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Abstract: Objective: To explore the effects of miRNA-21/phosphatase and tensin homolog (PTEN) on the high 
glucose-stimulated epithelial-to-mesenchymal transition (EMT) in human peritoneal mesothelial cells (HPMCs). 
Methods: HPMCs were cultured under control conditions, or with high glucose (HG), HG with miRNA-21 mimic or a 
miRNA-21 inhibitor. Expression of miRNA-21, α-smooth muscle actin, fibronectin, E-cadherin and PTEN were mea-
sured by real time PCR, Western blotting and immunofluorescence staining. Results: Compared with the control, 
HG induced the EMT, as shown by upregulation of α-smooth muscle actin and fibronectin, and downregulation of 
E-cadherin. We also found that HG upregulated miRNA-21 expression and downregulated PTEN expression; the 
miRNA-21 inhibitor attenuated the HG-induced EMT in HPMCs by targeting PTEN; the miRNA-21 mimic increased 
the HG-induced EMT in HPMCs by targeting PTEN. Conclusions: This study demonstrated that miRNA-21 played a 
vital role in the HG-induced EMT by targeting PTEN in HPMCs.
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Introduction

It is well known that peritoneal dialysis (PD) is a 
crucial chronic life-sustaining treatment for end 
stage renal disease (ESRD), and research has 
shown that the number of patients undergoing 
PD in both developing and developed countries 
has increased over the last decade [1]. Due to 
its simplicity and economic advantages, PD is 
widely applied to patients who live in remote 
and rural areas [1]. However, the high glucose-
based solutions have disadvantages, such as 
high lactate, low pH, glucose degradation prod-
ucts and hyperosmolarity [2, 3], which can lead 
to morphological and functional changes of the 
peritoneum, and eventually cause peritoneal 
fibrosis and ultrafiltration failure [4]. 

The epithelial-to mesenchymal transition (EMT) 
is a crucial and complex phenomenon involved 
in organ fibrosis, including renal fibrosis, liver 
fibrosis and peritoneal fibrosis [5-7]. The EMT  
in HPMCs is considered as an early stage of 
peritoneal fibrosis [8]. Preventing the EMT in 
patients undergoing PD could alleviate perito-

neal fibrosis, thus protecting the peritoneal 
mesothelium [9]. The EMT process is accompa-
nied by high expression of mesenchymal mark-
ers such as fibronectin (FN) and α-smooth mus-
cle actin (α-SMA), and low expression of epithe-
lial markers such as E-cadherin [10]. In our 
previous study, we found that high glucose 
could induce the EMT in HPMCs [11]; however, 
the underlying molecular mechanisms are not 
yet fully understood. 

microRNAs (miRNAs), which play a key role in 
regulating targeted genes, have been exten-
sively studied as biomarkers in numerous 
human diseases [12]. Recent studies have 
demonstrated that miRNAs are related to the 
development of the EMT and fibrosis in various 
organs [13, 14]. Among these miRNAs, miRNA-
21 has been shown to be upregulated during 
HG stimulation [15], and it also induced organ 
fibrosis in liver [16], lungs [17], heart [18] and 
kidneys [19].

However, the effect of miRNA-21 in the EMT 
process in HPMCs is not completely under-
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Figure 1. HG induced the EMT and increased the level of miRNA-21 in HPMCs. HPMCs were cultured with HG of 
different concentrations (0, 1.5%, 2.5%, 4.25%) for 24 h, or 2.5% HG for different times (0 h, 6 h, 12 h, 24 h, 48 h). 
(A-D) HG induced the EMT in HPMCs in a dose-dependent manner (A: Western blot; B-D: Real-time PCR). (E-H) HG in-
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duced the EMT in HPMCs in a time-dependent manner (E: Western blot; F-H: Real-time PCR). (I, J) HG increased the 
level of miRNA-21 in a dose-dependent (I) and time-dependent (J) manner (real-time PCR). Each value represents 
the mean ± SEM (n=6) (**P < 0.01 vs. control).

stood. In the present study, we aimed to inves-
tigate the expression of miRNA-21 and phos-
phatase and tensin homolog (PTEN) in HPMCs, 
and investigate their potential roles in the EMT 
in HPMCs.

