
Drug permeation and metabolism in Mycobacterium 
tuberculosis: prioritising local exposure as essential criterion in 
new TB drug development

Lloyd Tanner1,2, Paolo Denti1, Lubbe Wiesner1, and Digby F. Warner2,#

1SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and 
Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of 
Cape Town, Observatory, South Africa

2Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, 
University of Cape Town, Observatory, South Africa

Abstract

Anti-tuberculosis (TB) drugs possess diverse abilities to penetrate the different host tissues and 

cell types in which infecting Mycobacterium tuberculosis bacilli are located during active disease. 

This is important since there is increasing evidence that the respective “lesion-penetrating” 

properties of the front-line TB drugs appear to correlate well with their specific activity in standard 

combination therapy. In turn, these observations suggest that rational efforts to discover novel 

treatment-shortening drugs and drug combinations should incorporate knowledge about the 

comparative abilities of both existing and experimental anti-TB agents to access bacilli in defined 

physiological states at different sites of infection, as well as avoid elimination by efflux or 

inactivation by host or bacterial metabolism. However, while there is a fundamental requirement to 

understand the mode of action and pharmacological properties of any current or experimental anti-

TB agent within the context of the obligate human host, this is complex and, until recently, has 

been severely limited by the available methodologies and models. Here, we discuss advances in 

analytical models and technologies which have enabled investigations of drug metabolism and 

pharmacokinetics (DMPK) for new TB drug development. In particular, we consider the potential 

to shift the focus of traditional pharmacokinetic-pharmacodynamic analyses away from plasma to 

a more specific “site of action” drug exposure as an essential criterion for drug development and 

the design of dosing strategies. Moreover, in summarizing approaches to determine DMPK data 

for the “unit of infection” comprising host macrophage and intracellular bacillus, we evaluate the 

potential benefits of including these analyses at an early stage in the preclinical drug development 

algorithm.
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INTRODUCTION

Tuberculosis (TB) remains a leading cause of death owing to an infectious disease despite 

the existence of multiple front-line and second-line drugs that are active against 

Mycobacterium tuberculosis (Mtb), its etiological agent (1,2). A critical limitation of the 

current anti-TB regimen is that it involves a minimum six months combination therapy, a 

requirement thought to reflect the inability of the existing drugs to sterilize bacilli located in 

different host micro-environments and in variable metabolic states, often resulting in 

clearance of bacilli from sputum followed by subsequent disease relapse (3,4). 

Consequently, rational approaches to addressing this problem are urgently needed as they 

might offer the prospect of elucidating (at least partially) the reasons for the often described 

difficulty in translating compound potency in vitro into drug efficacy in vivo (5) – and, in 

turn, could inform the choices of chemical properties and screening assays to be prioritized 

in the critical-path algorithms that drive medicinal chemistry efforts as part of new TB drug 

discovery (6).

A seminal review (7) highlighted the absence of knowledge about the distributions of widely 

used anti-TB agents into the pulmonary lesions in which infecting bacilli are sequestered 

and, therefore, the need to understand how individual compounds distribute into the different 

host cell environments (8,9). In order to reach its mycobacterial target, an anti-TB antibiotic 

must penetrate complex host lesions and lesion compartments comprising multiple cell types 

(6,7,10). For intracellular bacilli, the drug must also overcome the barrier of the host cell 

membrane and, in many cases, an encapsulating vesicular membrane, as well as potential 

sequestration by the different organelles and intracellular bodies within different cell types 

(11,12). The occupation of discrete host loci (13–15) presents an additional confounder 

(Figure 1), in that individual bacteria from a clonal infecting population are characterized by 

different physiological states, and this can impact drug susceptibility (11,16,17) and the 

ability of the drug to penetrate the complex mycobacterial cell wall (18), as well as 

subverting the active compound’s activity against a metabolic target that might be essential 

only under specific conditions (19,20). As if that weren’t already sufficiently complex, host-

mediated (21,22) and/or mycobacterium-mediated (23,24) biotransformation might further 

complicate the passage of drug from ingestion by the patient to its intrabacillary target (7). 

