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Variations in a multitude of material microenvironmental properties
have been observed across tissues in vivo, and these have profound
effects on cell phenotype. Phenomenological experiments have
suggested that certain of these features of the physical microenvi-
ronment, such as stiffness, could sensitize cells to other features;
meanwhile, mechanistic studies have detailed a number of bio-
physical mechanisms for this sensing. However, the broad molecular
consequences of these potentially complex and nonlinear interac-
tions bridging from biophysical sensing to phenotype have not been
systematically characterized, limiting the overall understanding and
rational deployment of these biophysical cues. Here, we explore
these interactions by employing a 3D cell culture system that allows
for the independent control of culture substrate stiffness, stress
relaxation, and adhesion ligand density to systematically explore
the transcriptional programs affected by distinct combinations of
biophysical parameters using RNA-seq. In mouse mesenchymal
stem cells and human cortical neuron progenitors, we find dramatic
coupling among these substrate properties, and that the relative
contribution of each property to changes in gene expression varies
with cell type. Motivated by the bioinformatic analysis, the stiffness
of hydrogels encapsulating mouse mesenchymal stem cells was
found to regulate the secretion of a wide range of cytokines, and
to accordingly influence hematopoietic stem cell differentiation in a
Transwell coculture model. These results give insights into how bio-
physical features are integrated by cells across distinct tissues and
offer strategies to synthetic biologists and bioengineers for design-
ing responses to a cell’s biophysical environment.
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Biophysical characteristics are key distinguishing features
across tissues and at various stages of tissue development and

pathology, and significant previous work has provided insights into
how such features regulate physiology. For example, microenvi-
ronmental stiffness has been implicated in regulation of tumor
progression (1) and stem cell fate determination (2), while dy-
namic adhesions to other cells and to the extracellular matrix
(ECM) are critical in controlling force transmission and thus
patterning in certain developmental contexts (3). The composition
and density of adhesion ligands similarly has been shown to be an
important variable in controlling cell adhesion strength (4), cell
migration (5), and cell polarization (6) in contexts ranging from
cancer to immune cell homing. Recently, significant differences in
creep and stress relaxation across different tissues have been
reported, and the understanding of the impact and mechanisms of
these differences is currently evolving (7, 8).
Customizable hydrogel matrices can be engineered to display

bespoke biophysical parameters to cells in 3D cell culture, and
thus are useful tools for understanding how cells sense and re-
spond to these cues. Differences in ECM density and composi-
tion across tissues can be reflected as differences in hydrogel
adhesion ligand densities, viscoelastic behaviors, and elastic moduli.

These materials have been instrumental in distilling complex in vivo
biophysical environments into their salient features, which can then
be perturbed to probe a cell’s response (9). This approach has
successfully yielded careful studies of the roles of a multitude of
biophysical matrix properties, including stiffness (10), viscoelasticity
(8), nanotopography (11), adhesion ligand density (12) and com-
position (13), and nonlinear elasticity (14) on various cell behaviors,
such as morphological changes, proliferation, and stem cell differ-
entiation. However, the particular relevance of these changes to cell
behavior across different tissues and between healthy and diseased
tissue is poorly understood.
Interestingly, certain recent phenomenological work suggests

that various microenvironmental features interact when cells
integrate biophysical inputs (10, 12, 15), potentially sensitizing or
desensitizing cells to one of these inputs or another. Mechanistic
biophysical studies offer a possible explanation, whereby molecular
clutches found in the cell’s adhesion complexes are manipulated
mechanically by the material’s own mechanical response (16). It is
therefore possible that a variety of material environments could
induce analogous effects on the cell’s downstream response by
perturbing cell–material interactions in mechanically redundant
ways. However, we lack a broad view of how cells respond to these
covarying biophysical parameters, which limits our understanding
of the relative importance of these features in different physiologic
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contexts and restricts how bioengineers and synthetic biologists
deploy biophysical cues. Additionally, the mechanisms by which
cells integrate cues from their material microenvironments after
the biophysics of sensing is not well understood.While a number of
integration mechanisms have been described (17–19), whether
these mechanisms integrate into one core substrate-sensing path-
way, into individual responses for each biophysical feature, or into
a combination of the two approaches is still unclear.
The purpose of this study was twofold: (i) to capture the broad

transcriptional changes of cells associated with the sensing of
different biophysical features of the microenvironment, and (ii)
to test hypotheses surrounding the coupling of these features, the
extent of cellular processes affected, and the influence of cell
type. To address the uniqueness of the transcriptional effects of
different biophysical parameters and how different biophysical
features of a cell’s microenvironment couple transcriptionally,
we encapsulated cells in ionically cross-linked alginate hydrogels.
These gels afford independent control of multiple material
properties presented to cells in 3D culture (8), have previously
been used to study the effects of mechanosensing (10, 20), and
exhibit a zonal cross-linking mechanism that confers consistent
transport properties, such as diffusion, even as the mechanical
properties of the material are tuned (21). In contrast, many
materials systems vary biophysical properties in ways that are
coupled to other material properties, or only allow 2D culture.
Mouse mesenchymal stem cells (mMSCs) were chosen as a first
cell type to study because they have a long history of use in the
context of substrate-sensing (22) and have received significant
clinical interest (23). Human cortical neuron progenitors (hNPCs)
were also studied to explore how these interactions extend to a
distinct species and cell lineage. RNA-seq was used to globally
map the early transcriptional interactions among stiffness, stress
relaxation rate, and adhesion ligand density, demonstrating dra-
matic transcriptional coupling between these features in both cell
types. Finally, motivated by the bioinformatic analysis, we found
that the stiffness of hydrogels containing mMSCs modulated he-
matopoietic stem cell differentiation in a coculture system.
Overall, the results demonstrate that different biophysical char-
acteristics of a cell’s microenvironment contextualize each other
and are tunable to elicit a wide range of responses. This work
additionally demonstrates an approach to marry techniques from
bioengineering and next-generation sequencing to gain insights into
biophysical principles.