Materials and methods

Reagents

RPMI 1640, trypsin-EDTA and fetal bovine 
serum (FBS) were obtained from Gibco. Bovine 
serum albumin (BSA) was purchased from 
Sigma. Rabbit monoclonal α-SMA, rabbit mono-
clonal E-cadherin, rabbit monoclonal PTEN, 
mouse monoclonal FN and mouse monoclonal 
β-actin antibodies were obtained from Abcam. 
Goat anti-rabbit and goat anti-mouse HRP-
conjugated secondary antibodies and FITC-
conjugated secondary antibody were pur-
chased from Beyotime biotechnology (Jiang- 
su, China). The enhanced chemiluminescence 
(ECL) kit was purchased from Pierce Biotech- 
nology, Inc. miRNA 21 inhibitor/mimic and 
miRNA 21 inhibitor/mimic negative controls 
were purchased from Guangzhou RiboBio Co., 
Ltd (China). Trizol, Lipofectamine 2000 trans-
fection reagent and DAPI were obtained from 
Invitrogen.

Culture of HPMCs 

As mentioned before [11], HPMCs were cul-
tured in RPMI 1640 medium supplemented 
with 10% FBS, streptomycin and penicillin. 
Cells were cultured at 37°C with a 5% CO2 
atmosphere, the RPMI1640 medium was re- 
freshed every 2-3 days. HPMCs were then 
digested and passaged with a sub-cultivation 
ratio of 1:3 to 1:4. HPMCs were cultured with 
HG of different concentrations (control group, 
1.5% HG group, 2.5% HG group, 4.25% HG 
group) for 24 h, or 2.5% HG for different times 
(0 h, 6 h, 12 h, 24 h, 48 h). HPMCs were then 
transfected with miR21 mimic/inhibitor with or 
without HG treatment.

Transfections

HPMCs were transfected with human miRNA 
21 inhibitor/mimic and negative controls using 

lipofectamine 2000 reagent according to the 
manufacturer’s instructions. Culture medium 
was removed after 24 h, and HPMCs were 
unstimulated or stimulated with HG for another 
24 h, cells were then collected for real time 
PCR, western blotting and immunofluorescence 
staining.

Western blotting

Western blot analysis was carried out as previ-
ously mentioned [11]. The 50 ug proteins from 
HPMCs were separated by 10% SDS-PAGE at 
70 V for 2 h and then transferred to a nitrocel-
lulose membrane at 100 V for 1 h. After block-
ing with 5% non-fat dry milk, the membranes 
were incubated at 4°C overnight with dilution of 
1:1,000 for primary antibodies and 1:5,000 for 
secondary antibodies. An ECL kit was used to 
develop the blots, and images were captured 
using UVP (G-BOX EF). We applied Image J soft-
ware to measure the intensity of each band and 
relative expressions were normalized against 
β-actin. Experiments were repeated at least 
three times.

Real-time PCR

Trizol reagent was applied to extract total RNA 
according to the manufacturer’s protocol. A 
Reverse Transcription System kit was used to 
synthesize first-strand cDNA according to the 
manufacturer’s protocol (Takara). Real-time 
quantitative PCR was performed using the 
SYBR Premix Ex Taq II kit (Takara) with ABI 
7500 Real-Time PCR System (Applied Bio- 
systems, CA). The relative expression of each 
gene was measured after normalization with 
GAPDH. The cDNA sequences were amplified 
using specific primers, and the sequences were 
as follows: E-cadherin (sense) 5’-GGGCTGGA- 
CCGAGAGAGTTT-3’ and (antisense) 5’-CCTTG- 
TACGTGGTGGGATTGA-3’; α-SMA (sense) 5’-AT- 
CATCACCAACTGGGACGAC-3’ and (antisense) 
5’-CTCTTCAGGGGCAACACGAA-3’; FN (sense) 
5’-CCAAACCTCAAGCTCCCGTCA-3’ and (anti-
sense) 5’-GAGATTCTGCACATCACGGTCA-3’; PT- 
EN (sense) 5’-CGACGGGAAGACAAGTTCAT-3’ 
and (antisense) 5’-AGGTTTCCTCTGGTCCTGGT- 
3’; and GAPDH (sense) 5’-GCACCGTCAAGGCT- 
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GAGAAC-3’ and (antisense) 5’-TGGTGAACACG- 
CCAGTGGA-3’. 