Although some guiding principles have been inferred from both preclinical and clinical 

observations in TB as well as other diseases, the physico-chemical and pharmacological 

properties which enable drugs to navigate this complex delivery pathway, avoid host 

metabolism, and penetrate the bacillus, remain poorly understood (6,7,25). It is not 

surprising, therefore, that active compounds selected (and optimized) for potency in a 

handful of in vitro assays often fail to demonstrate activity in vivo in the infected host (26).

Fortunately, the last decade has seen considerable efforts towards developing accurate 

methods (Table 1) to measure drug levels directly in Mtb-infected tissues (27–29). Through 

the application of advanced chromatographic, mass spectrometry, and imaging techniques 

including HPLC coupled to tandem mass spectrometry (LC–MS/MS) and MALDI mass 

spectrometry imaging (MALDI–MSI), the quantification of tissue and lesion distribution of 

known and experimental anti-TB drugs in animal models and clinical samples has become 

increasingly attainable – primarily through the work of Veronique Dartois and colleagues 
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(4,7,8,28,30) – thus offering the prospect of informing a systems pharmacology approach to 

the design of antimycobacterial therapy (31). In addition to the well-established appreciation 

that TB drugs can be differentially active against bacilli in different metabolic states (32–

34), these new analytical techniques have demonstrated that those same drugs can also 

possess distinct lesion-penetrating abilities (6,7,9,18). Moreover, in many cases, tissue 

penetration appears to correlate well with the demonstrated activity of specific drugs in vivo 
(9); for example, the ability of pyrazinamide to diffuse through the necrotic areas at the 

center of mature granulomas is consistent with its sterilizing ability in the TB regimen (7). 

This is a critical observation, which prompted the prediction that “the next major step 

towards curing TB and preventing the development of resistance will come from a 

combination of complementary drugs, each of which preferentially distributes in the lesion 

or lesion compartment where its most vulnerable target bacterial population resides” (7). 

That is, future combination therapies for TB should be based on multidrug regimens 

optimized according to the specific activities and tissue distributions of each constituent 

drugs.

Probing the unit of infection: the Mtb-infected macrophage

Developing comprehensive rules for targeted TB drug delivery necessitates concerted 

research efforts to elucidate the various factors that influence host tissue penetration and 

bacillary permeation. From a drug discovery perspective, the ability to assess rapidly 

whether a putative hit compound possesses the required characteristics would profoundly 

impact the efficiency of development pipelines by ensuring that medicinal chemistry, 

pharmacology, and biology resources and expertise are applied only to the most promising 

candidates. However, as noted elsewhere (7,35), this is critically dependent on the 

development of medium-throughput in vitro assays for intralesional (e.g., necrotic foci or 

caseum; (11), intrabacillary (33), and intra-macrophage (36)) pharmacokinetic (PK) 

determinations that can be readily integrated into lead-compound discovery and lead-

compound optimization campaigns.

Mtb is sequestered in multiple different host compartments during infection (3,9,29), 

including cellular granulomas, in which bacilli are located predominantly within 

macrophages but also in some extracellular niches; necrotic granulomas, where they are 

extracellular in the caseous centres and considered metabolically quiescent (37); and the 

inner surface of open cavities, where bacilli occur within multiple cell types while some are 

extracellular (38,39), an environment in which they are protected from the immune system 

and able to replicate freely (40). There is even evidence that bacilli can reside in cells in 

distal loci of the lung (41) and in other organs (42–44). These observations corroborate the 

suggestion that TB disease should be treated as a polymicrobial infection (45), and 

simultaneously reinforce the complexities inherent in determining the factors that might be 

essential to ensure optimal drug exposure for extended durations. From a drug development 

perspective, they also highlight a major obstacle to defining the optimal pre-clinical assays 

to be used in selecting compounds for advancement through the discovery pipeline.