Results
Transcriptomic Comparison of Material Parameter Sensing in mMSCs.
We first developed a workflow to perform RNA-seq on cells
cultured in bespoke material microenvironments. Because pre-
vious studies have thus far characterized monotonic responses to
both adhesion ligand density (12) and stress relaxation (8), we
chose low and high values for each of these parameters to cap-
ture a physiologically relevant, but wide range. Adhesion ligand
density was varied from 200 (±50) μM to 1,500 (±200) μM (SI
Appendix, Fig. S1C), spanning an estimated physiologic range
(calculations in SI Appendix, Methods). Stress relaxation was
found to vary from t1/2 of 35 (±10) s to 790 (±75) s (SI Appendix,
Fig. S1D), comparable to stress relaxation values measured in
coagulated bone marrow and liver, respectively, and to those
previously found to impact long-term MSC differentiation using
this same material system (20). While cellular responses to
stiffness have been shown to be nonmonotonic in certain cases,
we chose to first use a low (3 ± 1 kPa) and a high (30 ± 2 kPa)
value of stiffness, again spanning a physiologically relevant and
large range to keep the experiment symmetric. To isolate the
effects of each of the three parameters and broadly capture any
interactions, hydrogels were prepared in eight combinations of
the low and high values for each material property (Fig. 1A) and
mMSCs were encapsulated. Specifically, we chose to use the
D1 cell line (24) to minimize cell–cell heterogeneity. After 40 h,
encapsulated cells were isolated and analyzed using RNA-seq.
This time point was chosen to allow for the formation of mature

cell adhesions and to minimize proliferation, which could con-
found the results. We confirmed that proliferation as measured
by cell number did not significantly change during culture and
that the cells were highly viable, and homogeneously distributed
throughout the material (SI Appendix, Figs. S2 and S3). In-
triguingly, principal component analysis (PCA) of RNA-seq data
discriminated among material parameters only if the material
was soft (SI Appendix, Fig. S5A), which suggested that the pri-
mary sources of variation in transcriptional profiles were not
uniquely tied to one material parameter, but to combinations
thereof. Next, independent component analysis (ICA) was used to
reduce the dimensionality of the transcriptional profiles into statis-
tically independent components, which one would expect to map to
one or more material properties if their responses were merely
superimposed. However, ICA failed to produce clear separation by
any property (SI Appendix, Fig. S5C), suggesting that the primary
determinants of the cell’s substrate response are not independent.
Pearson correlations of gene expression demonstrated minimal re-
sponse of the cells to the calcium concentrations in different gels (SI
Appendix, Fig. S6), confirming previous reports that the variation in
calcium content in this system has minimal impact on encapsulated
MSCs (8, 10).
We next used a linear model to extract differentially expressed

(DE) genes affected by one of the parameters regardless of the
background parameters. For example, this approach reveals DE
genes affected by stiffness independently of changes in the stress
relaxation or ligand density. A Venn diagram of the resulting
decoupled DE genes strikingly finds a large discrepancy in the
number of DE genes for the different parameter comparisons
(Fig. 1B). Stiffness drove the largest number of DE genes, fol-
lowed by stress relaxation and ligand density (Fig. 1B). We then
performed all pairwise comparisons, and found that the number
of DE genes varied between 0 and over 1,500. The latter number
far exceeded that of the decoupled gene sets (Fig. 1C), which
suggests the superposition of different material sensing mecha-
nisms. We then mapped the decoupled gene sets to those from
each material comparison and found that the covariation of mul-
tiple material parameters at once gives rise to a large increase in
the number of DE genes not noted in the decoupled sets. More-
over, the relative contribution of these gene sets to the DE genes in
each comparison varied dramatically based on the background
material parameters (Fig. 1D), indicating the presence of coupling
and switching mechanics in these material-sensitive gene networks
(Fig. 1D). For example, examining the dashed box in Fig. 1D, a
different composition of DE genes results when one compares slow
to fast stress relaxation in low ligand-density materials at different
levels of stiffness.
Because previous data had depicted distinct stiffness values

promoting distinct cell fates (25), we repeated this analysis in-
cluding 18 kPa (±1 kPa) in place of 30 kPa as the high stiffness
(Fig. 1E). Strikingly, we found a markedly different relationship
among the different parameters, with ligand density inducing the
largest number of DE genes, followed by stress relaxation and
then stiffness (Fig. 1F). This result is contrasted with stiffness
dominating the Venn diagram in the 30 kPa case (Fig. 1B). Thus,
the specific stiffness value tested altered the relative ranking of the
magnitude of gene-expression changes in response to the three
material parameters, signifying that material parameters can be
quantitatively tuned to alter the sensitivity of cells to other pa-
rameters. The different material parameters were again found to
couple in these comparisons, although with different contributions
from each parameter (Fig. 1 G and H) than noted in the previous
comparison. It should be noted that this tuning does not imply
orthogonal parameter sensing mechanisms, but could involve al-
tered signaling in common or convergent pathways.

