vehicle (vehicle vs. MK801) p > 

0.05; chronic SAHA (vehicle vs. MK801) p > 0.05).

Three-way ANOVA analysis of exploratory preference in the recognition phase also revealed 

significant individual effects for genotype (control vs. HDAC2-cKO, F1,43 = 15.917, p < 

0.001 ), chronic treatment (vehicle vs. SAHA, F1,43 = 7.145, p < 0.05), and acute treatment 

(saline vs. MK801, F 1,43 = 44.761, p < 0.001 ), as well as a two-way interaction Genotype: 

Chronic (F1,43 = 7.158, p < 0.05) and Chronic: Acute (F1,43 = 6.574, p < 0.05). Tukey’s 

post-hoc analysis of Genotype: Chronic interactions showed significant differences between 

vehicle vs. SAHA subgroups within the control group (Control (Vehicle vs. SAHA), p < 

0.001), but not in HDAC2-cKO mice (HDAC2-cKO (Vehicle vs. SAHA), p > 0.05).

Transcriptome regulation by chronic SAHA treatment via HDAC2

We next employed microarray analysis to examine gene expression profiles induced upon 

chronic SAHA treatment in the frontal cortex of HDAC2-cKO and control mice. Control 

animals that received chronic SAHA treatment displayed a dramatically increased gene 

expression in comparison to vehicle-treated mice. As a result, we obtained a final list of 284 

probe sets, corresponding to 124 RefSeq genes that are associated with chronic SAHA 

treatment (Fig. 8A and Table 1). We confirmed the significant regulation of representative 

genes that were selected from our microarray analysis based on their involvement in 

synaptic plasticity and connectivity: Adam8, Ankrd9, Cxcr3, Cdkn2c, Tbkbp1 and Zdhhc12 
(Li et al., 2007; Bajova et al., 2008; Liebau et al., 2009; Bartsch et al.,; Fukata and Fukata). 

Control mice chronically treated with SAHA showed frontal cortex upregulation of these 

genes in control mice chronically treated with SAHA, however, these changes were not 

observed in SAHA-treated HDAC2-cKO littermates (Fig. 8B) (Two-way ANOVA Fisher’s 

LSD post hoc test; Adam8, Control (Saline vs. SAHA) p < 0.01, HDAC2-cKO (Saline vs. 

SAHA) p > 0.05; Ankrd9, Control (Saline vs. SAHA) p < 0.001, HDAC2-cKO (Saline vs. 

SAHA) p > 0.05; Cdkn2c, Control (Saline vs. SAHA) p<0.01, HDAC2-cKO (Saline vs. 

SAHA) p>0.05; Cxcr3, Control (Saline vs. SAHA) p < 0.05, HDAC2-cKO (Saline vs. 

SAHA) p> 0.05; Tbkbp1, Control (Saline vs. SAHA) p < 0.05, HDAC2-cKO (Saline vs. 

SAHA) p> 0.05; Zdhhc12, Control (Saline vs. SAHA) p < 0.01, HDAC2-cKO (Saline vs. 

SAHA) p>0.05). Housekeeping gene Rps3 was not affected by either treatment or genotype 

(not shown) (Two-way ANOVA Fisher’s LSD post hoc test; Rps3, Control (Saline vs. 

SAHA) p >0.05, HDAC2-cKO (Saline vs. SAHA) p > 0.05).

DISCUSSION

Results from the present study suggest that either pharmacological or genetic inhibition of 

HDAC2 leads to behavioral phenotypes that model therapeutic-related action on both 

psychosis-like states and cognition. Consistent with previous reports of upregulation of 
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HDAC2 expression in the frontal cortex of mice chronically treated with atypical 

antipsychotics, but not with haloperidol (Kurita et al., 2011; Ibi et al., 2017), we also 

validate this particular effect of chronic clozapine treatment on frontal cortex HDAC2 

immunoreactivity with the use of independent experimental approaches. Additionally, we 

show that chronic administration of clozapine reduces the number of active synapses in the 

frontal cortex, as defined by immunostaining against synaptophysin. However, an opposite 

effect was observed in the frontal cortex of HDAC2-cKO mice treated chronically with 

clozapine, suggesting that augmentation of HDAC2 expression, which would consequently 

boost HDAC2-dependent epigenetic function, may repress some of the therapeutic effects of 

chronic clozapine treatment. This is further supported by results showing that chronic 

treatment with the class I and class II HDAC inhibitor SAHA leads to HDAC2-dependent 

changes in expression of genes associated to signaling pathways involved in synaptic 

plasticity and synaptic connectivity.

