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Abstract: Different types of cancers exhibit disparate spectra of genomic alterations (germline and/or somatic). 
These alterations can include single nucleotide variants (SNVs), copy number alterations (CNAs) or structural chang-
es (e.g. gene fusions and chromosomal rearrangements). Identification of those genomic alterations has provided 
the opportune element to derive new strategies for molecular-based precision medicine of adult and pediatric can-
cers including risk assessment, non-invasive detection, molecular diagnosis and personalized therapy. Moreover, 
it is now becoming clear that the spectra of genomic-based alterations and mechanisms in pediatric malignancies 
are different from those predominantly occurring in adult cancer. Adult cancers on average exhibit substantially 
higher mutational burdens compared with the vast majority of childhood tumors. Accumulating evidence also sug-
gests that the type of genomic alterations frequently encountered in adult cancers is different from those observed 
in pediatric malignancies. In this review, we discuss the state of knowledge on adult and pediatric cancer genomes 
(or “mutatomes”), specifically focusing on solid tumors. We present an overview of mutational signatures and pro-
cesses in cancer as well as comprehensively compare and contrast the diverse spectra of genomic alterations (so-
matic and familial) among major adult and pediatric solid tumors. The review also discusses the role of genomics in 
molecular-based precision medicine of adult and pediatric solid malignancies as well as comprehending resistance 
mechanisms to various targeted therapies. In addition, we present a perspective that discusses upon emerging 
concepts in cancer genomics including intratumoral heterogeneity, the precancer (premalignant) genome as well 
as the interface between the host immune response and tumor genome - immunogenomics - as they relate to adult 
and pediatric tumors. 
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Introduction

With the advent of massively parallel sequenc-
ing technology (or next-generation sequencing/
NGS), we now know that different types of can-
cers exhibit disparate spectra of genomic alter-
ations (germline and/or somatic) and, thus, 
mutational profiles [1]. These alterations can 
include single nucleotide variants (SNVs), copy 
number alterations (CNAs) or structural chang-
es (e.g. gene fusions and chromosomal rear-
rangements) [2]. These genetic/genomic chan- 
ges, whether clonal or subclonal, are thought to 
confer a selective advantage to malignant cells 
- analogous to natural selection phenomena 

posited earlier in Darwinian evolution [3]. Spe- 
cific cancers, particularly those of the skin and 
lung, are driven by carcinogenic exposures (e.g., 
ultraviolet radiation and cigarette smoke) and 
display elevated mutational burdens and uni- 
que spectra of base substitutions [4]. Also, dif-
ferent malignancies, or even subtypes of par-
ticular cancers, exhibit an overabundance of 
alterations in disparate genes that are thought 
to contribute to cancer initiation, termed drivers 
[5]. Understanding the spectra of these genom-
ic changes, particularly genomic drivers, is cru-
cial to discern the pathogenesis of cancer. 
Importantly, identification of genomic altera-
tions has provided the opportune element to 
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derive new targeted strategies for the clinical 
management of adult and pediatric cancers - 
referred to as genomic (or precision) medicine 
- including risk assessment, non-invasive 
detection, molecular diagnosis and personal-
ized therapy [6].

It has been suggested that pediatric malignan-
cies often manifest in precursor cells of non-
self-renewing tissues as compared to cells-of-
origin of adult tumors such as those of the 
gastrointestinal tract and skin, thus arising in a 
precursor cell that has accumulated a lower 
number of mutations [5]. In this context, it is 
thought that the spectra of genomic-based 
alterations and mechanisms in pediatric malig-
nancies are different from those predominantly 
occurring in adult cancer [7]. Epithelial cancers, 
which primarily manifest in adults, are hypoth-
esized to arise after accumulation of multiple 
sequential mutations directly linked to environ-
mental exposures, and arise within differenti-
ated adult tissues [5]. Mesenchymal tumors - 
such as sarcomas - occur in both pediatric and 
adult age groups, but specific histologic sub-
types and clinical behavior are also age-depen-
dent, suggesting differential pathogenetic and 
underlying molecular mechanisms for tumor 
initiation and progression in the different age 
groups [8]. The paucity of epithelial cancers in 
childhood underscores the importance of ac- 
cumulating environmental insults in epithelial 
tumor initiation, and suggests an alternative 
etiologic mechanism for childhood tumors. 
Indeed, the peak incidence rates of many types 
of childhood solid tumors have been noted to 
correspond to the maturation/differentiation 
stage of the underlying organ of origin, favoring 
a developmental model for childhood cancer 
initiation [9-11]. As such, immature cells that 
undergo substantial expansion during early 
organ formation, growth and maturation, ac- 
quire a deleterious mutation in genes that are 
both important for cell cycle arrest as well as 
organ differentiation at a particular develop-
mental stage [9, 12-14]. These premises sug-
gest that pathogenomic mechanisms among 
solid adult and pediatric malignancies are likely 
very different.

In this review, we overall compare and contrast 
genomes (or “mutatomes”) of adult and pediat-
ric malignancies with a focus on solid tumors. 
We discuss mutational signatures and process-

es in cancer as well as comprehensively com-
pare and contrast the diverse spectra of ge- 
nomic alterations (somatic and familial) among 
major adult and pediatric solid tumors. The 
review also discusses the role of genomics in 
molecular-based precision medicine of adult 
and pediatric solid malignancies including risk 
assessment, diagnosis, personalized therapy, 
as well as comprehending resistance mecha-
nisms to various therapies. The review’s per-
spective touches upon emerging concepts in 
cancer genomics including intratumoral hete- 
rogeneity and its impact on precision medi- 
cine, non-invasive genomics-based diagnos-
tics, the genome of premalignant conditions 
(premalignant genome) as well as the inter- 
face between the host immune response and 
genome - immunogenomics. 

Cancer genomics of adult and pediatric solid 
tumors

Genomic profiles of tumors, for example ge- 
nome-wide mutation analyses, shed light on 
their molecular pathogenesis and, thus, have 
the potential to enhance our capacity to de- 
marcate the origins of different types or even 
subtypes of malignancies. Recent studies have 
discerned the genomic spectra of major adult 
and pediatric solid tumors including specific 
driver alterations (SNVs, CNAs and structural 
variation), and work has begun on the applica-
tion of genomics in targeted and precision 
medicine. 