Transcriptomic Comparison of Material Parameter-Sensing in hNPCs.
To gauge how relationships among material properties generalize
to diverse cell types, we chose another cell type from a different
species and developmental lineage and stage than the mMSCs,
and next performed the same experiment on human induced
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Fig. 1. Transcriptomic comparison of material parameter sensing in mMSCs. (A–D) Transcriptomic comparison of material parameters sensing with 30 kPa as
the high stiffness. (E–H) Transcriptomic comparison of material parameters sensing with 18 kPa as the high stiffness. (A and E) Schematic of experimental
conditions for mMSC culture. Hydrogels were fabricated in each of the eight combinations of the low- and high-parameter values and cells were seeded at a
density of 10 million cells per milliliter. (B and F) Venn diagrams of DE genes in mMSCs for each material parameter comparison after controlling for other
parameters. The numbers of DE genes shared by two parameters are indicated in the overlap in circles. (C and G) Number of DE genes in mMSCs for all
pairwise material comparisons. Circle area corresponds to the number of DE genes as indicated in the legend. (D and H) Fraction of DE genes from C and G
described by decoupled genes in B and F for all pairwise material comparisons in mMSCs. Green, DE genes not found in the sets from B and F; blue, DE genes
from ligand density set from B and F; red, DE genes from stress relaxation set from B and F; purple, DE genes from stiffness set from B and F; yellow, DE genes
from overlapping ligand density and stress relaxation set from B and F; brown, DE genes from overlapping stiffness and stress relaxation set from B and F;
pink, DE genes from overlapping ligand density and stiffness set from B and F; orange, DE genes from overlapping ligand density, stiffness, and stress re-
laxation set from B and F. The dashed box in D highlights a comparison in which comparing one material parameter (stress relaxation) results in a different pie
chart if the background stiffness is different.
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pluripotent stem cell (iPSC)-derived NPCs. A stiffness range from
1 to 13 kPa that is physiologically relevant for neural tissues (26,
27) was used in this study (Fig. 2A and SI Appendix, Fig. S1B).
Neural lineage cells have been shown to be responsive to substrate
stiffness (26, 27), and here hNPCs were generated using an
established protocol for producing large and homogeneous hNPC
populations (28) (SI Appendix, Figs. S7–S9). As with the mMSCs,
Pearson correlations of gene expression demonstrated minimal
response of the cells to the calcium concentrations in different gels
(SI Appendix, Fig. S10). Similar to the analysis with mMSCs, after
PCA the second principal component separated otherwise equiv-
alent conditions by adhesion ligand density only if the materials
were soft (SI Appendix, Fig. S5D), consistent with the notion of
dependent material property-sensing. We found a large disparity in
the number of DE genes, now with stress relaxation inducing the
largest change, followed by stiffness and ligand density (Fig. 2B).
Individual comparisons between material parameter combinations
revealed gene-expression effects that spanned multiple orders-of-
magnitude depending on the comparison (Fig. 2C), and these
changes again featured genes found in none of the decoupled gene
sets, indicating that different parameter combinations elicited
distinct gene programs (Fig. 2D). Moreover, enrichment analysis
for the sets of DE genes corresponding exclusively to one param-
eter or another revealed processes important for central nervous
system (CNS) regulation (SI Appendix, Fig. S11). For example, li-
gand density induced DE genes related to regulation of serotonin
secretion and synaptic transmission, stiffness induced DE genes
related to regulation of Tau pathology in Alzheimer’s disease

and dopamine transactivation of PDGFR in the CNS, and stress
relaxation induced DE genes tied to neurofilament remodeling
and myelination, among others. Moreover, drug target analysis
on all DE genes across all parameters noted 48 drug targets that
were affected by substrate parameters (SI Appendix, Fig. S12).

Coexpression Analysis of Material Parameter-Sensing Networks. Be-
cause certain features of regulatory networks might not be reflected
in differential-expression analyses, weighted gene coexpression
analysis (29) (WGCNA) was performed to identify modules of
highly coexpressed genes that correspond to the sensing of each
parameter (Fig. 3A). The three modules with the strongest corre-
lations to our parameters of interest were then chosen for further
analysis. We first ran this analysis for the mMSCs using the extreme
values for stiffness from Fig. 1 (3 kPa and 30 kPa); however, we
only identified modules that consistently corresponded to stiffness
(SI Appendix, Fig. S13), likely because the extreme stiffness com-
parison dominates the variance in the data. However, including the
18-kPa conditions instead of the 30-kPa conditions better matched
the sensitivity of cells to all parameters, allowing WGCNA to iden-
tify gene modules that correspond to each of the three material
parameters (SI Appendix, Fig. S14). We proceeded with this stiffness
range to better discriminate modules tied to each material param-
eter. Plotting the average module significance for each module as a
function of the material confirmed the correspondence of each to
the parameter of interest (Fig. 3B). Metacore PathwayMap en-
richment analysis on the member genes for these modules revealed
processes involving cytoskeletal remodeling, cell adhesion, and