Immunofluorescence staining with E-cadherin 

Cells were fixed with 4% paraformaldehyde for 
15 min at room temperature, permeabilized 
with 0.25% Triton X-100 for 10 min, then incu-
bated with 5% BSA for 30 min at room tem- 
perature. HPMCs were then incubated with  
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the primary antibody rabbit anti-E-cadherin 
(1:200) overnight at 4°C in a humidified cham-
ber. After 3 washes with PBS for 5 min, HPMCs 

were incubated in FITC-conjugated secondary 
antibody (1:50) for 1 h at room temperature. 
The nuclei were stained with DAPI. Images  

Figure 2. The miR-21 mimic increased the HG-induced EMT in HPMCs. HPMCs were transfected with miR21 mimic 
with or without 2.5% HG treatment. (A-D) Overexpression of miR-21 exacerbated the EMT in HPMCs. (A: Western 
blot; B-D: Real-time PCR). (E-I) Overexpression of miR-21 exacerbated the HG-induced EMT in HPMCs. (E: Western 
blot; F-H: Real-time PCR; I: Immunofluorescence staining of E-cadherin, magnification × 200). Each value represents 
the mean ± SEM (n=6) (**P < 0.01 vs. control; ##P < 0.01 vs. HG group). 

Figure 3. The miR-21 inhibitor alleviated the HG-induced EMT in HPMCs. HPMCs were transfected with miR21 inhibi-
tor followed by 2.5% HG treatment. A: Western blots; B-D: Real-time PCR. Each value represents the mean ± SEM 
(n=6) (**P < 0.01 vs. control; ##P < 0.01 vs. HG group). E: Immunofluorescence staining of E-cadherin. Magnification 
× 200.
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were obtained using a fluorescence microscope 
(Nikon ECLIPSE Ti). 

Statistical analyses

SPSS (version 18) software were used for data 
analysis. Quantitative data were expressed as 
means ± SEM. Tukey’s multiple comparison 
test was used for individual comparisons; stan-
dard ANOVA methodology was used for multiple 
group comparisons (P < 0.05 was considered 
to be significant). 

Results

HG induced the EMT and increased miRNA-21 
expression in HPMCs 

In order to explore the role of the HG-induc- 
ed EMT in HPMCs, we measured the expres-
sion of EMT biomarkers in HG-treated HPMCs. 
Compared with the control group, HG signifi-

cantly increased the expression of α-SMA and 
FN, and decreased the expression of E-cadhe- 
rin in a dose-dependent (Figure 1A-D) and 
time-dependent manner (Figure 1E-H) in HP- 
MCs, which means that HG treatment induced 
the EMT in HPMCs. Figure 1I, 1J showed that 
HG treatment also remarkably increased miR-
21 expression in a dose- and time-dependent 
manner. 

The miR-21 mimic exacerbated the HG-
induced EMT in HPMCs

To confirm the role of miR-21 in the EMT in 
HPMCs, the miR-21 mimic and negative control 
were transfected into HPMCs; cells were then 
cultured with or without HG for another 24 h. 
Western blotting, real-time PCR and immuno-
fluorescence indicated that the miR-21 mimic 
significantly increased the levels of α-SMA and 
FN, and decreased the level of E-cadherin 
(Figure 2A-D), which suggests that the miR-21 

Figure 4. PTEN is a target of miR-21. HPMCs were transfected with miR21 mimic/inhibitor. (A, B) The miR-21 mimic 
inhibited PTEN expression (A: Western blot; B: Real-time PCR). (C, D) The miR-21 inhibitor upregulated PTEN expres-
sion (A: Western blot; B: Real-time PCR). (C: Western blot; D: Real-time PCR). Each value represents the mean ± SEM 
(n=6) (**P < 0.01 vs. miR-21 negative control).
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Figure 5. miR-21 directly targeted PTEN in HG-treated HPMCs. HPMCs were cultured with HG of different concentra-
tions (0, 1.5%, 2.5%, 4.25%) for 24 h, or 2.5% HG for different times (0 h, 6 h, 12 h, 24 h, 48 h), then were trans-
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mimic can induce the EMT. Moreover, the miR-
21 mimic exacerbated the progress of the 
HG-induced EMT (Figure 2E-I). These data 
demonstrated that miR-21 exacerbated the 
HG-induced EMT in HPMCs.