Positive psychotic symptoms in schizophrenia patients, including hallucinations and 

delusions, represent the most devastating consequence of this psychiatric condition (Sawa 

and Snyder 2002; van Os and Kapur 2009). Pharmacological blockade of the 5-HT2A 

receptor has been proposed as one of the potential mechanism underlying the therapeutic 

properties of antipsychotic medications on psychosis (Lieberman et al., 2008; Miyamoto et 

al., 2012; Meltzer 2013). This is further supported by the relatively recent clinical use of the 

highly selective 5-HT2A receptor antagonist/inverse agonist pimavanserin for the treatment 

of Parkinson’s disease psychosis (Sahli and Tarazi 2017). Many articles describe 

improvement of psychotic symptoms hours/days immediately after antipsychotic drug 

administration (Wright et al., 2001; Agid et al., 2003). However, psychiatric disorders in 

general, and schizophrenia in particular, are often characterized by continuous drug 

administration (weeks, months or even years of sustained drug treatment). This does not 

question the validity of antipsychotic-like behavior models of acute antipsychotic drug 

administration, but rather validate the importance of understanding the consequences of 

long-term antipsychotic treatment.

Accordingly, our current data showed that chronic clozapine treatment prevents psychosis-

like behavioral events induced by pharmacological tools such as the psychedelic drug DOI 

and the dissociative drug MK801. This validates the therapeutic-related activity of chronic 

clozapine treatment using psychosis-related behaviors. Notably, we also demonstrated that 

DOI-induced head-twitch behavior and MK801-induced hyperlocomotor activity are 

significantly decreased in HDAC2-cKO mice as compared to controls. Despite the inherent 

limitations of rodent models of psychosis have limitations (Fernando and Robbins 2011; 

Forrest et al., 2014), our findings establish a parallelism between the phenotypes emerging 

upon blockade of HDAC2 and previous preclinical models of classic antipsychotic drug 

action. Prospectively, these findings suggest that pharmacological inhibition of HDAC2 may 

serve as a new approach to improve the clinical efficacy of currently available antipsychotics 

on hallucinations and delusions. Nevertheless, further work will be necessary to establish the 

precise molecular link between genetic deletion of forebrain HDAC2 and decreased 

sensitivity to hallucinogens and dissociative drugs.
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Our results show that chronic administration of the HDAC inhibitor SAHA modulates 

expression of genes in mouse frontal cortex involved in signaling networks that regulate 

neuronal morphogenesis and synaptic plasticity, including Tbkbp1, Adam8, Cxcr3, Cdkn2c, 
and Zdhhc12 (Li et al., 2007; Bajova et al., 2008; Liebau et al., 2009; Bartsch et al.,; Fukata 

and Fukata). We also demonstrate that HDAC2 is involved in modulating transcription of 

these genes. HDAC inhibitors including trichostatin A (TSA), sodium butyrate, and SAHA 

improve learning consolidation and enhance synaptic plasticity (Lattal et al., 2007; Bredy 

and Barad 2008; Fontan-Lozano et al., 2008; Kilgore et al., 2010; Kurita et al., 2012). It has 

also been shown that HSV mediated over-expression of HDAC2 in the frontal cortex results 

in behaviors that are associated with negative regulation of sensorimotor gating of the startle 

reflex and working memory impairments (Kurita et al. 2012). Our previous data also 

suggested that chronic treatment with clozapine induces 5-HT2A receptor-dependent 

augmentation of HDAC2 expression (Kurita et al., 2012; Ibi et al., 2017). HDAC2 has been 

shown to negatively affect transcription of genes involved in synaptic structure, synaptic 

plasticity and memory (Guan et al., 2009). Considering that we also reported that chronic 