A B

C D

Fig. 2. Transcriptomic comparison of material parameter sensing in hNPCs. (A) Schematic of experimental conditions for hNPC culture. Hydrogels were
fabricated in each of the eight combinations of the low- and high-parameter values and seeded at a density of 5 million cells per milliliter. (B) Venn diagram
of DE genes in hNPCs for each material parameter comparison after controlling for other parameters. The number of DE genes shared by two parameters are
indicated in the overlap in circles. (C) Number of DE genes in hNPCs for all pairwise material comparisons. Circle area corresponds to the number of DE genes
as indicated in the legend. (D) Fraction of DE genes from C described by decoupled genes in B (each Venn diagram slice) for all pairwise material comparisons
in hNPCs. Green, DE genes not found in the sets from B; blue, DE genes from ligand density set from B; red, DE genes from stress relaxation set from B; purple,
DE genes from stiffness set from B; yellow, DE genes from overlapping ligand density and stress relaxation set from B; brown, DE genes from overlapping
stiffness and stress relaxation set from B; pink, DE genes from overlapping ligand density and stiffness set from B; orange, DE genes from overlapping ligand
density, stiffness, and stress relaxation set from B.
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PDGF signaling (SI Appendix, Fig. S13). Inspection of the top hub
genes in these modules revealed modular genes involved in signal
transduction and protein transport. Of particular note were Klf6 and
Klf4, found in the ligand density and stiffness-associated modules,
respectively, both of which have been shown to regulate stem cell
differentiation. Also of note in the stiffness module were the im-

mune related-kinase Prkra and the YAP target gene Ankrd26, while
Ptges2, a key regulator of MSC immunomodulation, was noted in
the stress relaxation module (SI Appendix, Fig. S13). The correlation
of each of these modules to the others identified by WGCNA, along
with the corresponding ontology annotation, provided a quantitative
metric for the inferred regulatory connectedness of the sensing of a
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Fig. 3. WGCNA of material parameter sensing networks in mMSCs. (A) Cluster dendrogram of gene expression showing module identification from WGCNA
using an unsigned network and a soft thresholding parameter of 10 for the dataset containing 18-kPa hydrogels as the stiffest condition. (B) Selection of
modules that most closely map to ligand density, stiffness, and stress relaxation for the dataset containing 18-kPa hydrogels as the stiffest condition. Average
module significance is plotted as a function of each material, showing the correspondence between the module and that parameter of interest. These
modules are identified in SI Appendix, Fig. S13. (C) Putative gene network seeded using the top hub genes from each of the modules corresponding to ligand
density, stiffness, and stress relaxation (turquoise, red-orange, dark red). Enriched subnetworks were inferred using Metacore software and the three most
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material property with other cellular processes (Fig. 3D). In this
case, we intriguingly found that certain immune-related processes,
such as PDE4 expression, TNF-induced NF-κB signaling, and IL-
3 signaling, were enriched in modules with strong correlations to one
of the three modules of interest (Fig. 3D). These results were used
to inform a putative limited network of material-sensitive genes that
again revealed the prominent presence of MAPK, Wnt, and TGF-β
signaling pathways. Also notable were genes involved in cell adhe-
sion, such as FAK and integrins (Fig. 3C).
WGCNA performed on the hNPC dataset also revealed in-

triguing relationships (SI Appendix, Fig. S15). Enrichment analysis
performed on the module with the highest correlation to stiffness
included processes, such as axon development andWNT signaling.
The stress-relaxation module was enriched for ECM organization,
IL-4 and IL-13 signaling, and Hippo signaling. Finally, the module
corresponding to ligand density showed enrichment for morpho-
genesis processes and neurotransmitter transport.

Functional Testing of Bioinformatic Hypotheses. To functionally test
hypotheses generated by the bioinformatic analysis, we selected a
particular comparison between two materials and explored pro-
cesses predicted by Gene Ontology analysis to be affected. Spe-
cifically, we used the DE genes generated from comparing the
fast-relaxing, high ligand density 3-kPa hydrogels, to the fast-
relaxing, high ligand density 18-kPa hydrogels. Performing Gene
Ontology analysis on these DE genes generated several statisti-
cally significant processes likely to be affected by the DE genes (SI
Appendix, Fig. S17). Among these terms, of note was “hemato-
poietic progenitor cell differentiation.” MSCs are known to be
active in the hematopoietic stem and progenitor cell (HSPC) niche
and express HSPC regulatory factors, such as OPN, CXCL12,
Tnfrsf1a, Tnfrsf1b, and MCP-1 (30, 31), although the mechanical
regulation of this cross-talk and potential mechanical intervention
has not been explored. Thus, as a case study of exploring hy-
potheses concerning material regulation of MSC cytokine secre-
tion that could ultimately have impacts for cell therapies, we
examined the effects of the MSC substrate on supporting cultured
HSPCs. First, to confirm the relevance of the substrate to secretion
of relevant cytokines from MSCs, from day 2–3 of culture, we
collected conditioned media from mMSCs cultured in fast-relaxing
alginate hydrogels of different ligand densities (200 and 1,500 μM)
and stiffnesses (3 and 18 kPa) and analyzed the mMSC secretome
using a cytokine antibody array. Numerous cytokines in the array
were expressed differentially as stiffness and ligand density were
altered. WGCNA modules with high correlations to both stiffness
and ligand density were noted to include a number of processes
involving secreted cytokines, consistent with this experiment (Fig.
3D). Hierarchical clustering revealed distinct groups of cytokines
that associate with the various material conditions (Fig. 4A). No-
table were TPO, SDF-1, OPN, IGF1, and IGF-2, which have all
been shown to be involved in MSC–HSPC cross-talk (30, 31). The
observation that these functionally distinct cytokines separate into
different clusters based on substrate properties suggests that the
material context of MSCs could potentially regulate different as-
pects of MSC–HSPC interaction. Interestingly, SDF-1 was found
to cluster with IGF1, IGFbp-2, and IGFbp-3, which have been
found to enhance SDF-1 expression in MSCs viaHIF-1α and PI3K-
dependent mechanisms, consistent with these predictions.
Using a Transwell coculture system, we then encapsulated