The miR-21 inhibitor alleviated the HG-induced 
EMT in HPMCs

To further explore the role of miR-21 in the EMT, 
the miR-21 inhibitor and negative control were 
transfected into HPMCs; cells were then cul-
tured with or without HG for another 24 h. 
Western blotting, real-time PCR and immuno-
fluorescence showed that the miR-21 inhibitor 
significantly alleviated the upregulation of the 
mesenchymal markers α-SMA and FN and 
reduced the downregulation of the epithelial 
marker E-cadherin in HG-treated HPMCs (Fig- 
ure 3A-E). Therefore, this shows that the miR-
21 inhibitor can decrease the HG-induced EMT 
in HPMCs.

miR-21 directly targeted PTEN in the HG-
induced EMT in HPMCs

To verify whether miR-21 targeted PTEN in the 
HG-induced EMT, PTEN expression was mea-
sured after miR-21 mimic and inhibitor trans-
fection in HPMCs with or without HG treatment. 
Real-time PCR and Western blotting showed 
that the miR-21 mimic downregulated PTEN 
expression (Figure 4A, 4B), and that the miR-
21 inhibitor upregulated PTEN expression (Fig- 
ure 4C, 4D). 

HG inhibited PTEN expression in a dose- and 
time-dependent manner (Figure 5A-D). PTEN 
expression was also measured after miR-21 
mimic/inhibitor transfection in HG-treated HP- 
MCs. Compared to the HG group, the miR-21 
mimic further inhibited PTEN expression in 
HG-treated HPMCs (Figure 5E, 5F); the miR-21 
inhibitor partly restored the expression of PTEN 
in HG-treated HPMCs (Figure 5G, 5H). These 
results demonstrated that miR-21 directly tar-
geted PTEN in HG-treated HPMCs.

Discussion

PD is extensively used for the long-term treat-
ment of ESRD; however, HG solutions can lead 
to morphological and functional injury in the 
peritoneum, and may eventually cause perito-
neal fibrosis and ultrafiltration failure. The HG- 
induced EMT in HPMCs plays a crucial role in 
peritoneal dysfunction and fibrosis [8]. There- 
fore, preventing the EMT could alleviate perito-
neal fibrosis, protecting the peritoneal meso-
thelium in patients undergoing PD [9]. 

Increasingly more research have shown that 
miRNAs play a vital role in the process of EMT 
[20, 21]. miRNA-21 is present in plasma and 
peritoneal fluid [22-24]. Previous studies have 
indicated that miRNA21 plays a crucial role in 
the process of EMT and peritoneal fibrosis in 
PD [25, 26]. However, the molecular mecha-
nisms of miR-21 in the EMT in HPMCs are still 
poorly understood. 

In the current study, we investigated how 
miRNA-21 could contribute to the EMT in 
HG-treated HPMCs. We found that HG could 
induce the EMT in HPMCs, with a concomitant 
increase in the level of miRNA-21. We also 
showed that miR-21 could induce the EMT, and 
the miR-21 mimic increased this HG-induced 
EMT in HPMCs, while the miR-21 inhibitor 
attenuated the HG-induced EMT in HPMCs. 
Overall, we demonstrated that miRNA-21 was 
involved in the HG-induced EMT in HPMCs. 

microRNAs affect organ EMT and fibrosis by 
regulating the expression of target genes [27]. 
Studies have shown that PTEN is related to the 
miR-21-induced EMT and that PTEN is a direct 
targeted gene of miR-21 [28-30]. Therefore, we 
explored whether miR-21 was able to regulate 
the EMT by targeting PTEN. We measured PTEN 
expression in this context, and found that miR-
21 directly targeted PTEN in the HG-induced 
EMT in HPMCs. 

In summary, this investigation has shown that 
miR-21 plays a vital role in the HG-induced EMT 

fected with miR21 mimic/inhibitor followed by 2.5% HG treatment. (A, B) HG inhibited PTEN expression in a dose-
dependent manner (A: Western blot; B: Real-time PCR). (C, D) HG inhibited PTEN expression in a time-dependent 
manner (C: Western blot; D: Real-time PCR). (E, F) The miR-21 mimic further inhibited PTEN expression in HG-treated 
HPMCs (E: Western blot; F: Real-time PCR). (G, H) The miR-21 inhibitor partly restored the expression of PTEN in 
HG-treated HPMCs (G: Western blot; H: Real-time PCR). Each value represents the mean ± SEM (n=6) (**P < 0.01 
vs. control; ##P < 0.01 vs. HG group).
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in HPMCs, by targeting PTEN. According to the 
current investigation, we found that miR-21 
could be a promising predictor for diagnosing 
and treating the effects of HG.
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