Mutation signatures

Studies have shown that genomic landscapes, 
mutational loads (or mutation burdens) and 
mutational signatures inform of the pathobiol-
ogy of different malignancies [5]. Perhaps the 
most striking finding across genomic studies 
has been the lack of a high mutation burden in 
the vast majority of childhood tumors, with very 
few exceptions [15]. Studies have quantified 
mutation burden in many pediatric cancers to 
be in the range of 5-10 protein-coding variants 
per tumor across multiple tumor types [5, 15]. 
Osteosarcoma is an exception, with an average 
of 25 protein-affecting mutations per genome, 
which is significantly higher than the majority  
of other childhood cancers [16, 17]. However, 
even that remains markedly less than the num-
ber of protein-affecting mutations seen in most 
adult cancers, including melanoma, lung, and 



Genomics of adult and pediatric solid tumors

1358 Am J Cancer Res 2018;8(8):1356-1386

colon cancer. For example, in adult cancers the 
average number of mutations ranges between 
33-66 by tumor type (such as in colon, brain, 
breast and pancreatic cancers), increases up to 
200 in mutagen-caused adult tumors (such as 
melanoma and lung cancer), and even to the 
1000s for tumors with mismatch-repair defects 
[5, 15]. 

Using Pan-cancer analysis to examine com-
monalities and differences among various can-
cer types, a recent report by Gröbner et al. 
showed that 47% of pediatric tumors harbor at 
least one significantly mutated gene, with most 
tumors having only one. In contrast, 93% of 
adult tumors harbor at least one mutation in  
an adult cancer-related significantly mutated 
gene and 76% show recurrent mutation in mul-
tiple genes. Additionally, 30% of pediatric most 
commonly recurrent genes overlapped with 
adult most frequently mutated genes. TP53 is 
predicted to be the most common somatically 
mutated gene in both pediatric and adult can-
cers, albeit more frequently in the latter [18].

Total mutational burdens (most notably point 
mutations including SNVs and indels) observed 
in adult cancers are the outcome of multiple 
mutagenic processes (e.g. smoking exposure 
or ultraviolet radiation exposure) that have 
been occurring over a long course, sometime 
over the lifetime of an individual [4, 19]. Each 
process is thought to result in distinctive muta-
tional signatures in the cancer genome [4, 19]. 
These different genome-wide mutational signa-
tures are demarcated by different types of base 
substitutions (e.g. C > A transversions and C > 
T transitions) that are often influenced by the 
type of DNA damage and DNA repair processes 
[4, 19]. A noteworthy study by Alexandrov et al. 
analyzed 4,938,362 mutations from 7,042 can- 
cers extracting more than 20 distinct mutation-
al signatures [4]. Two signatures named 1A and 
1B exhibited strong positive correlations with 
age in the majority of cancer types of childhood 
and adulthood malignancies. Both are charac-
terized by prominence of C > T substitutions at 
NpCpG trinucleotides. Signature 1A/B was rea-
soned to be probably linked to elevated rates of 
spontaneous deamination of 5-methyl-cytosine 
resulting in C > T transitions that predominantly 
occur at NpCpG trinucleotides. Furthermore, 
analyses of mutated genes in lung and skin 
tumors have shown that the type of point muta-

tions found in these genes are corroborative 
with the overall mutational spectra induced by 
tobacco carcinogens and ultraviolet (UV) radia-
tion respectively, the major known exogenous 
carcinogenic stimuli that are causally linked to 
these two highly mutagenized cancer types [4, 
20, 21]. Notably, C:G > A:T transversions pre-
dominate in smoking-associated lung cancer, 
whereas C:G > T:A transitions that occur main- 
ly at dipyrimidines and CC:GG > TT:AA double 
nucleotide substitutions are more common in 
UV-exposed skin tumors [4]. Endogenous and 
intracellular mechanisms and processes (e.g. 
cellular metabolism and lipid peroxidation, apo-
lipoprotein B mRNA editing enzyme catalytic 
polypeptide-like (APOBEC) family of deaminas-
es) have also been implicated in the somatic 
acquisition of mutations in cancer [4]. It cannot 
be neglected that these intracellular mecha-
nisms and exogenous carcinogenic insults (e.g., 
smoking) are not entirely mutually exclusive  
but rather related or causally linked; thus, of- 
ten resulting in exacerbated mutational spec-
tra with complex heterogeneity in adult malig-
nancies [4, 19]. 

Single nucleotide variants (SNVs) and small 
insertions/deletions (indels)

Various comprehensive genomic surveys have 
shown that somatically acquired genomic 
events particularly in adult cancers are charac-
terized by accumulation of SNVs and indels in 
driver genes [22-32]. Specific malignancies, 
particularly those of the skin and lung driven by 
chronic environmental (e.g., ultraviolet radia-
tion) and carcinogen (e.g., cigarette smoke) 
exposures, respectively, display elevated muta-
tional burdens and unique spectra of base sub-
stitutions [4, 19]. Melanoma comprising the 
highest total mutational burden among all 
malignancies (16.8 mutations/Mb), harbor re- 
current point mutations in driver genes such  
as BRAF, NRAS, CDKN2A, TP53, PTEN, RAC1, 
MAP2K1, PPP6C, and ARID2 [33]. Moreover, 
point mutations in RB1, KIAA1211, COL22A1, 
RGS7 and FPR1 were reported in small-cell 
lung carcinoma (SCLC) with smokers compris-
ing the overwhelming majority of this malig- 
nancy [29]. Of note, SCLC genomes exhibited 
extremely high mutation rates of 8.62 non-syn-
onomous mutations per million base pairs (Mb) 
[29]. Additionally, urothelial carcinoma of the 
bladder harbors a large number of DNA altera-
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tions, slightly fewer than those observed in 
melanoma and lung cancer. Recurrent SNVs 
and indels were reported in TP53, TSC1, RB1, 
KDM6A, FGFR3, and PIK3CA among others. Of 
note, FGFR3 mutation is a common feature  
of low-grade non-invasive papillary urothelial 
bladder cancer [34]. Furthermore, APC, KRAS, 
TP53, FBXW7, PIK3CA, BRAF, SMAD4 and 
TCF7L2 were among the recurrently mutated 
genes driving the “adenoma-to-carcinoma” pro-
gression model of colorectal cancer mediated 
by the sequential accumulation of molecular 
alterations in specific genes [5, 22, 25, 35]. As 
for glioblastoma, one of the most challenging 
cancers to treat, recurrent driver substitutions 
and indels were reported in SPTA1, GABRA6, 
KEL, CDH18, SEMA3C, COL1A2, ABCC9, NL- 
RP5, DRD5, TCHH and SCN9A [36]. Additional- 
ly, recurrent point mutations were observed in 
breast cancer in driver genes such as TBX3, 
RUNX1, PIK3CA, MYC and FOXA1. Notably, 
stark differences in the frequency of those 
point mutations were observed between the 
two breast cancer subtypes (ductile adenocar-
cinoma and lobular carcinoma) suggesting 
divergent pathways in the pathogenesis of the 
different subtypes of breast tumors [37]. 
Despite having an overall simple mutational 
spectrum, ovarian carcinoma was shown to 
harbor recurrent mutations in NF1, BRCA1, 
BRCA2, RB1 and CDK12, in addition to TP53 
mutations which is present in almost all tumors 
(96%) [38]. It is noteworthy that somatic point 
mutations are less common in prostate cancer 
relative to most other solid tumors [39].