How does the micro environment in which Mtb persists influence compound penetration and 

permeation? Current anti-TB chemotherapy may cause bacilli to revert to a drug-tolerant 
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phenotype, which may explain the difficulty in achieving complete bacterial clearance 

(46,47). Therefore, more research is needed to understand the mechanism(s) by which 

exposure to these compounds might force the exposed bacilli into a different metabolic state 

(48). It is well-established that a biphasic reduction in bacterial load is observed under 

current TB therapy (32), a phenomenon which has been explained by two models: (i) the 

killing of actively dividing bacilli in an initial rapid killing phase, followed by the gradual 

decrease in the persistent population of bacteria, or (ii) the lack of treatment of bacterial 

populations due to the inaccessibility of bacteria within granulomas (49). Adding a further 

layer of complexity is the fact that the bacteria exist within both an intracellular and 

extracellular environment (50), an observation which is exacerbated by the knowledge that 

these lesions are very heterogeneous, often differing even within the same patient (4,14).

As noted elsewhere (51), the immunological lifecycle (52) of TB disease involves multiple 

stages at which the interaction between host macrophage and invading pathogens might be 

critical to the outcome of infection (3,37,53). That is, the ability of Mtb to survive and 

replicate within the macrophage is a defining feature of mycobacterial pathogenesis (54). 

This observation has motivated a longstanding interest in understanding the dynamics of the 

host-pathogen interaction within this phagocytic cell (30,50,53,55), as well as efforts to 

understand the factors which might undermine therapeutic outcomes (17,56). It has also 

underpinned the use of alternative screens to identify compounds active against bacilli in this 

intracellular environment (57–60), as well as approaches to understand the impact of the 

intracellular environment on drug partitioning and how this knowledge might be exploited 

for rationale drug and drug regimen design (36). The perceived centrality of the host 

macrophage in infection outcomes (61–63) has also been key to the use of standard mouse 

models as distinct from the “Kramnik” or C3HeB/FeJ model; (29,64) in pre-clinical efficacy 

assessments (65). Therefore, while cultured cells in vitro do not fully recapitulate the 

specialist functional properties of differentiated macrophages in vivo (3,66) – with their 

diverse ontogenies and differential trajectories of activation and development (67),– the 

utility of the macrophage model in inferring disease-relevant mycobacterial physiological 

and metabolic adaptations, as well as innate host defence strategies, seems convincing 

(3,51,68). This notion is perhaps best summarized in the concept that the Mtb-infected 

macrophage represents the “minimal unit of infection” (50), a term which encapsulates 

critical concepts in immunometabolism (69) and pathometabolism (70).

The concentration which any drug achieves within its target (myco)bacterial cell is a 

function of multiple factors, including passive or active uptake, pathogen-mediated 

metabolism, active drug efflux, and cell growth (71). Mycobacterial drug uptake is generally 

encapsulated in the concept of “permeation”. The complex mycobacterial cell wall is 

thought to function as an impermeable barrier to most compounds and undergoes dynamic 

architectural modifications during infection that correlate with a switch from active 

replication to a persistent state (18,72). Moreover, the mechanisms which enable many of the 

known anti-TB drugs (in particular, small hydrophilic compounds like isoniazid, ethambutol, 

and cycloserine) to permeate the lipid-rich mycobacterial cell wall remain unknown (73). 

Mtb also possesses an expanded complement of efflux pumps (25,74,75) which have been 

implicated in intrinsic resistance to applied drugs in vitro (76,77) and in experimental 

models of infection (78). Moreover, growth within THP-1 and J774 macrophages has been 

Tanner et al. Page 4

IUBMB Life. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shown to induce Mtb efflux pump activity (79), resulting in tolerance to RIF and other drugs 

mediated by the efflux transporter, Rv1258c (79,80). As highlighted elsewhere (7), this is an 

important observation since it supports the need for in vitro assays to determine (and, 

ultimately, predict) drug distributions within immune cells such as macrophages, as well as 

the sub-cellular organelles in which the bacterium might be contained.