mMSCs in alginate hydrogels and cocultured these cells with pri-
mary mouse CD45+/Lin−/Ckit+/Sca1+ cells, a putative hemato-
poietic stem cell population, seeded on the Transwell membrane
(Fig. 4B). After 1 wk, HSPCs were collected, counted, and
analyzed for maintenance of stemness by flow cytometry. We
found that HSPC proliferation was not significantly different
across conditions (Fig. 4C), but that the percentage and
number of Lin−/CD45+ cells were higher in softer gels in-
dependent of ligand density (Fig. 4D), suggesting that altered
cytokine secretion profiles mediated by the substrate are as-
sociated with functional differences in MSC–HSPC interac-
tions. Moreover, inspection of WGCNA modules with high

correlations to changes in stiffness implicated Notch and TNF
signaling (Fig. 3D, steel blue module), both of which have been
shown to be important factors regulating the HSPC niche (32).
Intriguingly, while the coculture system tested here did not allow
for direct cell–cell contacts, the Notch prediction also suggests that
cell–cell contacts could be altered by the substrate. It should be
noted that while the specific material parameter values used for
the MSC–HSPC cross-talk experiments were chosen due to their
link to the RNA-seq results, additional distinct parameter com-
binations could potentially yield more dramatic effects.

Discussion
Specific combinations of the three substrate properties dramat-
ically impacted the number of DE genes in both mMSCs and
hNPCs. The transcriptional responses from these specific pa-
rameter combinations were found to be partially specific to each
combination. While for 30-kPa hydrogels stiffness dominated
other parameters in mMSCs, and confirmed the implication of
previously described substrate-sensitive transcriptional programs,
with 18-kPa gels the contribution of stiffness was diminished. This
dose-dependence of substrate properties mirrors previous studies of
stiffness, stress relaxation, or ligand density individually. For exam-
ple, osteogenesis has been shown to display a biphasic relationship
with stiffness in similar hydrogels, peaking at ∼20 kPa (10). Mean-
while, osteogenic differentiation in mMSCs has been reported to
increase with faster stress relaxation times down to t1/2 = 60 s, while
adipogenic differentiation displayed the opposite result over the
same stress relaxation range (8). Moreover, increasing ligand density
from 150 to 1,500 μM nearly tripled markers of osteogenic differ-
entiation in 17-kPa alginate hydrogels with t1/2 between 60 and 300 s
(8). In contrast to the mMSC case, stress relaxation dominated the
transcriptional response of hNPCs in relatively softer conditions.
These findings suggest that because the phenotypic responses to
these variables are dose-dependent, the molecular components of
the response that are also sensitive to other material parameters will
similarly have a dose-dependent response. In this way, it is possible
that the specific values of one parameter contextualize the response
to other parameters through these common intermediates. The re-
sults also follow the biophysical mechanisms of substrate sensing,
whereby the ability to cluster adhesion ligands mediates the stability
of cell focal adhesions and thus downstream response (33). In this
case, each of the substrate parameters of interest is implicated in
controlling the ability of cells to cluster these receptors. However,
the downstream response of this clustering is cell-type–specific; this
work demonstrates the context-dependence of biophysical sensing,
not only in terms of the specific combination of parameters present,
but also in terms of the cell (species, lineage) that is doing the
sensing. The relative differences in the sensitivity of gene expression
to substrate properties observed between the mMSCs and hNPCs
are also consistent with each cell type’s in vivo biophysical context.
MSCs are found throughout the adult body (34) and are thus ex-
posed to a wide range of tissue stiffnesses. NPCs, however, are ex-
posed to a relatively narrow range of stiffnesses in CNS devel-
opment, as evidenced by the marked similarity in stiffness between
the embryonic (35) and adult (36) brain. It is possible that the in-
creased matrix content and cross-linking observed over time in CNS
development (35) could alter the viscous properties of the substrate
and thus expose these cells to a comparatively large range of stress
relaxation values. In any case, because there has been significant
interest in using iPSC-derived cells therapeutically, the substrate
regulation of iPSC-derived NPCs suggests a strategy of utilizing
material carriers to regulate their fate. We should note, however,
that the absolute magnitude of gene-expression changes between
the mMSCs and hNPCs is likely a function of both species and
lineage differences.
While mMSCs and hNPCs were found to be most sensitive to