clozapine treatment induced HDAC2-dependent repression of genes involved in cell 

morphogenesis, neuron projection and synapse structure (Ibi et al., 2017), together these 

findings suggest that either absence of effect or negative outcome of chronic antipsychotic 

administration on cognitive function may represent a consequence of compensatory 

pathways induced after long-lasting and repeated pharmacological blockade of 5-HT2A 

receptor-dependent function. This hypothesis is further supported by our current findings 

showing that chronic clozapine treatment also led to a decrease in cortical synaptophysin 

immunoreactivity. Notably, and opposite to what occurred in control mice treated 

chronically with clozapine, synaptophysin immunoreactivity was increased in the 

somatosensory cortex of HDAC2-cKO mice treated chronically with clozapine. Together, 

these results suggest that inhibition of HDAC2 may represent a new approach to improve 

cognitive capabilities in medicated schizophrenia patients.

Using a mouse model of maternal stress during pregnancy, previous findings convincingly 

demonstrate that prenatal environmental insults induce adult offspring changes in frontal 

cortex DNA methylation at the promoter region of genes such as Gad1, Reln, and Bdnf, and 

that these epigenetic changes were reversed by a short treatment (5 days) with clozapine, but 

not with haloperidol (Dong et al., 2016). Our current findings suggest that up-regulation of 

frontal cortex HDAC2 immunoreactivity occurs in mice chronically (21 days) treated with 

clozapine, but not with haloperidol. Importantly, we previously showed that this effect is not 

observed after sub-chronic (2 days) treatment with clozapine (Ibi et al., 2017). Together, 

these findings suggest that the HDAC2-dependent negative effects of chronic clozapine 

treatment on synaptic plasticity and behavior require a long-term regimen of medication.

An important finding was the specificity of the effect of chronic treatment with clozapine 

and other atypical antipsychotics, but not with haloperidol, on HDAC2 expression. These 

data, however, do not exclude the existence of alternative signaling pathways affected by 

haloperidol and other typical antipsychotics that might be responsible for their negative 

effects in terms of serious movement disorders as well as cognitive capabilities.
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It is well recognized that gender differences have an impact on mental health and, in 

particular, on the course of schizophrenia (Crawford and DeLisi 2016). The current analysis 

focus on male mice, and most of the subjects included in our previous studies in postmortem 

human brain samples were male (Kurita et al., 2012; Ibi et al., 2017). Future work should 

extend these findings to females to determine the generalizability and specificity of 

epigenetic mechanisms of antipsychotic drug action.

One of the limitations of the Cre-lox system in rodent models is that related to unexpected 

recombination events resulting from transient ectopic expression of Cre driver genes during 

early development in cell lines different from the targeted population (Song and Palmiter 

2018). Using the Cre-lox system approach, we and others have previously validated the 

selective deletion of HDAC2 expression in CaMKIlα-positive glutamatergic cortical and 

hippocampal pyramidal neurons of HDAC2loxP/loxP:CaMKIIα-Cre+/− (HDAC2-cKO) mice. 

This was achieved using either HDAC2loxP/loxP:CaMKIIα:Cre−/− (Ibi et al., 2017) or wild-

type (Morris et al., 2013) littermates as the control group. Although we cannot completely 

eliminate the possibility of unexpected expression of Cre, which would create nonspecific 

results, based on our previous data characterizing conditional deletion of HDAC2 in 

glutamatergic pyramidal neurons (Ibi et al., 2017), we are confident of appropriately 

restricted expression of the Cre recombinase. Another concerns related to the use of Cre-lox 

technology is the potential toxicity related to non-specific recombinase activity in the host 

genomic DNA (Schmidt-Supprian and Rajewsky 2007), further experiments will address the 

potentially deleterious effect of Cre recombinase on gene expression and synaptic plasticity 

in HDAC2-cKO and control mice.