The prevailing drug discovery paradigm

It is generally acknowledged that, in order to understand how a drug will respond in the 

human body, the pharmacokinetic/pharmacodynamic (PK/PD) parameters in various tissues 

and cells must be understood fully (4,30,45). The propensity for Mtb to occupy different 

microenvironments – and at the same time – within an infected host (13–15), makes it 

essential that new combination regimens comprise partner drugs that are active in the various 

micro environments and, potentially, have the ability to modulate permeability of the 

mycobacterial cell (81).

Anti-TB drug discovery often begins with a basic screen against replicating Mtb, followed 

by subsequent cytotoxicity screens to determine the compound selectivity against the 

pathogen (82). This allows high-throughput screening whilst identifying potential candidates 

with initial activity against replicating bacteria (82), but neglects aspects such as intracellular 

compound activity, membrane permeability, involvement of efflux, and metabolism of the 

compound (83). The use of a standard growth medium alone ignores the metabolic changes 

that Mtb undergoes when in the host cell environment, and could influence compound 

efficacy (84): the evidence is strong that the metabolic status of the bacterium is a function 

of the host environment (51,85). Therefore, the active compounds that emerge from in vitro 
screens are likely to be active only under specific conditions (86). For example, amikacin 

displayed potent activity in initial screens against extracellular bacteria, but little to no 

activity against intracellular Mtb (87).

Next, the PK parameters of the compounds are assessed using in vitro or in vivo absorption, 

distribution, metabolism, and excretion (ADME) studies. In the simplest sense, the ADME 

parameters for a compound in combination with the dose of the drug determine the time 

course and concentration in serum and, consequently, the tissues and fluids. The 

pharmacodynamic (PD) parameters relate drug concentration with the observed 

antimicrobial effect. The PK/PD characteristics of a drug have implications for dosing, 

clinical efficacy, and the combinatorial drug classes which can be used to treat TB (88). 

Summary exposure parameters, such as area under the concentration-time curve (AUC) and 

peak concentration (Cmax), are often used in combination with PD parameters, such as MIC 

(BOX 1). Importantly, drugs display varied and distinctive patterns of PK/PD relationships 

which can influence their activity (89,90). The main patterns include bacterial killing based 

on maximum drug concentration (Cmax/MIC), total exposure over a certain time period 

(AUC/MIC), or time above MIC (T>MIC) (91). Notably, these parameters have been 

experimentally determined using multiple approaches, including the ex vivo hollow fibre 

model, which allows for the recapitulation of the different bacterial populations and their 

corresponding PK/PD responses. Applying this technique, Gumbo and colleagues were able 
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to predict the inability of moxifloxacin (MXF) used at WHO recommended doses to 

improve clinical outcomes significantly in a series of drug trials (92–97).

Potential for a paradigm shift?

Many of the anti-TB drugs were discovered before the routine use of PK/PD analyses, a 

problem that continues to impair correct drug dosage today. This is exemplified by 

rifampicin (RIF) (98), for which recent studies have highlighted the benefits of using a larger 

dose than has been employed for decades. Although plasma and tissue PK analyses are 

routinely used in drug discovery (99), they may not reveal the entire picture owing to the 

complex nature of TB lesions and the difficulty faced for a drug to access, and then 

penetrate, the infecting bacilli. This is further complicated by the avascular nature of 

necrotic lesions, where the relationship between plasma and target site drug concentrations 

is even more difficult to predict (7). PK within the human setting can be spatially unique and 

the heterogeneous nature of both the bacterial and lesion phenotypes leads to increased 

complexity (100).