In sharp contrast, SNVs and indels are far  
less common in childhood malignancies. For 
instance, osteosarcoma exhibits a relatively 
high number of mutations as compared to 
other childhood tumors, but this rate is still 
much lower than numbers observed in adult 
tumors [16, 17]. Osteosarcomas commonly 
harbor genetic aberrations in the p53 and  
RB1 genes, as well as recurrent mutations in 
ATRX, DLG2, and PTEN [16, 17]. Furthermore, 
the BRAF V600E variant was recurrently noted 
in low-grade gliomas, such as ganglioglioma 
and pleomorphic xanthoastrocytoma, and may 
be associated with a worse outcome [40-45]. 
Other activating mutated genes driving low-
grade glioma include variants of PTPN11, 
NTRK2, and FGFR1 [46-48]. Pediatric high-
grade gliomas (HGG) are characterized by a 

higher preponderance of mutations in histones 
such as histone 3.3 and histone 3.1, as well  
as alterations in PDGF and PDGFR. Unlike 
adult-onset HGG, there is a low onset of PTEN 
or EGFR mutations in pediatric HGGs. IDH1 
mutations have been described in HGG that 
occur in older adolescents, but not in younger 
children [49-53]. SMARCB1 (and less com- 
monly SMARCA4) mutations characterize the 
aggressive childhood tumor atypical teratoid 
rhabdoid tumors (AT/RT), with paucity of any 
other concurrent recurring genomic abnormali-
ties [54, 55]. As for medulloblastoma, genomic 
studies have resulted in a novel WHO molecular 
classification, with 4 identified subtypes: WNT-
activated, SHH-activated & TP53-mutant, SHH-
activated & TP53-wildtype, and non-WNT/non- 
SHH subtypes [56, 57]. WNT medulloblastoma 
is characterized by CTNNB1 mutations in the 
vast majority, with a minority having APC muta-
tion instead [58]. SHH-medulloblastoma is 
characterized by mutations in PTCH1, PTCH2, 
SMO, SUFU or GLI2 and TERT promoter muta-
tions are also common in adult-onset tumors 
[59]. CTNNB1 mutations are also a common 
driver in hepatoblastoma [60]. Novel mutations 
have been identified in Ewing sarcoma, such  
as STAG2 mutations that occur in 15-20% of 
cases, and are associated with metastatic 
tumors [61, 62]. Rhabdomyosarcoma, espe-
cially the embryonal (which is the most com-
mon) subtype, is characterized by recurrent 
mutations in genes of the RAS pathway, as  
well as mutations in FGFR4, PIK3CA, BCOR, 
CTNNB1, and FBXW7 [16, 63], whereas the 
vast majority of spindle cell/sclerosing rhabdo-
myosarcoma have a specific MYOD1 mutation 
p.L122R [64]. As for neuroblastoma, the most 
common mutations are in the ALK gene, occur-
ring in approximately 10% of cases [65]. In 
addition, ATRX mutations are found in 10-20% 
of high-risk neuroblastoma, and are most com-
monly found in older children [66]. As has been 
long identified, both heritable and sporadic reti-
noblastoma are caused by mutation or deletion 
of RB1, with a few other rare recurring muta-
tions recently identified [67, 68]. Wilms tumor,  
a pediatric embryonal tumor of the kidney,  
has long been recognized to be associated in 
around 30% of cases with mutations in WT1, 
WTX, or CTNNB1 [69]. Recently, mutations in 
genes involved in miRNA processing, including 
DICER, DROSHA, and others, have been identi-
fied as possible drivers of a subset of Wilms 
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tumor [70]. Other recurrent mutations have 
been identified, with primary function in early 
renal development and differentiation, such as 
SIX1, SIX2, among others [71], with p53 muta-
tions occurring in anaplastic tumors [72]. 
Figure 1 summarizes the reported frequency of 
the identified drivers of different (a) pediatric 
and (b) adult solid tumors. 

Copy number alterations (CNAs)

CNAs are common in both adult and pediatric 
cancers. In some cases, focal CNAs have led  
to the identification of cancer-causing genes 
and suggested specific therapeutic approach-
es [73-76]. Amplifications of ERBB2 and IGF2 
have been reported to be recurrent in colorec-
tal cancer [25]. Prostate cancers also display 
varying degrees of CNAs, with more aggressive 
primary and metastatic tumors exhibiting more 
extensive burdens compared with indolent and 
low-Gleason tumors [77-79]. Commonly ampli-
fied loci include MYC on 8q24.21 and NCOA2 
amplification on 8q13.3 [39, 80]. Additionally, 
somatic CNAs in lung adenocarcinomas include 
significant amplifications in NKX2-1, TERT, 
MDM2, MYC, KRAS, EGFR, MET, CCNE1, 
CCND1, TITF-1, TERC, MECOM, CDK4 and 
ERBB2 [31, 81]. The most significant focal 
regions of deletions included tumor-suppres- 
sor genes such as CDKN2A and PTEN [31,  
81]. Furthermore, oncogene amplification (e.g., 
SOX2, PDGFRA and/or KIT, EGFR and FGFR1) 
and tumor suppressor loss (CDKN2A, FBXW7, 
SMARCA4, NF1 and TSC1) were reported in 
lung squamous cell carcinoma [82]. Copy num-
ber gain/amplification of MYC and CCND1 have 
been described in pancreatic ductile adenocar-
cinoma [83]. Of note, amplification of the  
8q24 locus comprising MYC was significantly 
associated with poor clinical outcome [83]. 
Amplifications of PPARG, E2F3, EGFR, CCND1 
and MDM2, as well as loss of CDKN2A and RB1 
were reported in urothelial carcinoma of the 
bladder [34]. 