CONCLUSIONS

Here we show that selective deletion of HDAC2 function in forebrain pyramidal 

glutamatergic neurons operates as a protective factor against pro-psychotic insults elicited by 

psychedelic and dissociative drugs as well as against the deleterious effect of chronic 

clozapine treatment on active synapses. Additionally, our results based on microarray 

analysis and behavioral models of recognition memory support the notion that HDAC2 

inhibitors may serve as a new pharmacological tool to ameliorate deficits related to 

perception, cognition and memory function in patients with neuropsychiatric disorders such 

as schizophrenia.
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Highlights

• Inhibition or genetic deletion of HDAC2 results in antipsychotic-like 

phenotypes

• HDAC2 underlies the negative effects of chronic clozapine on cortical 

synapses

• Chronic HDAC inhibition augments expression of plasticity-related genes

• HDAC2 may represent a new epigenetic target for the treatment of 

schizophrenia
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Fig 1. 
Chronic treatment with the atypical antipsychotic clozapine, but not the typical antipsychotic 

haloperidol, induces up-regulation of HDAC2 immunoreactivity in the mouse frontal cortex. 

Immunoblotting showing the effect of chronic antipsychotic treatment on expression of 

HDAC2 (A) and quantification of immunoreactivity (B). Values plotted are mean ± S.E.M. 

(n = 6 per group). One-way ANOVA with Tukey’s post hoc test (**p < 0.01; n.s. not 

significant).
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Fig 2. 
Horizontal activity (A) and vertical activity (B) are unaffected in HDAC2-cKO mice. Time 

spent in the center of the open field relative to total ambulatory time is comparable on both 

genotypes (C). Values plotted are mean ± S.E.M shown in 5-min blocks for HDAC2-cKO 
and control mice. (A and B, controls n = 9, HDAC2-cKO n = 8; C, controls n = 5, HDAC2-
cKO n = 5). Two-way ANOVA (p > 0.05).
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Fig 3. 
HDAC2-cKO mice are less responsive to DOI-induced stereotyped behavior. Quantification 

of head-twitch response induced by the psychedelic drug DOI (1 mg/kg) in HDAC2-cKO 
and control mice (A). HDAC2-cKO show decreased sensitivity to MK801-induced 

hyperlocomotion. HDAC2-cKO and control mice were allowed to freely-explore the test 

chamber for 90 min before the administration of MK801 (0.3 mg/kg) at t = 0. Horizontal 

activity measured as beam breaks shown in 5-min blocks over the 120-min test period (B) 

and quantified from t = 5 to t = 60 min (C). Vertical activity measured as beams broken upon 
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rearing quantified over the same period of time (D). HDAC2-cKO showed a greater degree 

of alternation compared to controls in the Y-maze paradigm (E). Total number of arm entries 

(F). Data shown as mean ± S.E.M. (A - D, controls n = 5, HDAC2-cKO n = 4; E and F, 

controls n = 18, HDAC2-cKO n = 9). Time of injection is indicated by arrow (B). Two-tailed 

f-test (A,C,D); two-way ANOVA (B); (*p < 0.05; n.s., not significant).
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Fig 4. 
Effect of chronic clozapine treatment on synaptophysin immunoreactivity in HDAC2-cKO 
mice and controls. Representative immunohistochemical images of somatosensory cortex 

(A) and hippocampus (E) from control mice chronically treated with clozapine or vehicle. 

Quantification of the signal in the layers I through VI of the cortex (B) and dentate gyrus of 

the hippocampus (F). Representative immunohistochemical images of somatosensory cortex 

from HDAC2-cKO mice chronically treated with clozapine or vehicle (C). Quantification of 

the signal in the different layers of the cortex (D). SSCtx: somatosensory cortex, HPC: 
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hippocampus, DG: dentate gyrus, Mo: molecular layer, Gr: granular layer, Hl: hilus. Scale 

bars 100 μm. Higher magnification insets (2x) of cortical layer IV (A and C). Values plotted 

are mean ± S.E.M. Two-tailed f-test (*p < 0.05; ***p < 0.001; n.s., not significant). Data 

shown as mean ± S.E.M. (B, vehicle n = 10, clozapine n = 8; D, vehicle 10, clozapine 12; F, 

vehicle n = 5, clozapine n = 5).
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Fig 5. 
Chronic clozapine treatment reduces the action of the psychedelic DOI on stereotyped 

behavior. Quantification of head-twitch response to DOI (1 mg/kg) administered 24h after 

the last administration of clozapine or vehicle (A). Twenty-four hours after the last injection 

of clozapine or vehicle, mice were allowed to freely-explore the test chamber for 90 min 

administration of MK801 (0.5 mg/kg) at t = 0. Horizontal activity measured as beam breaks 

shown in 5-min blocks over the 120 min test period and quantified from t = 5 to t = 60 min 