This complexity is shown in the use of RIF in first-line anti-TB therapy. The current dosing 

of RIF (10 mg/kg daily) is sub-optimal for TB, with some studies suggesting that 

significantly higher doses are needed for more effective treatment (101). Moreover, the 

problem persists in vulnerable population groups, with Sub-Saharan individuals (primarily 

in South Africa and Malawi) displaying reduced drug exposure (102,103). This often places 

individuals below the recommended target concentrations, potentially exposing them to 

increased burden of disease, the development of resistance, and risk of mortality (104,105). 

Many of the problems associated with RIF stem from a poor underlying understanding of 

dosing requirements in combination with other first-line treatments. Interestingly, MXF has 

been shown to be antagonistic with most antibiotics, including RIF and pretomanid 

(106,107). This knowledge, in conjunction with the deficiency of MXF in penetrating 

different lesions types (27), could explain the recent failed drug trials (108,109). Given the 

cellular concentrations of these first-line drug combinations, it may have been possible to 

predict their efficacy before commencement of the trials.

A series of studies conducted between 1950 and the 1980’s showed that concentrations of 

isoniazid (INH) and RIF are far lower in TB lesion homogenate than in the plasma of 

infected patients (110,111), a finding which was confirmed in MALDI studies (27). Despite 

the increasing appreciation that the activity of antibiotics depends on their ability to reach 

and accumulate in lesions, there is a continued reliance on blood and plasma levels to drive 

drug discovery (112,113). In various other diseases, target areas and plasma levels are often 

quite closely related, which leads to predictable and reliable plasma PK/PD values, even 

when using plasma exposure as PK target (114). However, owing to the complex nature of 

TB pathology, blood supply is often absent and free drug has difficulty in entering the 

different lesion compartments homogeneously. Drug PK/PD relationships are therefore 

extremely difficult to determine, particularly for newer drugs. So, while plasma PK 

measures still offer some value for many diseases, these determinations need to be 

repositioned in the TB drug discovery pipeline and factored in with new PK analyses at the 

target site.
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Using the technologies available today (Table 1), it is possible to evaluate PK/PD properties 

at cellular level (100). The use of in vitro macrophage culture to represent Mtb’s 
intracellular environment has shown some success with the identification of compound 

Q203 (86). Similar assays have been undertaken in various cell types including mouse-

derived macrophages and epithelial cells, with a limited number of studies having used cell 

lines such as the human-derived THP-1 macrophage-like cells (60,115,116). Progress in the 

use of metabolomics to obtain PK/PD information from treated mycobacterial cells 

(117,118) has been especially useful in determining the systems-level impact of drug 

treatment on Mtb physiology, and has the capacity to provide key insights into the 

mechanisms of action of new (117,119) and even known (118,120,121) anti-TB drugs. 

However, while the effective intrabacterial concentration is critical to efficacy, for most 

drugs the identity of the active metabolite(s) remains unknown. It is likely, therefore, that, in 

addition to revealing intracellular modes of action of known drugs, analyses of active drug 

metabolites generated via host- or Mtb-mediated biotransformation could identify new 

targets (7).

Metabolism alone does not always account for the disappearance of drug during PK/PD 

analyses: instead, this is can be a multifactorial phenomenon, involving the binding of drugs 

to macromolecules such as plasma proteins (122) and binding to lower molecular weight 

targets such as the oxidative stress protectants, glutathione and mycothiol (123). The 

phagolysosome in which these molecules must function itself undergoes significant pH 

changes in response to IFNƴ-dependent macrophage activation, dropping from a pH of 6.2 

to approximately 4.5 (124,125), a shift which has the potential to limit the activities of acid-

labile drugs while elevating the efficacy of drugs such as pyrazinamide which function 

optimally at low pH (126).

Drug discovery at the target site

The importance of determining lesion-specific drug concentrations stems from various 

sources. Mitchison and Coates (2004) described a model which explained the relationship 

between the different microenvironments in TB and current first-line TB drug efficacy. In 

their model, actively growing bacilli were killed by INH, semi-dormant bacilli were killed 

by RIF, intracellular bacilli were targeted by pyrazinamide (PZA) in the acidic 

phagolysosome, while dormant persisters were found in hypoxic environments, making 

them harder to treat using standard therapies (127,128).