Similarly, recurrent CNAs including those asso-
ciated with different clinical outcomes, were 
reported in childhood malignancies. A distinct 
group of pediatric high grade glioma exhibits 
amplifications in common adult-type glioblas-
toma genes such as PDGFRA, EGFR, Cyclin D/
CDKs and MYC [84, 85]. Moreover, amplifica-
tions in MYC have been shown to define a clini-

cally relevant molecular subgroup of medullo-
blastomas, the non-WNT/non-Shh subtype or 
Group 3 subtype, especially in younger child- 
ren, that exhibit relatively poor prognosis com-
pared with tumors associated with NMYC and 
CDK6 amplifications [57, 86, 87]. Amplification 
of NMYC and OTX2 were also reported in pedi-
atric retinoblastoma [67, 68]. Of note, NMYC 
amplification on chromosome 17q has been 
long identified as the most important genomic 
feature influencing neuroblastoma outcome 
and as a marker of high-risk tumors [88, 89]. 
Novel detection of a recurrent amplification of 
the C19MC region on chromosome 19, has 
resulted in re-classification of embryonal brain 
tumors, with the entity ‘embryonal tumor with 
multilayered rosettes, C19MC-altered’, replac-
ing prior generic classification of primitive neu-
roectodermal tumors [90-92]. Rhabdomyosar- 
coma of embryonal histology, one of the most 
common soft tissue tumors in children, is char-
acterized by LOH at 11p15 and gains on chro-
mosome 8 [93]. LOH at 11p15 is a common 
finding in Wilms tumor, and is responsible for 
WT2 inactivation as a driver genetic lesion [94, 
95]. Also, gain of chromosome 1q occurs in 
approximately a third of Wilms tumors, and her-
alds a worse outcome [96, 97]. Other recurrent 
areas of LOH in Wilms tumor include chromo-
somes 16q and 1p, and also correlate with 
patient outcome [98]. Additionally, MYCN 
amplification has been reported in Wilms 
tumor, with a higher frequency in anaplastic 
tumors [99].

Structural changes (gene fusions and chromo-
somal rearrangements)

A major characteristic of childhood cancer pa- 
thogenesis is the relatively high prevalence of 
specific structural variations, and the specifici-
ty of their association with histologic tumor 
subtypes [16, 100, 101]. Specific transloca-
tions leading to oncogenic fusion proteins seem 
to play a driver role in tumor initiation. For 
instance, BRAF-KIAA1549 fusion gene was 
identified as an important diagnostic biomarker 
in pilocytic astrocytoma and other low-grade 
gliomas, such as ganglioglioma and pleomor-
phic xanthoastrocytoma [102-104]. C11orf95-
RELA translocations were reported in most of 
supratentorial ependymoma cases, character-
ized by low rates of coding mutations, and  
a relatively unfavorable outcome [105]. As a 
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Figure 1. Reported spectrum of significantly mutated driver genes in pediatric and adult cancers. A. Most common recurrently mutated genes in adult cancers. B. 
Most common recurrently mutated genes in pediatric cancers. Different types of cancers are denoted by different colors, and the frequency (%) of the mutated gene 
in each cancer is represented by the upper margin of the respective cancer. For each bar/mutated gene the top four tumors with recurrence of the mutated gene 
are depicted. Mutated genes in blue represent common recurrently mutated genes in both pediatric and adult cancers. Data for the significantly mutated genes in 
adult and pediatric cancer were retrieved from cBioPortal for Cancer Genomics [249, 250] and St. Jude Cloud PeCan, respectively.
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result the WHO classification currently lists 
RELA-positive supratentorial ependymoma as  
a distinct diagnostic category [90]. Many spe-
cific recurrent fusion genes are characteristic 
and diagnostic of pediatric sarcomas, such as 
EWS-associated fusion genes (EWS-FLI1, EWS-
ERG, and multiple other lower-frequency part-
ners) in Ewing sarcoma [106]. More recently, 
novel recurrent fusion genes were identified in 
tumors histopathologically diagnosed as Ewing 
sarcoma, but which may represent genomical-
ly-distinct entitities, including BCOR-CCNB3, 
CIC-DUX4, and CIC-FOX4 positive tumors [107, 
108]. Other fusion genes characteristic of pedi-
atric sarcomas include PAX3-FOXO1 and PAX7-
FOXO1 in alveolar rhabdomyosarcoma, NCOA2 
fusion genes in spindle cell/sclerosing rhabdo-
myosarcoma, ETV6-NTRK3 in infantile fibrosar-
coma, and YWHAE-NUTM2 in clear cell sar- 
coma of the kidney [101, 108-110]. Osteo- 
sarcoma is an exception, which is character-
ized by a high rate of chromothripsis but with-
out a characteristic specific fusion oncoprote- 
in. Interestingly, though, non-coding translo- 
cations in osteosarcoma were found to act  
by interrupting the first intron of the tumor  
suppressor TP53 [16]. In medulloblastoma, 
non-coding recurrent translocations were also 
found to act by promoting enhancer hijacking 
[100]. Another exception is neuroblastoma, 
where chromothripsis is also identified in a  
subset of tumors, and there seems to be a  
lack of unifying driver lesions, but rather differ-
ent drivers in different tumor subtypes [66, 
111-113]. In contrast, structural variations are 
less commonly identified in adult solid tumors. 
Structural variations in adult cancer include 
NAV2-TCF7L1 fusion in colorectal cancer [25], 
TMPRSS2-ERG fusion in prostate cancer [114], 
EML4-ALK, KIF5B-RET [115], ROS-SCL34a2 
[116] fusion genes in non–small cell lung can-
cers, and FGFR3-TACC3 fusion in urothelial car-
cinoma of the bladder [34] among others. 
These structural variations in adult cancers, 
although not frequent, are considered major 
drivers and pliable therapeutic targets [117- 
120].