(C). Time of injection is indicated by arrow. Values plotted are mean ± S.E.M. (A, n = 6 per 
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group; B and C, vehicle n = 9, clozapine (chronic) n = 7). Two-tailed t-test (A,C); two-way 

ANOVA (B), (*p < 0.05; ***p < 0.001).
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Fig 6. 
Chronic pharmacological inhibition of HDAC2 prevents the amnesic effects of MK801 in 

the novel object recognition test. Experimental setup of the novel object recognition test (A) 

and timeline of the experiment (B). The animals were injected with MK801 (0.1 mg/kg) one 

day after the last SAHA (20 mg/kg) injection. Novel object recognition test was conducted 

30 min after MK801 injection. In the acquisition phase (10 min), mice were exposed to two 

different objects, and after a 24h interval, they were allowed to explore a duplicate of the 

familiar object and a novel object. Effect of MK801 on novel object exploratory preference 
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in control mice chronically treated with vehicle or SAHA (D). Effect of MK801 on novel 

object exploratory preference in HDAC2-cKO mice chronically treated with vehicle (E) or 

SAHA (F). Values plotted are mean ± S.E.M. (n = 5 – 8 per group). Two-way ANOVA with 

Bonferroni post hoc test (**p < 0.01; ***p < 0.001; n.s., not significant). Dashed line 

indicates chance performance.
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Fig 7. 
Exploration times are unaffected by MK801 (0.1 mg/kg). Total exploration times in the 

acquisition (A) and recognition (C) sessions of control animals chronically treated with 

vehicle or SAHA (20 mg/kg). Total exploration times in the acquisition (B) and recognition 

(D) sessions of HDAC2-cKO animals chronically treated with vehicle or SAHA (20 mg/kg). 

Values plotted are mean ± S.E.M. (n = 11 – 15 per group). Two-way ANOVA with 

Bonferroni post hoc test (n.s., not significant).
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Fig 8. 
Comparative heat map displaying genes differentially expressed in the frontal cortex of mice 

chronically treated with SAHA (20 mg/kg) versus vehicle (n = 3 mice per library) (A). See 

also Table 1 for a complete list of top 100 genes up-regulated by chronic SAHA treatment. 

Validation of mRNA expression of gene transcripts by qRT-PCR in the frontal cortex of 

HDAC2-cKO mice and controls (B) (n = 5 – 6 per group) chronically treated with SAHA or 
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vehicle. Values plotted are mean ± S.E.M. Two-way ANOVA with Fisher’s LSD post hoc 
test (*p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant).
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Table 1.

Top 100 genes up-regulated by chronic SAHA treatment in the frontal cortex of control mice

Gene Name GenBank Fold change (Unlogged) q-value (%)