Pioneering work by Dartois et al. in 2012 allowed scientists in the TB drug discovery 

environment to start looking at the target site of pulmonary TB in far more detail (8). Using 

a combination of New Zealand White rabbits, imaging mass spectrometry, three first-line 

anti-TB drugs (INH, RIF, and PZA), and the fluoroquinolone MXF, the group demonstrated 

that drug plasma concentration was indeed a poor proxy for drug concentration in TB 

lesions (8). The lack of data on how this might translate into humans combined with the 

absence of cellular protein binding data were acknowledged as weaknesses by the authors; 

nevertheless, this work prompted a growing appreciation of the need to include permeation 

studies in their drug development pipeline (16,129,130).
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In a later study, Prideaux et al. (2015) provided a compelling extension of this work by 

taking advantage of a small set of resected lung samples from drug-resistant TB cases (131). 

In this case, the patients received a steady-state dose of RIF, INH, MXF, and PZA at 

intervals ranging from 2-24 hours pre-surgery, and lung samples were analysed using 

imaging mass spectrometry. This revealed that RIF and PZA were able to penetrate lesions, 

with RIF accumulating to steady-state levels in the caseum (27). Although multiple dosing 

was not investigated, patients had been receiving these drugs for several weeks/months. A 

controlled trial involving infected, drug-naïve patients would be necessary to confirm these 

findings and control for drug levels. This work could potentially correlate clinical trial data 

with lack of efficacy and motivate earlier inclusion of such studies in a pre-clinical setting 

(132).

The influence of caseum binding on the permeation of compounds into the deeper recesses 

of the granuloma was the next object of study (11). Exploiting a very large sample set which 

covered the molecular space using 64 parameters and over 200 compounds, it was observed 

that the compound’s ClogP value best describing penetration into the granuloma (11). The 

use of surrogate caseum was also investigated: while it was acknowledged that the surrogate 

failed to reproduce the full composition of the in vivo material, and so required further 

development to mimic patient-derived lesions more accurately, the results supported the 

prospect for this assay to be standardised, thereby allowing more in-depth in vitro assays to 

take advantage of this methodology.

Another recent study investigated the mystery of ethambutol’s (EMB) clinical efficacy 

despite its modest potency against non-replicating Mtb (30). Using the TB-infected rabbit 

model, along with microdissection and LC-MS/MS, the group determined that EMB 

partitions into the caseous lesions with great efficiency, potentially explaining its efficacy 

and again motivating for permeation studies to be conducted in early pre-clinical drug 

development (30). This work was followed up by a further study using the infected rabbit 

model, where ex vivo MBC measurements were taken in caseum (MBCcaseum) for several 

first-line TB drugs (16). The Wayne (133) and Loebel (134) models for non-replicating 

persistence failed to predict the extent to which resistance was being generated in the 

caseous environment, whilst also indicating that PZA has activity in the caseum, a fact 

which in the current non-replicating models would have missed. This motivates for the use 

of an in vitro assay which closely mimics the in vivo situation.

Challenges and perspectives—Incorporating findings from these recent studies into 

the model of Mitchison and Coates (32) has revealed interesting correlations with, and 

departures from, their original ideas. For example, Prideaux et al. (2015) suggested that drug 

accumulation within granulomas may not simply follow the binary ‘in/out’ dichotomy (131). 

Instead, four distinct patterns of drug accumulation were identified including: (i) rapid and 

homogeneous distribution with no accumulation appearing over time (INH/linezolid), which 

may explain the predominant killing of extracellular bacteria by INH; (ii) rapid and 

heterogeneous distribution with accumulation in the cellular rim rather than the caseum 

(fluoroquinolones and oxazolidinones); (iii) slow distribution with gradual accumulation of 

drug over time (RIF) explaining the intracellular killing of Mtb; and (iv) rapid distribution 
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with massive accumulation in the cellular layers and poor diffusion into the caseum 

(clofazimine and bedaquiline) (27).