The epigenome and epigenetic modifiers

Genes involved in epigenetic regulation are 
driving events in a significant proportion of 
childhood tumors. For example, atypical tera-
toid rhabdoid tumor (ATRT) is an aggressive 

tumor characterized by biallelic loss of the 
SMARCB1 gene, involved in chromatin remod-
eling [55, 121]. Interestingly, three distinctive 
subsets of ATRT were identified through the  
use of DNA methylation arrays [122]. Posterior 
fossa ependymoma has also been sub-classi-
fied based on methylation profile, with distinct 
biologic subgroups of CpG island methylator 
phenotype (CIMP) positive and CIMP-negative 
subtypes, with distinct clinical behavior, specifi-
cally with CIMP-positive tumors associated wi- 
th an inferior outcome [123-125]. Chromatin 
remodeling is also a likely driver in other brain 
tumors, though by different mechanisms. Spe- 
cifically, mutations in histone 3 are common in 
high-grade and midline gliomas [126], and are 
thought to drive tumorigenesis by altering the 
chromatin landscape and inhibiting cellular dif-
ferentiation [127]. In medulloblastoma, almost 
half of recurrent gene mutations are in epigen-
etic modifiers [128, 129]. Retinoblastoma is 
characterized with very few genetic mutations 
but an altered epigenome [130]. Fusion oncop-
roteins in alveolar rhabdomyosarcoma, Ewing 
sarcoma, and synovial sarcoma have also been 
shown to have effector functions on the epig-
enome [101].

On the other hand, oncogenic activating muta-
tions in adult cancers are also now known to 
occur in a number of epigenetic modifiers (e.g. 
IDH1/2, EZH2, DNMT3A, MLL2, SMARCA4, 
SETD2, ARID1A, U2AF1) pinpointing epigenetic 
pathways that are involved in tumorigenesis 
[39, 82, 131-138]. Similarly, investigations into 
the role of inactivating mutations in chromatin 
modifiers (e.g. KDM6A, CREBBP/EP300, SMA- 
RCB1) implicate many of these genes as tumor 
suppressors [29, 132, 135, 138-141]. Intri- 
guingly, a number of neoplasms are defined by 
a plethora of mutations in epigenetic regula-
tors, including renal, bladder, lung and adenoid 
cystic carcinomas [82, 138, 142-146]. None- 
theless, the fundamental processes underlying 
the development of tumors, particularly those 
arising from genetic/epigenetic interaction with 
environmental exposures, seem to operate 
across all ages covering both pediatric and 
adult tumors [147].

Genomics of familial cancers

Advances in cancer genetics and sequencing 
have helped characterize mutated cancer pre-
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disposition genes that account for 5-10% of 
cancers, and that manifest with a Mendelian 
pattern of inheritance [148]; the majority being 
transmitted in an autosomal dominant man- 
ner with incomplete penetrance [149]. Familial 
cancers are relatively rare compared with spo-
radic malignancies [150] and include herita- 
ble mutations. Major tumor suppressor genes 
implicated in common sporadic tumors are 
often different from those involved in familial 
forms [151]. The vast majority of familial can-
cers harbor mutations in tumor suppressor 
genes, including what are known as caretaker 
genes (genes involved in the maintenance of 
the genome stability and DNA repair) and gate-
keeper genes (genes that inhibit cell growth  
or induce apoptosis). Mutations in caretaker 
genes were reported in hereditary breast ovar-
ian cancer syndrome, the most common form 
of inherited breast cancer, caused by germline 
mutations in BRCA1 on 17q11 and BRCA2 on 
13q12-q13 [152, 153]. Whole-exome sequenc-
ing studies have revealed additional genes with 
variable penetrance in familial breast cancer, 
such as P53, PTEN, STK11, PALB2 or ATM 
together accounting for approximately 35% of 
familial cases. The majority of non-BRCA1/
BRCA2 breast cancer families might be ex- 
plained by the action of those moderate and/or 
low penetrance susceptibility alleles [154]. 
Additionally, about 45% to 70% of hereditary 
nonpolyposis colorectal cancer (HNPCC) fami-
lies harbor germline mutations in one of five 
DNA mismatch repair genes MLH1, MSH2, 
MSH6, PMS1 and PMS2 [155-159]. Familial 
adenomatous polyposis (FAP) is a familial dis-
ease that accounts for approximately 1% of 
hereditary colorectal cancer. FAP is an autoso-
mal dominant condition caused by germline 
mutations in the gatekeeper gene adenoma-
tous polyposis coli (APC) and is characterized 
by the development of hundreds to thousands 
of adenomatous polyps throughout the colon 
and rectum, with an extremely high lifetime risk 
of colon cancer [160, 161]. Probably the oldest 
recognized tumor predisposition syndrome sec-
ondary to specific germline mutations in a gate-
keeper gene was reported in Li-Fraumeni syn-
drome (LFS), which is associated in most cases 
with mutations in the TP53 tumor suppressor 
gene [162]. LFS shows phenotypic heterogene-
ity exemplified by various cancers including  
sarcomas, breast cancer, brain tumors, adre- 
nocortical carcinoma and acute leukemias, 

occurring at a young age and frequently in child-
hood [163-166]. Another tumor predisposition 
syndrome that has long been characterized is 
heritable retinoblastoma. In children with reti-
noblastoma, approximately 25% have familial 
predisposition that manifests as bilateral mul- 
tifocal retinal tumors, with 90% of such pa- 
tients diagnosed before the age of 5 years. 
Approximately 85% of these patients carry an 
identifiable germline mutation in RB1 and are 
at high risk of developing second malignancies, 
especially sarcomas, embryonal brain tumors, 
and melanoma. They also have a higher inci-
dence of common epithelial cancers in adult-
hood such as breast and colon cancer [167]. 