different parameters, the observations that (i) there exists cou-
pling and sensitization of the response to particular material
properties, as a function of the values of other properties (Figs. 1
C and G and 2C) and (ii) that these combinations give rise to
distinct gene-expression responses (Figs. 1 D and H and 2D), were
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Fig. 4. mMSCs modulate secreted cytokines in response to substrate stiffness. (A) Heatmap representing results of cytokine antibody array performed on
conditioned media from mMSCs cultured in hydrogels from days 2–3 of culture. Values were normalized to internal positive controls and the maximum signal
for each cytokine across the four materials. Cytokines were hierarchically clustered using a Euclidean distance metric and complete linkage. (B) Schematic of
MSC–HSPC coculture set-up. Fast-relaxing hydrogels were used for all experiments. Soft corresponded to 3 kPa and stiff corresponded to 18 kPa. (C) Viable cell
number as counted by flow cytometry of cells seeded on Transwell membrane after 1 wk of coculture. Error bars represent SD (one-way ANOVA, Tukey post
hoc test, *P < 0.05, **P < 0.01). (D) Number and percentage of CD45+/lin− cells from Transwell membrane after 1 wk of coculture as analyzed by flow
cytometry. Error bars represent SD (one-way ANOVA, Tukey post hoc test, *P < 0.05, **P < 0.01).
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similar between the two cell types. These results are consistent
with previous phenomenological studies showing how certain
matrix properties can modulate the response of cells to other
matrix properties (12). As a specific illustration of this point in
mMSCs, Chaudhuri et al. (8) cultured mMSCs in 9- and 17-kPa
alginate hydrogels of similar ligand density and stress relaxation to
those used in this study. When they assayed these cells for oste-
ogenic and adipogenic differentiation, the authors found that
stiffness acted as a switch that could turn the quantitative stress
relaxation dependence on or off. Similar switching effects were
seen with the interaction between ligand density and stress re-
laxation. While Chaudhuri et al. (8) used stiffness values that
varied slightly from those used in this study to study stress re-
laxation and ligand density, our observation of switching dynamics
in the magnitude of gene-expression responses (Fig. 1 C and G) is
similar to the switching effects that Chaudhuri et al. (8) reported.
Generally, it should also be noted that these results demonstrate
the contextualization of material sensing, which implies that other
important variables, such as cell density, cell history, and ligand
composition, could add additional layers of complexity to this
sensing behavior. Our hNPC substrate-sensing results comple-
ment recent work on NPC multiparametric substrate sensing. For
example, Madl et al. (37) showed that NPC substrate remodeling
is required for maintenance of NPC stemness, an effect that was
independent of substrate stiffness. Varying the stress relaxation in
alginate hydrogels has been shown to influence the degree of
substrate remodeling (8); thus, our results demonstrating an in-
creased sensitivity in NPC gene expression to stress relaxation
versus stiffness is consistent with the results of Madl et al. (37).
Tekin et al. (38) performed a transcriptomic analysis of several
common NPC culture conditions. While the NPCs were found to
be sensitive to Matrigel concentration and stiffness in at least some
subset of genes, PCA only discriminately clustered culture condi-
tions with extreme (∼10-fold) differences in stiffness, again consis-
tent with our observed reduced sensitivity of NPCs to stiffness (38).
Inferring a regulatory network in mMSCs using enriched hubs

from the WGCNA analysis revealed significant involvement of
the canonical signaling pathways MAPK, Wnt, and TGF-β. These
results are consistent with studies linking each of these pathways
to substrate-sensing (39–41). Because a large number of ligands
activate these pathways, including many drug targets, implications
for cross-talk between soluble molecular signaling and substrate
sensing are potentially far reaching (42–44). Further epistatic
analyses would be useful in elucidating such cross-talk.
Our coexpression network analysis revealed modules of genes

tightly associated with the sensing of each of the biophysical prop-
erties. Annotating each of these modules and correlating them with
the parameters of interest provided a score for the potential con-
nection between these parameters and diverse cellular processes.
While this approach is correlative, its value lies in both mapping the
strength of the responses to these biophysical parameters and gen-
erating hypotheses for their effects. Such metrics could prove useful
in identifying cellular processes to be targeted using materials or
even to identify potential unintended consequences of a biomaterial
design.
Using the bioinformatic analysis to generate hypotheses, we

found that the substrate stiffness presented to mMSCs modulated
the secretion of a host of cytokines, notably ones that affected
HSPC differentiation. While MSC–HSPC interactions have been
previously described in significant detail (30, 31), the present re-
sults have implications for the regulation of stem cell populations
in the HSPC niche by mechanical means. For example, enrichment
of adipocytes in the bone marrow has been associated with aging
and obesity (45), potentially affecting bone marrow mechanics.
Thus, it is possible that these sorts of mechanical alterations to the
bone marrow could affect the MSC–HSPC interactions described
in this work. Moreover, because MSCs have been shown to signal
to HSPCs, regulating their homing and retention in the bone
marrow (46), it raises the possibility that the variation in HSPC
substrate properties in addition could influence HSPC response
to that signaling. Our results demonstrating the mechanical regu-

lation of MSC–HSPC interactions suggest avenues for further
controlling associated cell therapies, such as through cell delivery
via biomaterial carriers or through pharmacologic manipulation
of mechanosensitive pathways.
In addition to the predictions concerning MSC–HSPC inter-