From a translational perspective, knowledge about the permeation of current first-line drugs 

and novel drug candidates into TB microenvironments is clearly essential: in addition to 

elucidating reasons for therapeutic failure that do not simply invoke patient non-adherence, 

the potential to inform combinations inferred from high-order drug interactions (107) with 

these data promises a route to mitigate the criticisms often levelled at in vitro-derived 

compound synergies. That is, coupling penetration and potentiation might enable design of 

new regimens that incorporate information about drug permeation into the heterogeneous 

TB microenvironments. Towards this end, a number of factors may have to be considered in 

ensuring clinical relevance (BOX 2). In this context, it is worth noting the parallel 

development and application to Mtb infection studies of increasingly sophisticated systems 

for three-dimensional cell culture (135,136) since these might offer a useful intermediate in 

bridging the in vitro/in vivo divide.

In summary, there is increasing evidence that the incorporation of the efficacy of drugs in the 

microenvironments must be assessed early on in pre-clinical development to allow correct 

dosing in further in vivo experiments. A better understanding of target site drug 

concentrations, rather than plasma concentrations, is needed, particularly for a complex, 

multi-faceted disease such as TB. The aim of novel drug discovery programs should be to 

target populations of bacilli with the most effective drugs, which should be most proficient at 

reaching relevant sites in the human body. In driving this concept of target site drug 

concentrations, it is hoped that the translational link between the lab bench and clinic can be 

strengthened, allowing expedited and “smarter” drug discovery and, by implication, 

enhanced therapeutic regimens.
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Box 1

PK/PD relationship of TB drugs

The PK/PD relationship for TB drugs is established in the literature between AUC or 

Cmax (adjusted for MIC) and/or time above a certain concentration threshold (T>MIC), 

with many of the first-line drugs described by AUC/MIC and some of the newer 

compounds best described by T>MIC (28,29).

Convincing arguments can be made to justify using AUC>MIC to allow for penetration 

in the lesions or other “hard to reach” compartments/tissues in the body, or saturation of 

efflux pumps. Similar arguments can be made for the use of T>MIC to avoid the 

concentration falling below the threshold at which Mtb is able to start replicating, 

possibly leading to resistance if low drug concentrations are present.

As discussed, for TB the PK/PD relationship is complicated by the fact that the PK is 

generally measured in plasma in clinical trials, but the majority of bacilli are sequestered 

in other compartments into which the drugs may not readily penetrate. Therefore, the PK 

profile in these regions is likely to be different from that measured in plasma. A 

reasonable PK/PD modelling approach in such cases is to use a hypothetical “effect 

compartment” (30,31) mimicking the concentration at the site of action which, while 

dependent on the concentration in plasma, is “delayed” by the drug traversing through the 

numerous layers of biological tissue, thus significantly smoothing out peak and trough 

concentrations. Also, the time over a certain concentration would be very different in this 

effect compartment. The best proxy for the concentration at the site of action is plasma 

AUC since the ratio between the average concentrations would remain the same, and 

AUC is closely related to average concentrations. In the literature, some results from 

clinical data report the superiority of Cmax>MIC versus AUC>MIC for prediction of 

clinical efficacy, however this should be interpreted with care since it is very difficult to 

discriminate which of these PK exposure parameter is most closely related to outcome - 

especially when the only available data is derived from observational clinical studies 

where all patients are on a similar dosing regimen. Without targeted studies of dose 

fractionation (when the same total dose is given in a single or multiple dosing events), 

Cmax and AUC are generally strongly correlated and difficult to separate (32). 