More recent insights have occurred in other 
types of familial cancers due to genome-wide 
analyses. For example, complete sequencing  
of protein-coding genes in patients with familial 
pancreatic cancer has identified PALB2 as a 
susceptibility gene [168]. In malignant melano-
ma, approximately 3-15% of all cases are famil-
ial [169]. Melanoma kindreds demonstrated 
genetic linkage to chromosome 1p as well as 
9p12-22, [170-172] suggesting genetic hetero-
geneity. Candidate gene surveys identified the 
gatekeeper gene CDKN2A, which encodes the 
cell cycle and cyclin-dependent kinase inhibitor 
p16, as a likely candidate for the melanoma 
predisposing gene in most 9p21-linked famili- 
es [172]. Exome (168 samples) and whole-
genome (16 samples) sequencing of familial 
melanoma cases by Robles-Espinoza et al. sug-
gested that loss-of-function variants in the 
Protection of Telomeres 1 gene (POT1) predis-
pose to melanoma formation via a direct effect 
on telomeres [173]. Additionally, pleuropulmo-
nary blastoma, a rare pediatric lung cancer of 
embryonal origin, has been associated with 
germline DICER1 mutations [174].

Importantly, the recent genomic analyses on 
childhood tumors have identified a prevalence 
of predisposition to cancer in approximately 
10-15% of all pediatric cancer cases [175-177]. 
The characterization of these cases has led  
to new recommendations regarding genetic 
screening of individuals at risk, and is expected 
to continue to evolve as new findings are uncov-
ered by continued genomic analyses of rarer 
tumor subtypes and more patient numbers 
[178, 179]. In fact, strategies for cancer surveil-
lance and prevention have recently started to 
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be developed and are currently being incorpo-
rated into oncologic practice [180-184]. 

Precsion medicine of pediatric and adult 
cancer

It is increasingly being ascertained that each 
tumor comprises its own set of mutational 
changes - both genetic and somatic. Under- 
standing these changes provides opportune 
windows for more effective and personalized 
treatments tailored to mutational profiles of 
each cancer patient. The Precision Medicine 
Initiative defines precision medicine as an 
emerging approach for disease prevention and 
treatment that takes into account individuals’ 
variability in environment, lifestyle and genes 
[185, 186]. In this section of the review, we 
summarize the application of genomics in pre-
cision medicine of adult and pediatric mali- 
gnancies.

Genomics in risk stratification and therapy 
selection

Elucidating the disparate spectra of genomic 
alterations in cancers has eased the identifica-
tion of specific genomic subsets of particular 
tumors, which allowed the association of pow-
erful prognostic features that are being trans-
lated into therapy reduction (for good-risk pa- 
tients) or intensification (for high-risk patients). 
This was possibly the highest area of direct 
impact of recent genomic studies in childhood 
cancers. Examples are in medulloblastoma, 
where the WNT pathway subtype has been 
identified to have a particularly good prognosis, 
and therefore these patients will receive less 
intensive therapy in ongoing prospective clini-
cal trials, thus potentially diminishing short- 
and long-term side effects of treatment [187-
189]. Other risk stratification criteria based on 
the genomic alterations discussed in the above 
sections for multiple tumor types including 
ependymoma, glioma, among others, are ex- 
pected to be refined and incorporated into 
future clinical trials. 

Similarly, colorectal cancer subtypes in adults, 
defined by proposed etiologic pathways (MSI, 
CIMP, BRAF-mutation, and KRAS-mutation sta-
tus), were shown to be associated with marked 
differences in survival. For instance, patients 
with MSI-high subtypes of disease had the 
most favorable survival, whereas those with 

MSS/MSI-low, CIMP-positive, BRAF-mutated, 
KRAS-mutation-negative had the highest mor-
tality [190]. Furthermore, four clinically relevant 
molecular subtypes linked to distinct patterns 
of molecular alterations, disease progression 
and prognosis, were identified for gastric can-
cer. The worst prognosis was associated with 
the mesenchymal-like subtype which has the 
highest recurrence frequency (63%) among  
the four subtypes. Microsatellite-unstable tu- 
mors were shown to have the best overall prog-
nosis and the lowest frequency of recurrence 
(22%) compared with the tumor protein 53 
(TP53)-active and TP53-inactive types which 
include patients with intermediate prognosis 
and recurrence rates, with the TP53-active 
group showing better prognosis. 

In this context, a system named PRECOG 
(Prediction of Clinical Outcomes from Genomic 
Profiles) has been established for querying 
associations between genomic profiles and 
cancer outcomes. PRECOG encompasses 166 
cancer expression data sets, including overall 
survival data for ~18,000 patients diagnosed 
with 39 distinct malignancies. Using this re- 
source, Gentles, A. J., et al. has identified a 
forkhead box MI (FOXM1) regulatory network as 
a major predictor of adverse outcomes in many 
tumors. In contrast, the expression of KLRB1 
(encoding CD161), reflects favorable prognosis 
[191]. More advances are expected in this  
area as more population genomes are being 
sequenced and as data sharing among scien-
tists becomes more common and organized.

Personalized therapy

Targeted therapy

Pediatric applications in genomic precision 
medicine are best demonstrated by the multi-
ple ongoing genomically-driven clinical trials in 
childhood tumors [176, 192-201]. In addition  
to providing important insight into tumor char-
acterization and biology, these studies have to 
date demonstrated that approximately 30-40% 
of cases have ‘actionable’ mutations. Impor- 
tantly, in a small subset of pediatric solid 
tumors, genetic findings have resulted in direct 
therapeutic applications by offering a target  
for treatment, with resulting improvements in 
patient outcome. Examples are targeting ALK, 
which has shown success in treatment of chil- 
dhood inflammatory myofibroblastic tumors 
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[202] and anaplastic large cell lymphoma 
(ALCL), but less so in neuroblastoma due to 
mutation-specific structural variants in the ALK 
kinase domain that confer resistance to cur-
rently available ALK inhibitors [203]. Other pro- 
mising targets for which pharmacologic agents 
are already available and which are currently in 
clinical trials include BRAF in a subset of glio-
mas [204], hedgehog pathway alteration in a 
subset of medulloblastoma [205], and recently 
TRK inhibition in infantile fibrosarcoma, a tumor 
characterized by a fusion protein that activates 
NTRK [206]. 