actions, our analysis generated additional hypotheses that would
be interesting to explore. For example, the prominence of im-
mune processes in modules from the mMSC analysis is particu-
larly intriguing because MSCs have been shown to display an
immunomodulatory phenotype (47). In fact, many of the pro-
posed mechanisms for MSC cell therapies are immunological in
nature. These results suggest hypotheses for how biophysical
aspects of the MSC microenvironment could regulate their im-
munomodulatory responses. Moreover, while previous studies of
mMSCs in similar hydrogels with nearly quantitatively identical
properties to those in this work have reported phenotypic outputs,
such as proliferation, differentiation, and morphology (8, 10), the
diversity of gene-expression changes induced by these materials
suggests that these previously assayed phenotypes could represent
just a subset of those “reachable” by material interventions. Fur-
thermore, it is possible that some of these distinct molecular re-
sponses are overlaid on the phenotypes previously reported. For
example, the cells used in previous studies reporting the effects of
substrate mechanics on differentiation or proliferation could also
potentially display additional molecular phenotypes that could have
immunological consequences but were not tested in those studies.
The overall approach described herein of integrating high-

dimensional biophysical experiments with high-throughput bio-
assays to bridge the gap between physical aspects of biology and
their biological consequences yields important insights and is likely
to become more commonplace. This mapping from substrate input
to gene expression can be captured by a linear model that both
describes the RNA-seq data as a function of substrate properties
and is used to compare the relative significance of changing one or
more of these parameters (Fig. 5A). Having such a representation
allows for the production of a response surface that describes gene-
expression changes as a function of a substrate property coordi-
nate, potentially serving as a predictive tool for biomaterials engi-
neers (Fig. 5B). Additionally, dimensionality reduction techniques,
such as PCA used on sequencing data, could be used alongside
collapsed representations of substrate properties, such as dimen-
sionless parameters, to generate otherwise difficult visualizations of
the global effects on cells in a high-dimensional input and output
space (Fig. 5C).

Methods
Casting of Alginate Hydrogels. Alginate type LF20/40 (FMC Biopolymer) was
used as-received for the slow-relaxing hydrogels andwas irradiatedwith an 8-
mRad cobalt source to form the fast-relaxing hydrogels. Alginates were
modified with GGGGRGDSP peptides (Peptide 2.0) at the reported densities
with standard carbodiimide chemistry, as described previously (48). After
modification, alginates were dialyzed against a NaCl gradient, treated with
activated charcoal, and sterile-filtered. After lyophilization, all alginate was
dissolved in serum-free DMEM (Lonza) at 2.5%.

Hydrogels were cast by rapidly mixing the alginate solution with a CaSO4

slurry via two syringes and ejecting the mixture between two glass plates,
where it gelled over 1.5 h.

More details on the specific formulations for each condition can be found
in SI Appendix.

Hydrogel Mechanical Characterization. Hydrogels were fabricated as described
above at a thickness of 2 mm and subjected to compression testing using a
mechanical testing device (Instron). Gels were compressed at a strain rate of
1 mm/min and the Young’s Modulus was calculated as the best-fit slope of
the first 5–15% of the resulting stress/strain curve. At 15% strain, the strain
was held and the time required for the stress to decay by a factor of two was
noted. More details can be found in SI Appendix.

RGD Peptide Quantification. RGD coupling density was determined using the
LavaPep assay following the manufacturer’s instructions. Coupled alginate was
dissolved at a concentration of 0.1 mg/mL in PBS before incubation with the
LavaPep reagents. A standard curve of GGGGRGDSP peptides was prepared in
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PBS containing 0.1-mg/mL uncoupled alginate as background. Fluorescence
was read using a Biotek plate reader and the resulting concentration was used
to find the molar ratio of alginate to peptide. Molar concentration of peptide
was calculated assuming a 2% alginate gel from the molar ratio.

mMSC Cell Culture. D1 mMSCs (ATCC) were encapsulated in the hydrogels
during the mixing step at a concentration of 10 million cells per milliliter.
After casting and punching, gels were placed in 24-well plates and cultured at
37 °C in DMEM (Lonza) with 10% FBS and 1% penicillin/streptomycin. More
details can be found in SI Appendix.

Live/Dead Staining. Gels were treated with Life Technologies Live/Dead re-
agent per the manufacturer’s specifications and were then transferred to a
microscope slide with a custom-made PDMS well. A coverslip was placed
over the hydrated gel and the gels were imaged on a Zeiss LSM 710 upright
confocal microscope. Viability was quantified by computing the number of
live and dead cells across five representative fields-of-view using ImageJ.

Cell Retrieval from Gels.After 40 h of culture, gels were removed from thewells
and placed into Eppendorf tubes with 50 mM EDTA in Hepes on ice for 10 min.
An equal volumeof trypsin-EDTAwas then added to the tubes for an additional
5 min at 37 °C to ensure the removal of cells from the alginate chains. Cells
were centrifuged and rinsed twice before proceeding to additional analysis.

Cell Counting for Proliferation Analysis.After cell retrieval, as described above,
cells were diluted per the manufacturer’s instructions and counted on a
Countess FLII automated cell counter (Life Technologies). Cell counts were
compared with the original encapsulated cell numbers.