Comparing the two parameters, AUC data can also be variable, even on a daily basis, and 

this should also be considered when interpreting PK/PD results. The variability will result 

in a Cmax which fluctuates considerably as the determination of this parameter is based 

on a single sample. AUC may also change but is generally more stable due to the 

parameter being determined by an entire PK profile. Therefore, the use of AUC/MIC 

might better predict the outcome of clinical efficacy in diseases such as TB which have 

sites of action that are disparate from the plasma. Although the best PK/PD values would 

be derived from target site concentrations, these are often difficult to access.
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Box 2

Determining the clinical relevance of in vitro and in vivo assays

1. Is there a quantifiable and agreed measure of “cure” that can be evaluated in 

an in vivo model?

2. What host-pathogen relationships can be effectively modelled in a non-

clinical setting?

3. Is there a way to model bacterial physiology, pathogenesis, and drug 

susceptibility effectively to allow better understanding of these aspects in 

patients?

4. What critical PK/PD relationships can be modelled using in vitro/in vivo 
systems and how might these be applied in clinical trial settings?

5. Can dosing regimens be altered according to data emerging from in vitro/in 
vivo experiments employed in the pre-clinical setting?
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Figure 1. 
The complexity of targeting M. tuberculosis bacilli in an infected host. After administration 

of drug to a patient, the drug passes from the bloodstream into the lung tissues, diffusing into 

the lung fluid. The drug must then penetrate the granulomatous structure and enter the 

various cellular microenvironments in which bacilli can be sequestered. There are a number 

of processes that affect drug efficacy in this microenvironment including, but not limited to: 

(i) drug metabolism and biotransformation, (ii) binding to various cellular components and 

lipids, (iii) differences in local cellular drug concentrations giving rise to potential drug 

resistant bacteria, (iv) compound specific differences in the permeation of drug into the 
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macrophage or cellular environment, (v) bacterial and cell mediated drug efflux, and (vi) 

differences in intracellular pH leading to in-/activation of the drug.
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Table 1

Methods to measure intracellular drug concentrations

Measurement method Detection Advantages Limitations

Fluorescence microscopy (1–5)

Combination of optical 
imaging microscopy with 
computational analysis to 
quantify fluorescence signals 
from molecules or 
compounds

Allows temporal and physiological 
studies of drugs in various 
microenvironments

Few drugs fluoresce above 
background detection limit
Incorporation of fluorescent tag 
or “click chemistry” enabled 
fluorescent derivatization not 
always feasible

Raman microscopy (6–8)

Light scattering through 
change in polarisation 
potential or vibrational 
energy

Shortened data collection times for 
high-throughput analyses and provide 
indications of cellular state of Mtb 
and host cells

Can only be applied to 
biological systems with lower 
energy excitation

Nuclear microscopy (9–11)
Uses ion microbeam with 
particle-induced X-ray 
emission

Used as a quantitative standard to 
complement MRI in animal or human 
studies where tissues may be 
removed after imaging

Not widely accessible 
technology and limited to metal 
containing drugs/compounds

Microautoradiography (12,13)
Exposure or tagging using 
radiolabel and confocal 
microscopy

coupling technique to fluorescence in 
situ hybridisation technique allows 
more in depth single cell analysis

Resolution limitations; requires 
radioactive material and 
extensive processing time; often 
semi-quantitative

PET imaging (14–16)

Emitted positron collides 
with local electron, produce 
photons and these are 
detected by ƴ-detectors

Can be coupled to other techniques 
such as micro dialysis to allow 
receptor site PK studies

Expensive owing to necessity of 
radio-labelled ligands, difficulty 
overcoming resolution issues

Analysis by MS or HPLC (17–21)

Mass spectrometric (MS) 
analysis coupled to high 
performance liquid 
chromatography (HPLC)

Allows for intracellular drug 
concentrations to be calculated using 
pharmacokinetic approach

Long sample processing times 
and extensive optimisation 
steps, bulk analysis can cause 
loss of spatial information 
(cellular compartments)

MALDI-MSI (22–27)
Laser desorption based 
ionisation technique

Allows temporal and spatial 
resolution of drug distribution in 
different organs

Difficulty in determining 
whether analyte truly absent or 
simply below limit of detection
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