In contrast, targeted therapy has been more 
frequently applied in clinical management of 
adult solid cancers. Imatinib, which was the 
first selective tyrosine-kinase inhibitor to be 
approved for the treatment of leukemia, is us- 
ed as neoadjuvant (preoperative) and adjuvant 
(postoperative) therapy for patients with gas-
trointestinal stromal tumors harboring muta-
tions in the KIT proto-oncogene [207]. Crizoti- 
nib, a tyrosine kinase inhibitor, is approved for 
treatment of most anaplastic lymphoma kina- 
se (ALK)-positive non-small cell lung cancers 
(NSCLCs) which proved to be highly responsive 
to treatment. Treatment with tyrosine kinase 
inhibitors (TKIs) targeting epidermal growth fac-
tor receptor (EGFR) (e.g., erlotinib, gefitinib) is 
now the standard-of-care for lung adenocarci-
nomas with activating mutations (e.g. L858R)  

along with their respective targets that are cur-
rently approved for the treatment of adult 
cancers. 

Resistance and relapse

Cancer relapse and drug resistance continue to 
be a major impediment in medical oncology. 
Recurrent tumors are often phenotypically very 
different from their primary counterparts, rep-
resenting the end product of in vivo selection 
that is often associated with acquired genomic 
alterations [212-214]. Whole-genome sequenc-
ing of relapsed breast cancer showed that 
relapsed tumors acquired driver mutations not 
seen in primary tumors. For instance, samples 
from relapses harbored a higher number of 
driver point mutations on average than those  
in the primary tumor, these include a number of 
clinically actionable alterations and mutations 
inactivating SWI-SNF, such as ARID1A, ARID1B 
and ARID2. Of note, those genes were also 
acquired in metastatic endometrial cancer 
[215], and hepatocellular carcinoma [216]. 
Additionally, JAK2 and STAT3 were also shown 
as significantly mutated in the relapse tumors. 
Many of those newly acquired mutations are 
driven by selective pressure exerted by thera-
peutic interventions such as ARID1A and AR- 
ID2 after taxane chemotherapy, and amplifica-
tions in MDM4, FGFR1, and CCND1 after endo-
crine therapy [217]. Similarly, acquired BRAF 

Table 1. Summary of currently approved targeted therapy for adult 
cancers and their respective targets
Target 
Gene Drug Type of cancer

C-Kit Imatinib Gastrointestinal stromal cancers
EGFR Erlotinib Non-small cell lung carcinoma (NSCLC)

Gefitinib Non-small cell lung carcinoma (NSCLC)
Panitumumab/cetuximab Colorectal cancer (CRC)

EML4-ALK Crizotinib Non-small cell lung carcinoma (NSCLC)
BRAF Vemurafenib Melanoma

Sorafenib Renal cell carcinoma
Hepatocellular carcinoma
Thyroid carcinoma

MEK Trametinib Melanoma
Non-small cell lung carcinoma (NSCLC)

HER2 Trastuzumab Breast cancer
Gastric cancer
Esophageal cancer

CDK4/6 Palbociclib Breast cancer

in EGFR, particularly non-
smoker patients or those 
of East Asian ethnicity 
[208]. Also, trastuzumab 
(Herceptin) is approved as 
first-line treatment of a 
significant fraction (~25-
30%) of breast cancers, 
those with amplification 
of the ERBB2 oncogene 
[209]. Moreover, CDK4/6 
inhibitors (palbociclib, ribocic- 
lib, and abemaciclib) are 
recommended for hormo- 
ne-positive breast cancer 
[210]. Vemurafenib, a BR- 
AF enzyme inhibitor, is em- 
ployed for treatment of 
BRAF mutant late-stage 
melanomas [211]. Table 1 
summarizes notable tar-
geted therapy strategies 
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V600E mutation was speculated as a poten- 
tial mechanism of resistance after Osimertinib 
treatment in non-small-cell lung carcinomas 
[218]. Studies in limited numbers of the child-
hood tumor neuroblastoma have shown occur-
rence of mutations and structural alterations 
activating the RAS/MAPK pathway in the major-
ity of tumors at relapse, suggesting a central 
role for this pathway in disease reactivation. 
Other mutations identified included those af- 
fecting ALK and CHD5 genes [219]. However, 
studying the genomic alterations in pediatric 
solid tumors at relapse has been relatively slow 
because of the paucity of biopsies and the rela-
tive rarity of individual tumor subtypes [220]. 
Recent efforts within pediatric oncology have 
been focusing on prospective studies that in- 
corporate tumor biopsy at relapse, to better 
understand tumor biology and enable further 
progress in understanding tumor progression 
and therapeutic targeting [221]. 

Perspective

Studies have shown that various cancers when 
diagnosed at earlier stages (e.g. stages I or II) 
exhibit significantly improved outcomes (e.g. 
following definitive treatment or surgery) com-
pared to when the disease is diagnosed at 
more advanced (e.g. metastatic) stages [222, 
223]. These data suggest that early detection 
and intervention are likely to be effective 
means for reducing morbidity and mortality of 
cancer. It is conceivable that development of 
non-invasive molecular methods or assays (liq-
uid biopsies) can impact early detection (par-
ticularly for early-stage disease) and possibly 
clinical outcome [224]. Circulating tumor cells 
(CTC) and circulating tumor DNA spread in 
blood and/or lymphatic vessels from solid 
tumors. These CTCs can remain loose in circu-
lation, cluster together as they travel, or lodge 
themselves in new tissues [225]. Numerous 
studies have shown that CTCs and ctDNA may 
be used as a marker to predict disease pro-
gression and survival in metastatic [226, 227] 
and possibly even in early-stage cancer patients 
[228]. However, there has been very little work 
performed to date on studying circulating tumor 
cells and their markers for understanding tumor 
biology in childhood cancers. 