Vmn2r9 NM_001104621 1.75 10.91

Ripk4 NM_023663 1.52 10.75

Akap3 NM_009650 1.50 10.91

Zdhhc12 NM_025428 1.48 11.59

Csf2rb2 NM_007781 1.48 10.75

Hbq1 NM_175000 1.48 10.53

Rhoh NM_001081105 1.48 10.72

Olfr745 NM_146299 1.48 11.72

Sftpd NM_009160 1.48 10.16

Gm11564 NM_001100614 1.47 11.59

Cyp2d40 NM_023623 1.46 10.91

Prp2 NM_031499 1.44 10.13

Olfr1463 NM_001011840 1.43 10.62

Atp6v1g3 NM_177397 1.43 10.62

Lcn8 NM_033145 1.42 10.91

Il9 NM_008373 1.42 10.16

Tsnaxip1 NM_024445 1.42 10.48

S100z NM_001081159 1.40 10.75

BC089491 NM_175033 1.40 10.91

Olfr234 NM_001001807 1.39 11.59

Ceacam14 NM_025957 1.38 10.91

2210415F13Rik NM_001083884 1.37 10.91

V1rc5 NM_053235 1.37 11.59

Ankrd9 NM_175207 1.36 10.91

Olfr830 NM_146566 1.36 11.59

Krtap5–1 NM_015808 1.36 10.91

Khdc1a NM_183322 1.36 11.59

Pbp2 NM_029595 1.36 11.59

Olfr1010 NM_207149 1.36 10.91

Zfp513 NM_175311 1.35 10.91

Qrfp NM_183424 1.35 10.43

Efnb1 NM_010110 1.35 10.62

Tnfsf11 NM_011613 1.34 10.91

Olfr1219 NM_146899 1.34 10.75

Oxt NM_011025 1.34 11.59

Tulp1 NM_021478 1.34 10.91

Bhlhb8 NM_010800 1.34 10.91

Olfr12 NM_206896 1.34 10.91

Pgc NM_025973 1.33 11.85
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Gene Name GenBank Fold change (Unlogged) q-value (%)

Lpar2 NM_020028 1.33 11.59

Aqp1 NM_007472 1.33 10.91

Zdhhc11 NM_027704 1.33 11.59

Pnliprp2 NM_011128 1.33 10.91

Olfr1105 NM_001011825 1.32 10.75

Gpr31c NM_001013832 1.32 10.91

Sctr NM_001012322 1.32 11.72

Plb1 NM_001081407 1.32 10.75

Apoc2 NM_009695 1.32 11.59

D430042O09Rik NM_001081022 1.32 11.59

Mesp2 NM_008589 1.32 10.91

Krt2 NM_010668 1.31 10.62

EG574081 NM_001025351 1.31 10.62

Col22a1 XM_907370 1.31 10.91

Mrgprg NM_203492 1.31 10.13

Cpz NM_153107 1.31 10.91

Olfr1036 NM_207142 1.31 10.91

Tas2r113 NM_207018 1.30 11.59

Gpr31c NM_001013832 1.30 10.73

Gm428 NM_001081644 1.30 10.91

Tbkbp1 NM_198100 1.30 10.16

Uts2r NM_145440 1.30 10.16

BC023744 NM_001033311 1.30 10.62

Scarf2 NM_153790 1.30 10.91

Tcl1b4 NM_013774 1.30 10.62

Nkx2–5 NM_008700 1.30 10.91

BC055004 NM_001013773 1.30 11.59

Hemgn NM_053149 1.29 10.16

Cxcr3 NM_009910 1.29 11.85

Olfr1451 NM_146705 1.29 10.72

Cypt3 NM_173367 1.28 11.59

AI747448 NM_001033199 1.28 10.16

Shank2 XR_034431 1.28 10.91

Mustn1 NM_181390 1.28 10.13

Pnma5 NM_001100461 1.28 10.16

Defb25 NM_001039122 1.28 10.91

Sall4 NM_201395 1.28 10.16

Atp4b NM_009724 1.27 11.46

Tbc1d10c NM_178650 1.27 10.73

Muc4 NM_080457 1.27 10.78

Cd70 NM_011617 1.26 10.16

Oxct2b///Oxct2a NM_181859 1.26 11.59
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Gene Name GenBank Fold change (Unlogged) q-value (%)

Gm815 NM_001033407 1.26 10.78

Olfr319 NM_146500 1.26 10.75

Olfr769 NM_146267 1.25 10.91

Lgals7 NM_008496 1.25 10.91

Ros1 NM_011282 1.25 10.13

Cd7 NM_009854 1.25 10.16

Chit1 NM_027979 1.24 10.91

Tchhl1 NM_027762 1.24 10.16

Fcgbp NM_001122603 1.24 10.91

1110028A07Rik NM_026808 1.23 10.62

Rhbdl2 NM_183163 1.23 10.13

Col4a1 NM_009931 1.23 11.59

Col9a2 NM_007741 1.22 10.62

Adam8 NM_007403 1.22 10.16

Slc25a43 NM_001085497 1.22 10.16

BC048671 NM_177738 1.22 10.13

Cdkn2c NM_007671 1.20 10.16

Nlrp10 NM_175532 1.20 10.62
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