RNA-Seq.After cell retrieval as described above, cells were lysed and total RNA
was extracted per the manufacturer’s instructions with the Qiagen RNeasy
Micro kit. Samples were then submitted to the Harvard Medical School
Biopolymers Facility, where mRNA enrichment and library preparation was
performed. Individual samples were barcoded and run on either an Illumina
HiSEq. 2500 Rapid or an Illumina NextSeq.

Statistical Methods. Statistics for RNA-seq experiments are described inmMSC
RNA-Seq DE Analysis and hNPC RNA-Seq Differential Expression Analysis. For
flow cytometry for the mMSC immunomodulation and MSC–HSPC cross-talk
experiments, Igor Pro software was used to run one-way ANOVA, followed
by a Tukey post hoc test.

mMSC RNA-Seq DE Analysis. Raw reads were aligned to the University of
California, Santa Cruz (UCSC) Genome Browser mm10 genome using Subread
(49) and counts were aggregated per gene using FeatureCounts (50). After
aggregating read counts, we performed TMM normalization. Voom (51) and
Limma (52) were then used to perform DE analysis using a multilevel fac-
torial design. Batch was accounted for with an additional factor in the linear
model. DE genes were defined as those with a fold-change of at least 2 and
a BH-adjusted P value of less than 0.05. For visualization and clustering,
Combat was used to remove batch effects. qPCR on selected transcripts and
material conditions mirrored the sequencing results (SI Appendix, Fig. S16).
More details regarding the creation of Figs. 1 and 2 can be found in
SI Appendix.

Neural Progenitor Production. The human iPSC line 1016a (certified myco-
plasma negative and karyotypically normal) was differentiated using a pub-
lished cortical neuron protocol (28). Cells were plated on a Greiner microclear
96-well plate coated with laminin, polyornithine, and fibronectin for culture.
More details regarding hNPC production, marker verification, and staining
can be found in SI Appendix.

hNPC Cell Culture.After production, hNPCs were encapsulated in the hydrogels
during the mixing step at a concentration of 5 million cells per milliliter. After
casting and punching, gels were placed in 24-well plates and cultured at 37 °C
in NIM media (described above). Cells were stained for viability as described
for mMSCs and were found to be highly viable and evenly distributed
throughout the gel (SI Appendix, Fig. S9).

hNPC RNA-Seq Differential Expression Analysis. Raw reads were aligned to the
UCSC Genome Browser hg38 genome using Subread (49) and counts were
aggregated per gene using FeatureCounts (50). Subsequent analysis largely
follows that for the mMSCs. More details can be found in SI Appendix.

WGCNA. WGCNA (29) was run on the Combat-cleaned TPM data. Module
significance for stiffness, stress relaxation, and ligand density was computed
for each module by correlating the expression of module member genes
each parameter encoded as low (0) or high (1) and taking the average gene
significance for that module. More details can be found in SI Appendix.

Metacore Network Analysis and Visualization. For the Fig. 3 analysis, the
Metacore web tool was used to identify enriched pathways and to construct
the putative substrate sensing network. For the drug target analysis, DE genes
for hNPCs corresponding to stress relaxation, stiffness, and ligand density were
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Fig. 5. Model for gene-expression effects of substrate properties. (A) Model of the substrate response, where cells sense material inputs, process them, and
translate them into changes in gene expression. Formulating a statistical model of gene expression as explained by substrate properties and their interaction
is loosely analogous to the transfer function between the gene-expression output and the substrate property input. (B) Response surface for gene expression
as a function of substrate properties. One of these surfaces exists for each gene. (C) Response surface for collapsed gene expression as a function of collapsed
substrate properties. In this approach, the dimensionality of gene-expression space and the substrate property space are collapsed to enable a holistic view of
the most prominent substrate effects.
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pooled and fed into the Drug Target pipeline in Metacore. The drug hits in the
“therapeutic drug-target interactions” list were taken. More details can be
found in SI Appendix.

qPCR. Cells were retrieved from gels as described above and total RNA was
extracted using the Qiagen RNeasy micro kit following the manufacturer’s
instructions. Reverse transcription was carried out using Bio-Rad iScript
Advanced cDNA synthesis kit and PrimePCR validated primers (SI Appen-
dix, Table S1) along with Bio-Rad sso Advanced Universal SYBR Green
Supermix were used for the qPCR assay. More details can be found in
SI Appendix.

MSC–HSPC Coculture Experiment. HSPCs were isolated from the tibia, femur,
and pelvis of 6- to 12-wk-old wild-type C57BL/6 mice and seeded on a

Transwell membrane. D1s were cocultured with HSPCs in StemSpan SFEM
(StemCell Technologies) supplemented with 10% FBS, 1% penicillin/streptomycin,
and 10 ng/mL recombinant mouse SCF, FLT3L, and IL-7 (BioLegend). Media
change was performed every 2 d, and the coculture was terminated after
1 wk. More details can be found in the SI Appendix.

Conditioned Media Experiment. Alginate hydrogels containing mMSCs were
fabricated as indicated above. We collected the culture media from days 2 to
3. This conditioned media was used per the manufacturer’s specifications in
Abcam’s ab193659 mouse 96-target cytokine array and chemiluminescence
was read on a FluorChemM imager. More details can be found in SI Appendix.
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