Immune-based cancer therapies have come to 
the forefront of targeted therapeutic strategies 
for the clinical management of cancer, mostly 

adult malignancies [229]. Immune-based can-
cer therapies are already revolutionizing the 
management of several types of intractable 
cancers [230]. Two main immunotherapeutic 
approaches (i.e., checkpoint inhibition and cel-
lular therapy with autologous (‘self’) chimeric 
antigen receptor T cells (CAR T cells)), currently 
show undeniable evidence of efficacy in several 
cancer types, and promise yet more rapid prog-
ress as they are refined and combined with 
existing conventional therapies and with each 
other [230, 231]. The remarkable success of 
immune checkpoint blockade, including in non-
small cell lung cancer [232], advanced mela-
noma [233] and renal cancer [234], pinpoints 
that many cancers are actually spontaneously 
immunogenic (i.e. can be detected by the 
immune system), but the immune response is 
inhibited by factors in the tumor microenviron-
ment [235, 236]. In fact, it has been demon-
strated that patients’ sensitivity to immune 
checkpoint inhibitors is influenced by muta-
tions that lead to “neoantigens” [237]. In a 
landmark study, Rizvi and colleagues demon-
strated that increased somatic mutational  
burden in non-small cell lung cancer is associ-
ated with elevated sensitivity to PD-1 check-
point blockade [238]. Additionally, McGranahan 
and colleagues found that a high burden of 
clonal tumor neoantigens (shared by all tumor 
cells) is indicative of better patient survival, 
increased infiltration by lymphocytes, and a 
more durable response to immunotherapy 
[239]. In contrast, patients with a high sub-
clonal neoantigen fraction (present in only a 
fraction of cells) showed little response to PD-1 
blockade [239]. Moreover, it has been shown 
that tumor immunogenicity differs greatly 
between different types of cancer and cancers 
of the same type in different individuals [236]. 
Consequently, it will be crucial to design thera-
peutic interventions with T-cell reactivity selec-
tively enhanced against tumor-specific clonal 
neoantigens [240, 241]. In contrast, studies 
probing neoantigen landscapes of pediatric 
tumors are scarce compared with their adult 
counterparts. One study characterized the neo-
antigen repertoire of 23 types of pediatric can-
cers (540 childhood cancer genomes) by 
whole-genome sequencing [242]. Owing to the 
low mutation rate in pediatric cancers com-
pared to adult tumors, it is conceivable that the 
number of predicted neoantigens in pediatric 
malignancies is lower than that reported in 
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adult cancers [242]. Notwithstanding, the neo-
antigen repertoire is ideal for the development 
of novel immunotherapeutic modalities for the 
treatment of pediatric tumors, including tumor 
vaccines and adoptively transferred tumor-
reactive T cells. Alternatively, such neoantigens 
will help in defining the subset of children who 
will mostly benefit from immune checkpoint 
inhibitors.

Molecular-based personalized therapeutic st- 
rategies, be it targeted anti-cancer drugs or 
immune-based cancer therapy, must take into 
account the heterogeneity observed within a 
tumor. In addition to the extensive heterogene-
ity between individual tumors demonstrated by 
large-scale sequencing analyses of solid can-
cers [243], genomic intra-tumor heterogeneity 
(ITH) has also been shown to be a common 
attribute of several adult malignancies [244]. 
Furthermore, studies comparing mutational 
profiles of primary tumors and their corres- 
ponding metastatic lesions [214, 245] or local 
recurrences [213, 217] displayed ITH at the 
nucleotide level. Moreover, ITH associated with 
heterogeneous protein function, may promote 
tumor adaptation and therapeutic failure th- 
rough Darwinian selection [244]. Thus, intra-
tumor heterogeneity may have important con-
sequences for personalized-medicine appro- 
aches that commonly portray mutational land-
scapes of the tumor by relying on single tumor-
biopsy [243]. It is noteworthy that therapy itself 
may be a source of acquired ITH. For example, 
temozolomide treatment has been shown to 
leave a signature in the cancer genome mani-
fested as an elevated rate of C > T transitions, 
mainly at CpC and CpT sites [4]. Furthermore, 
therapy-induced mutations may enhance total 
neoantigen burden, but without eliciting an 
effective anti-cancer response to immunother-
apy, probably because of the subclonal nature 
of these neoantigens [239]. Thus, the identifi-
cation of cytotoxic tumor-infiltrating T cells that 
recognize specifically clonal mutations, shared 
by all tumor cells, might hold promise for adop-
tive therapy strategies to address the challeng-
es of ITH. It is also largely unknown whether  
the high degree of genomic ITH observed in 
major adult cancers is also present in tumors 
from infants and children, given the short peri-
od of time during which pediatric tumors de- 
velop. Remarkably, one study has identified 
intratumoral diversity in all pediatric patients 

analyzed after chemotherapy including those 
with neuroblastoma, nephroblastoma and rha- 
bdoid tumors [246]. Thus, this present study of 
clonal evolution under chemotherapy does not 
support the notion of childhood cancers being 
overall genetically stable [246]. Yet, more stud-
ies are still needed to further elucidate ITH in 
pediatric cancers.

With all the complexity and heterogeneity seen 
in cancer, it has been suggested that preven-
tion remains the best “cure” [5]. Yet, this is only 
possible when we acquire a deep understand-
ing of premalignant biology. Unlike the exten-
sive efforts put to profile advanced stage 
tumors, studies profiling genomic alterations in 
precancerous tissues are very rare. Histologic 
changes preceding the development of inva-
sive carcinoma characterize premalignant le- 
sions [247]. These lesions are often identified 
in biopsies from patients with a suspected 
tumor, from samples during preventive screen-
ing, or from neighboring regions of an invasive 
cancer [248]. Identifying the molecular altera-
tions in precancerous tissues and elucidating 
the associated changes in the microenviron-
ment would facilitate the development of bio-
markers for the early detection of cancer. In 
addition, such studies would hasten the devel-
opment of preventive measures to delay or 
reverse the development of tumors [248]. 
Joshua et al. have made the call for a new col-
laborative initiative analogous to “The Cancer 
Genome Atlas”, entitled the “Pre-Cancer Ge- 
nome Atlas (PCGA). This initiative aims to com-
prehensively profile the genomics of premalig-
nant lesions and their associated field of injury, 
combined with clinical data including histology 
and outcome (progression/regression) [248].  
It is believed that such an initiative would help 
elucidate the sequence of genomic events 
characterizing the progression of precancerous 
lesions to malignant ones [248]. Hence, our 
ability to predict which lesions are at higher risk 
of progression to invasive tumors would be 
greatly improved, allowing for the development 
of novel targeted early interventional and the- 
rapeutic strategies [248]. However, questions 
are raised on the feasibility of such a “Pre-
Cancer Genome Atlas” for pediatric tumors due 
to the paucity of epithelial cancers (hypothe-
sized to arise from accumulating environmental 
insults), and the different etiologic mechanism 
for childhood tumors.
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